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In a field K 2 local field if it is ¢opy,
[/ wd by 2 discrete valuation v and if j;
defin _ Card (k) and we always assym
7= . that the homomorphism p: k=

:}::; lﬁ’e 1ds is known:
1

f K has characteristic 0, then K i a finit
. ‘ . e ext 3
field Qp the 'comp]etlon of Q with respect to the to c‘]’SlOH

. yaluation. If [K: Q] = n then » — e
P_,d;c v} Vand &1 th _ = ¢f where f g
(that is, [ = [k:F,]a e 1s the ramification indey u(p)

If K has characteristic p (“the equal ch ©P)

. 4 field k(T aracteristic case”

o a field k((T)) of formal pow :

POWer series, where T is

g parameter. :

The first case 1s the one w
relative t0 @ prime number p.

We shall study the Galois groups of extensions of k and would
jike to know the struct.ure of the Galois group G(K,/K) ofotkll of course
dosure K, of K, since this contains the information about all sucifcitcifsriﬁc

n the case of characteristic 0, K; = K). We shall content ours‘clvcs “'i;
the following: ) .

1. The cohomological properties of all galois extensions, whether abeli
or not. o .

9. The determination c?f the abelian extensions of K, that s, the determina-
tion of G modulo its derived group G".

Throughout this Chapter, we shall adhere to the notation already intro-
duced above, together with the following. We denote the ring of ‘imcgm
of K by 01:3 the multlp'licatl\t'e group of K by K* and the group of units
by Ur. A sn}lllar notation will be used for extensions L of K, and if L is a
galois extension, then we denote the Galois group by G(L/K) or G or
evenby G. If se G and a e L, then we denote the action of s on a by *«
or by s(a).

In addition to the preceding Chapters, the reader is referred to “Corps
Locaux” (Actualités scientifiques et industrelles, 1296; Hermann, Parms,
1962) for some elided details. In what follows theorems cic. in the four
sections are numbered independently.

p ¥

plete with Tespect ¢

S residue figlq 1. ;
¢ that th dk is

o.the topology
‘ Vammonﬁn'nel We write
¢ that alua V1S normalized -
Zis Surjective, The struc?:zcel‘f

re o

of the p-adic
gy defined by the
the residue degree

), then K is
a uniformiz-

hich arises in ¢ i
arises in completions of a number field

an

1, T}iﬂ Brauer Group of a Local Field

3 1.1. Statements of Theorems
first section, we shall state the main results; the proofs of
; .g nd over §§ 1.2-1.6.

Ve begin by recalling the definition of the Brauer group,

he theorems

Br (K), of K.

-5l



j-p. SERRE
130 ' i 1
; tension of K with G
¢ L be a finit€ galois ex aloig
(See Chapter AL 53'7"11_;;0 H(LIK) instead of HZ(GL!K’ L*) and we cop.
We alois extensions of K. The indyc.

group G(L/K) ¢ all such finite &
sider the family (L_i)te:H o (Z;/K) by e E aition th

: : Ve
tive (direct) limit l.ﬂ

2l 1 the definitio

e Brauer group, Br(k)

a that Br(K) = H¥K,/K). In order y
It follows t’l‘)or:vc ook first at the intermediate field K, KeK.ck
- o] unramified extension of K. The reader i

pter I, §7 for the properties of K. We recall in par.
s field of Ky is &, the algebraic closure of &, and tha
: F the Frobenius element in G(K,,/K)
G(K./K) = G(klk). We denote by £ U /5

th(c eé‘ec)t of F on the residue field k is gwen‘by 1+ A1, The map v F* g
an isomorphism &~ G(K,/K) of topological groups: Erom Chapter
§2.5, we recall that Z is the projective (inverse) limit, l(l.rE Z/nZ, of the

cyclic groups Z/nZ.
Since K,,is 2 subfield of

In fact:

Tueorem 1. HX(Ku/K) = Br (K). . '
We have already noted above that H*(K,/K) = H*Z, K,,).

P . 2 )
TueoreM 2. The valuation map U K, - Z defines an isomorphis

H¥(K,,/K) ~» H*(Z, 2).
We have to compute H
group and consider the exact sequence

0-Z—-+Q->Q/Z-0

of G-modules with trivial action. The module Q has trivial cohomology,
since it is uniquely divisible (that is, Z-injective) and so the coboundary
5: H'(Q/Z) » H*(Z) yields an isomorphism HY(Q/Z) -» H¥G,Z). Now
H'(Q/Z) = Hom (G, Q/Z) and so Hom (G, Q/Z) = H* (G, Z).

We turn now to Hom (2, Q/Z). Let ¢ € Hom (Z, Q/Z) and definc a iy
y:Hom (Z, Q/Z) - Q/Z by ¢ — (1) e Q/Z. 1t follows from Theorem 2
that we have isomorphisms

compute Br (K
where K, deno
referred to Cha
ticular, that the residu

K, H (Kn/K)1s2 subgroup of Br(K) = H*(K, k)

%2, Z). More generally let G be a profinite

v 3-1 b
H(K,K)  HX(2,Z) - Hom (Z,Q/Z) - Q/Z.
The map invg: H*(K,,/K) - Q/Z is now defined by
invg=y°6 Lo
For future reference, we state our conclusions in:
COROLLARY. The map i 7i
i p invg = 7 ° ° i '
between the groups H*(K,,|K) anii Q/Z?. e fRddines o ORI
Since, by Theorem 1, H*(K, = '
an isomorphism ian:Bl" (!()(—:r(/;%.—~ Br (K), we sce that we have defincd

LO
CAL CLASS FIELp THEORY
.« a finite extension
o of K, the corrcsponding N
map will be ¢
enoted

py inve:

THEOREM 3. Let L/K be a finite extension of degr
ec n. Then

inv, o )
LeResy, =p, invy.

er words, the following diagram is commurari
e

In oth
Br(K) *exre pr(p)
Q!,Z _.,f,__b Qi]z

(For the definition of Resy,;, the reader is

and to Chapter V §2.7.) 15 referred to Chapter IV §4
CoROLLARY 1. An element o e Br (K) gives 0 |

nt = 0. geves : Br (L) if and only if
COROLLAR; 2. LC:{JL/‘K be an extension of degree n. Then H*(L/K) i

cyclic gifaorder n.' C.”e precisely, H*(L|K) is generated by the .’ Vo

,;”KeBr (K), the invariant of which is 1/ne Q/Z. ' B

Proof. This follows from the fact that H*(L/K) is the kernel of R
' - (2.8

1.2 Computation of H*(K,,/K)
In this section we prove Theorem 2. We ha\lc to
' , e / prove that the homo-
morphism H*K,./K) — H*, Z) is an isomorphism. s
PROPOSITION 1. Let K, be an unramified extension of K of
" xten: degree n and let
G = G(K,/K). Then for all g € Z we have: o
(). HYG, U,) = 0, where U, = Ux;
(2). the map v: H'(G, K*) = HYG, Z) is an isomorphism.
gThcorem 2 is evidently a consequence of (2) of Proposition 1, since
HY(K,/K) = H*(Z, K.,))
Proof. The fact that (1) implies (2) follows from the cohomology sequence

H%G,U,) » HYG,K}) ~» H(G, Z) HT (G, Uy)

It remains to prove (1). Consider the decreasing sequence of open sub-

gips U, - Ul 5 U2 ... defined as follows: x€ Ul if and only if

ox— 1) > i Nowletne Kbea uniformizing element; SO that U, = 1+_n'0,..

Wh.ere 0, = Og,. Then U, =1lm U/U). The proof will now be built up
—

from the three following lemmas.

LBMMA 1, Let k, be the residue field of Ky Ther (e
Phisms UJUL ~ k* and, for i > 1, Uyuitt 2k

re are galois isomor=
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132 :comorphism which is compy;
mean an isomorp patib,

lois isomorphism We ! de.
(Byagao e the Galois group Of cither side.) ducti .
with the action 0 here & is the reduction of a int,

ma o+ W - :
Proof. Takea€ U, and map faeU?! then & = 1, and the first pan

;50 i
By definition, Ul= 1d+ n0,; SO
i ved. ' B
i I}j prs?acond part, take € U! and .wrm.: a=l+n'g g,
e s We have to show that in this map a product ,,

pe 0, Nowmap o By definition, w = 1+7'(B+p)+

corresponds 1o the sum

p+p-
hence aa’ > B+ B L -
wFinalIy, the isomorphisms are galois since "& 1470

+ all integers g and for all integers i = 0, H'(G, Unf Uy <

LemMa 2. Fo .
= U,, and the first part of Lemma 1 gives

Proof. For i =0, Uy
HYG, U,/ Uz) = HYG, k) = H Gy 00 kD).

k*) = 0 (“Hilbert Theorem 90”, cf. Chapter v,

hat G is cyclic. Since ; is finite, the Herbragg

8, Prop. 11); hence the result for 4 - >

ws by periodicity.

m Lemma 1 and the fact that 4= h

Now forg =1, H'(Gy o
§2.6). Forg=2, observe t
quotient /(ky) = 1 (cf. Chapter IV, §

For other values of g the result follo
For i > 1, the lemma follows fro

trivial cohomology. .
The proof of Theorem 2 will be complete if we can go from the groups

UiUi*! to the group U, itself and the following lemma enables us to d;

this.

LemMA 3. Let G be a finite group and let M be a G-module. Let M', i > (
and M® = M, be a decreasing sequence of G-submodules and assume ha
M = lim M/M'; (more precisely, the map from M to the limit is a bijeciion)
Then, if, for some g € Z, HY(G, M'|M**') = 0 for all i, we have HY(G, M =

Proof. Let f be a g-cocycle with values in M. Since H*(G, M /M Y =4,
there exists a (g—1)-cochain ¥, of G with values in M such that
f = 8y, +1,, where f, is a g-cocycle in M*. Similarly, there exists |/, such
thatf, = 6y, +/y, f, € M?, and so on. We construct in this way a sequence
W fo) where ), is a (g—1)-cochain with values in M"~' and f, is @
g—coc;yclethhvaluemn M andf, = .Y, e1+fo0q. Set Y = Y iyt ...
c‘;C“I;‘:i‘:’l 21{ (t;he '}tl}{p:,t[hese's on M, this series converges and defines a (¢ 1)
i With values in M. On summing the equations f, = 6\/,4, +/,+

€ obtain f = &y, and this proves the lemma.

chg: reIttu;anow to the proof of Proposition 1. Take M in Lemma 3 ©0
" ollows from Lemma 3 and from Lemma 2 that the cohomology

of U, is trivial and thi
s 15 completes the proof of Proposition 1 and so als
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1.3 Some Diagrams -

PROPOSITION 2. Let L/K be a finite extension of d
' e

e the maximal unramified extension of L (resp Kg”-'e nandlet L, (resp, K )
following diagram is commutatiye. 5P K); so that K I

HY(K,[K) _Res H (L, /L)

invl
-

the

invyp
Uz . oz
proof. Let T'x = G(Knrfff) and let Fy be the Fropen
et T and £ be defined similarly. We haye f eni
is the residue field degree of L/K. L

Let ¢ be the ramification index of L/K, and consider the g;
y: Ka) 2%, H? 7y - ) lagram:
H*(Tx, Kar) . (I:L.Z.) _ . Hom(T xQIZ) _x _qz

us clement of | ¥
= (Fo)/ where f = [/ k)

Resl (1) 1'“:&; (2) e Res| (%) !
2 * vL 2 - r - 1 i 4 n";

where Res is induced by the inclusion I, — 'y, and v (resp. 7)) is g

. ’ Tk T€Sp. yp) 1s giv

by @ (Fi) (1esp- ¢ > 0(Fy). The three squares (1), (2), () extracted

from that diagram are corilmura!ir-c; for (1), this follows from the [-dctL that

b, is equal to e.vg on Ki.; for (3), it follows from F, = Ff, and n = ef;

for (2), it is obvious. ' '

On the other hand, the definition of invy: H*(['y, K¥) —» Q/Z is equiva-
lent to: _

Invg = yg 07" o vy,
and similarly:
invy =1y,20" "oy

Proposition 2 is now clear.

CoROLLARY 1. Let HY(L/K), be the subgroup of H*(K,,IK) consisting of
those a € H*(K,,[K) which are “killed by L (that is, which give O in Br (L)).
Then H*(L/K),, is cyclic of order n and is generated by the element uy;y in
H¥K,,|K) such that invg (uyx) = 1/n.

Proof. Note that a less violent definition of H*(L/K),, is provided by
HY(L|K), = H*(L/K) n H*(K,/K).

Consider the exact sequence

0 = HA(L/K),, —» HA(K,,/K) 2 H(Ly/L).
The kernel of the map H3(K,,/K) — H*(L,/L) is HE(L/K),,~r and this goes
to 0 under inv, : H*(L,,/L) —» Q/Z. On the other hand, it folllows from
Proposition 2 that inv, ° Res = n.invy. The kernel of the latter is (21/"1)551/;Z
‘and so H*(L/K),, is cyclic of order », and is generated by 1y x € H*(X,/K)

with invy (”r,n;) = 1/n.
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¢ order of H YLIK)isa multiple of n.
yelic subgroup of order n by Corollary |

134
COROLLARY 2. Th

Proof. H*(LIK) contains & C
ith Trivial Cohomology

1.4 Construction of a Subgroup Wi
Let L/K be a finite galois extension wi?h Cfalois group G, where L and x
are local fields. According to the di.scusswn.m Proposition 1, the G-module
U, has trivial cohomology when L 1s unramified.
There exists an open subgroup, Vs of Uy with trivig
HY(G, V)= 0 for all q.
the first one works only in characteristic 0,

PROPOSITION 3.
cohomology. That is,
Proof. Weshall give two proofs;

the second works generally. o o
Method 1. The idea is to compare the multiplicative and the additive

I ‘We know that L* is a free module over the algebra K[(]

groups of _ : ‘
h that [*a]yec 1s @ basis for L considered as g

That is, there exists « € L suc
vector space over K.

Now take the ring Ok of integers of K and define A = ¥ se6Ox-"@. This

is free over G and so has trivial cohomology. Moreover, by multiplying «
by a sufficiently high power of the local uniformizer mg, We may take such

an A to be contained in any given neighbourhood of 0.

It is a consequence of Lie theory that the additive group of L is locally
isomorphic to the multiplicative group. More precisely, the power series
e* = 1+x+...+x"n!+..., cONVEIEES for v(x) > v(p)/(p—1). Thus in the
neighbourhood v(x) > o(p)/(p—1) of 0, L*1s Jocally isomorphic to L™ under
the map x> ¢*, (Note that, in the same neighbourhood, the inverse
mapping is given by log (1+x) = x—x32+x33—....)

Now define V = e?: it is clear that ¥ has trivial cohomology.

The_ foregoing argument breaks down in characteristic p; namely at tic
local isomorphism of L* and L*.
wMethod 2. We start from an A constructed as above: A = ) .cOx =

e . . . b S
smtarl;iy ;ssun;c that 4 = 0,. Since A is open in Oy, nx0Op = A for a

. Set M=nkA. Then M.M cngM if i > N+1. Fo
M.M=124.4cnl if i B Z A
214.4 c n;'0Op and if i > N+1 then

2i
150y < nx. g A < mgM.

N = :
be pc;:‘,:;; ¢ II,+M' '_l"l?cn V is an open subgroup of U,. It remains (©
means of suba ou ha;‘triwal C?homology . We define a filtration of V' by
(1+n}x)(1+§f )pi ; =,1+“KM’:' > 0. (Note that ! is a subgroup since
filtration ¥ = 130; VTE(';_:J’ +mgxy), etc.) This yields a decreasing
to proving that HY(G, V' 2= iAsingl 2, Lemma 2, we are reduced
and associate with t}(ﬁ "I/(V ) =0 for all g. Take x = 1+nkp, feM

s its image e M /nx M. This is a group isomorphisi

L
OCAL CLASS FIELD THEQRY

) V‘H and M [ng M and we kn
0_“ ¥ fre over G. OW that the latter hag trivial col "
dl C
sl ‘This completes our pfqofs of Proposition 3 B
We recall thcodcﬁmtlon of the Herby 1
al) = Caxd (87 (M/Caxd G141, When b e M. Na
IV, § 8) oth sides are finite m(&sly,
: ec

CoROLI.ARY 1. Let LIK be a cyclic extensi
—1and h(L*) = n. lc extension of

degr
gree n. Then we have

WU
Let ¥V be an ope
e i ki subgroup of U, with triyia]
prop- 3 > iplicative, h(Uy) = h(V).nu ; chmmolog)' (cf
a 'L ) = 1. -

. l‘ L. = g L)' : an
Ci l‘; ] 1 L ] n.

COROLLARY 2. Let LK be a cyclic extensi
!'Sﬂfarder n=[L:K] xiension of degree n,
Proof. We have

Then Hl(L,"K}

h(rry = SArd UG, L)
Card (HY(G, L)y
Now Corollary 1 gives h(L*) = n Morcmé
) er, HY(G, L*) = ;
Theorem 90). Hence Card (HX(G, L*)) = n. Brm Hgﬁlj}? - 0-(-)Hllbcrl
whence the result. 5, L*) is HA(LJK),

1.5 An Ugly Lemma

gMMA 4. Let G b i ,
hI; b ei'f;ﬁmre group and let M be a G-module and suppose
that p, 4 integers with p 2 0, q = 0. Assume that:

i :
(@) JTI(Hv M) = Ofor. all 0 < i < g and all subgroups H of G,
() if H < K = G, with H invariant in K and K/H cyclic .>j prime order
fhl;ﬁlhe ;:rder Of HQ(H, M) (resp. HO(H, flrj') |fq — O)VCJ_TIL'J‘(;J(‘S ([\ H)n o
en the same is true of G. That is, HY(G, M) (resp. HYG. M : .
dviding (G 1. (G, M) (resp. H°(G, M) is of order
Proof. Sin.cc the restriction map Res: AYG, M) —» HY(G,, M) is injective
on the p-primary components of A9(G, M), where G, denotes a Sylow
p-subgroup of G, we may confine our attention to the case in which G is
a p-group. We now argue by induction on the order of G.
] Ass ssume that G has order greater than 1. Choosea subgroup H of G which
’;rig\'aﬂant and of index p. We apply the induction hypothesis to G/H.
(Gﬁ?ow from (b) that, for g > 0, the order of HYG/H, M") divides
N = p* and by the induction hypothesis H*(H, M) divides (H:1)"
t follows from (a) that we have an exact scque
0 _ HY(G/H,M") ol HY(G, M) Res  HYH,M).

—_—

(G, M) has order dividing p*.(H: 1y = (G: 1)

nce (Chapter IV, § 5.
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For g = 0, we I¢

call (sce Chapter IV, § 6) that

A%G, M) = MC/Ng M.
the exact sequence
e ha;:ﬂ NyM Na/w MG/NGM . (MH)G”I/NG/HM"
v B
d /ot:s the norm map and the second map is induced by the
en

where Ng/u - of the argument now runs as before.

identity. The remainde

1.6 End of Proofs
be a finite galois extension with Galois group ¢

L/IK
ProposiTION 4. Let Lf H(LJK) is cyclic of order n and has a generay,,

of order n = [L: K]. Tiren.
u{,x € H¥(K,,/K) such that invg (ugy) = 1 /n.

emma 4, take M = L*, p = 1 and ¢ = 2. Condition (a) j;
sa:;rggé:byIETlfleorem 90" and (b) is true by Prop. 3, Cor. 2. Igencc H*(G, [:x |
has order dividing (G: 1) = n. But by Prop. 2, Corz. 1, H*(L/K) contains
a cyclic subgroup of order n, generated by Hp/x € H*(K,./K) and such thy
invg (ux) = 1/n. Whence Proposition 4. |

It follows from this proposition that H 3(L/K) is contained in H (K /K)

We turn now to the proof of Theorem 1. The theorem asserts that the
inclusion Br (K) > H*(K,,/K) is actually equality. Now by definition,
Br (K) = u H*(L/K), where L runs through the set of finite galois extensions
of K. But as remarked above, H(L/K) ¢ H*K,/K). Hence
Br (K) = H*(K,,/K), as was to be proved.

Evidently, Theorem 3 follows from Theorem 1 and Proposition 2.

1.7 An Auxiliary Result
We have now proved all the statementsin § 1.1 and we conclude the present
chapter with a result which has applications to global fields.
Let A be an abelian group and let n be an integer > 1. Consider (he
cyclic group Z/nZ with trivial action on 4. We shall denote the correspond-
ing Herbrand quotient by A,(4), whenever it is defined. We have

Order (4/nA)

Order 4
whz?re ,,_A is the set of we 4 such that na = 0. (Alternatively, we could
begin with the map 4 ", 4 and take h,(A) to be:

order (Coker (n))/order (Ker (n).)

Now let X be a local field. Th
lute value, denoted by |alx
lalx = 1/Card (Ok/a0y).

ho(4) =

en for « € K there is a normalized abso-
(see Chapter II, § 11). If ae O, then

LOCAL CLAss FIELD THEORY

opoSITION 5. Let K be a local field gpq |, 137

s t
he characteristic of K. Then h(K*) — nfin| . " e an integer prime 1o
proof- Suppose that K has characterigyj. 0. w

h (Z) = n; SO We must compute h(U. .
, subgroup ¥ of U which is opey A;ndAiiQ?nZ;DFPS
: phic

f Ox. We have h,(Uy) = p (y ;
h(U:/V) =K1. We have i ( )"I"(UK/P) and sine
% hn( V) = hn(OK)

e have i (g = h(Z). h(U,).

ition 3, we con-
to the additjye
¢ Uy/V is finite,

h(Ox) = Card (Ox/n0Oy) = 1/ln|,.

Whence
B(K*) = n.(Ulnl) = nfjn,
Suppose Now that X has characteristic P We t
pefore. First, h,(K*) = n.h,(Uy). Now consider th

Oﬁué_’bvxﬂk*—)()

where Ug is @ pro-p-group (cf. Lemma 1), Since 5 is prime to p it foll
that h(Ux) = 1 and that 4,(k*) = 1. So n.h,(Uy) = n \\’hcncjthe(;‘mrs
We note that the statement of the proposition is alsa correct for R ;iuct
In these cases we have |nlg = [n], |nlc = [n® and one can check directly
that, for R, h,(R*) = n/In| = 1 and, for C, h(C*) = nilnle = 1fn. y

ake the same steps as
€ exact sequence

APPENDIX

Division Algebras Over a Local Field

It is known that elements of Brauer groups correspond to skew fields (cf,,
for instance, “Séminaire Cartan”, 1950/51, Exposés 6/7), and we are going
to use this correspondence to give a description of skew fields and the

_ corresponding invariants. Most results will be stated without proof.

Let K be a local field and let D be a division algebra over K, with centre
Kand [D: K] = n®. The valuation v of K extends in a unique way from
Kto D (for example, by extending first to K(x), a e D, and then fitting the
resulting extensions together). The field D is complete with respect to this
valuation and, in an obvious notation, O, is of degree n* over Ok Letd
be the residue field of D; we have n* = ef where ¢ is the ramification index
andf = [d: k).

NW e < n; for there exists « € D such that vp(
10 8 commutative subfield of degree at most n over £. Tt
i8G0mmutative, since k is a finite field, and d = k(@) for some e D. Hence
S n. Together with n* = ef, the inequalities e < 7 and f < nyield e =n

) = e~ ! and « belongs
1e tesidue field d
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Since [4: k] = m, we can find @ € d such that k(@ = d. Now choose
[ Evidently [L: K] < n, since [, iL:

corresponding € 0, and let L = K(@).
a commutative subfield of D. On the ot
d; hence [/: k]

residue field of L) and / = :
and L is unramified. We state this Jast concl

commutative subfield L which is unramified over K.
K) corresponding to D splits in L, thatis 6 € H*(L/k)

The element & € Br (
(K) is split by an unramified extension and we haye

So any element in Br
obtained a new proof of Theorem 1.

her hand, & is an element of / (1},
~ . It follows that [L: K] —
usion as: D contains a maxr‘ma;

Description of the Invariant
The extension L of K constructed above is not unique, but the Skolen,.
Noether theorem (Bourbaki, “Algebre”, Chap. 8, § 10) shows that all sucy
theorem shows that any automorphismy

extensions are conjugate. The same
of L is induced by an inner automorphism of D. Hence there exists y e p
such that pLy~! = L and the inner automorphism x — yxy~! on L is the

Frobenius F. Moreover ¥ is determined, up to multiplication by an element

of L*.
Let g,

v, on D. The image i(D) o

choice of 3. One can prove that i(D)

ciated with D,
We can express the definition of i(D) in a slightly different way. The map

x> y"xy~" is equal to F" on L and so is the identity. I
! ) t PATEE |
commutes with L and 9" = ce L*. Now ’ AR sk

be the valuation v, : L* = Z of L; so that vp D* — (1/n)Z extends
f vy(y) in (I/n)?i/Z c Q/Z is independent of the
= invy (8), where é € Br (K) is asso-

ol 0 1
vp(y) = = vp(y") = » vp(c) = n vy(c).
Hence we have vp(y) = (1/n)v.(c) = i/n where ¢ = i u.

Application

anssggzel;: :Shatp, K'|K 'is an extension of degree n. By Theorem 3, Cor. 2
wwumééfﬁm“W?*MwMwmmMrmeWi
stated more s'P‘?Cta(:ula.ﬂr;'f ai .mﬂxur;al COn_imuraﬁue subfield. 'This may be
can be solved in D. : any irreducible equation of degree n over K

EXERCISE

Consid -adi
Mo :tl‘ :}111: i :cgh; ;ﬁ?ld Q, al}d let H be the quaternion skew field over Q-
where a,b, ¢, de Z, or ii“?f?i,"l H consists of the clements a-+bi-+¢j+ i
to conjugacy) quadratic ;uéﬁélds_o? }(qmod Z,). Make a list of the seven (up
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2.1 Cohomoloe;
: ogical p :
Let Ift, ];:) af ﬁngc galois extension o o
e 0 :
Gim GUL/K) oF order o e have seen (g | with- Galoj
e group H (LK) = H(G, L*) s cyclic of L, Theorem 3, Cop, 55 ok
Y such that 1nvg (urn) = 1neQz E) order n and cont » Lor. 2)) that
i(G,2*) = ©- /2. On the ot
let H be a sub
fi(/)l‘;i’ for some K’ ir(}?p of G of order m. Since py ;
of L » we also have Hl(H . 15 the Galois grou
eyclic of order 1 and generated by u, ,L*) = 0 and HY(H = p
o further, we ne FhE i b
loionglap ool (K)Citgrk(l;?w more about u, .. Now we |
t hat this is t! ) and this suggests th ¢ have the restric-
To see that (IS 1S the case, we simply check 0;‘. nv 18 Uy = Res (gyp)
‘arlants. We '

f local figlgg

| ’ have
inv g (Res ux) = [K": K]invg (uy5) = [K': K] oJ
: e = " = inve (1,0

We can now apply Tate’s theorem (Chapter 1V
THEOREM 1. For all ge Z, the map o+ , § 1) Rl
is an isomorphism of AYG, Z) onto F{q+i(G x[ il)” given by the cup-product
A similar statement holds if H is o
. 1S a subgrot :
extension L/K’. The mappings R iogroup of G corresponding to an
ppings Res and Cor connect the two isomorphi
and we have a more explicit statement in terms of diagrar 1\0 Isomorphisms
Galc MSs.
STATEMENT. The diagrams -
RAYG,Z) "= ATHX(G, I A%G,Z) ‘v, A6, L)
Res Res COI‘Y C A -
" , ! (\I&
AYH,Z) “v=' A9*}(H, 1Y)  AYH,Z) 'V, AHH, L)
are commutative. |

Proof. As above, uy i = Res (). We must show that
e Resg/x (upx- @) = iy p-Resgpe (=)

e left- ide i i
logicaltiimim(’]? is Resg,x- () - Resg i () (see Cartan-Eilenberg, “Homo-
oot gebra”, Chap. XII, p. 256) and so commutativity with Res is
Nf‘:féhe second diagram we have to show that Cor (i) = g Cor (f).
loc. ci or (uyx.. B) = Cor (Res (uy/x)-f) = - Cor () (Cartan-Eilenberg,

. ¢it.) and this proves the commutativity of the second diagram.

2.2 The Reciprocity Map

.We §hall be particularly concerned with the case ¢ = _1 of the foregoing
sion. By definition A (G, Z) is H,(G,Z) and we know that
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140 h
the othe
On m 1 reads as follows,

’ ab

H.(G, Z)=G/G' = G*. |
wi;n(arc N) x denotes the norm. In this case, Theorf: : I

THEO ;/M 2. The cup-pro defines an isomorphism of G*(L/Kk)

HEOREM 2.

onto K*|NyxL*.

We give a name to th :
inverse. Define 0 = fx to be the 150

which is inverse to the cup-product by ;; L;K'
orocity map or the norm residue symbol. . i
i ik L to @ € K*/NyxL*; then we write 87,x(@ = (&, L/K).

K* corresponds :
g d 1 is so named since it tells whether or not o e K+

The norm residue symbo .
is : norm from L*. Namely, (¢, L/K) = 0 (remember that 0 means 1) if

and only if « is a norm from L*.

Observe that if L/K is abelian, t
0: K*/NyxL* = G.

2.3 Characterization of (x, L/K) by Characters

Let L/K be a galois extension with group G. We start from an ae K*
and we seek a characterization of («, L/K) € G°. For ease of writing we set
s, = (& L/K). Let x e Hom (G, Q/Z) = H*(G,Z) be a character of
degree 1 of G and let oy € H*(G, Z) be the image of ¥ by the coboundary
map 6: H'(G, Q/Z) » H*(G, Z) (. § 1.1) Let

de K*/Nyx(L¥) = A%G, L*)
be the image of a. The cup-product &.dy is an element of H*(G, L*) < Br(X)
PROPOSITION 1. With the foregoing notation, we have the formula
y(sp) = invg (&.5y).

Proof. By definition s;.1;x = & € H°(G, L*), 5, being identified with un
element of H- (G, Z). Using the associativity of the cup-product, this gives
8.0y = . 5,00 = tp k. (5,.00) = uyx.8(s,.x) with s,. % € A~Y(G, Q/Z).
Now A (G, Q/Z) 5 H°G, Z) = Z/nZ and we identify H (G, Q/Z) with
Z/nZ. . Moreover, the identification between H ~%(G, Z) and G° has been so
made in order to ensure that s,.x = (s,) (see “Corps Locaux”, Chap. X,
Annexe pp. 184-186). Write s,.x = r/n, r € Z. Then &(r/n) e H*(G, Z) 20d
6(r/"), o Hence up . (5s.8y) = r.ugx and the invariant of this cohomology
class is just r/n = x(s,). So Proposition 1 is proved.

duct by upx

m just constructed, or rather to it
morphism of K*|NpxL* on to G
The map 0 is called the Jocq)

e isomorphis

hen G* = G and we have an isomorphism

As an application we consider the following situation. Consider a tower
'CI)'; Sah:ns ’e?ctensions KcL' cL with G=G(L/K) and H = G(L/L)
of e(t?];"lfa):idlsifa chi;icfer of (G/H)™ and  is the corresponding charactef
i S. Ly wa Eh induces S‘,‘E G* and S;E(G/H)ab wndir the!naturﬁl
fhict thatihe i ;’ have #(s,) = x'(s;). This follows from Prop. 2 and the

Inflation map transforms ;' (resp. 8y) into ¥ (resp. dy)-

LOCAL CLASS FIELD THEORY

This c‘._m-u:.a?ibility allows us to define #i
taking L = K®, the maxima| sp:

parﬁcular’ : .
homomorphlsm GK tK* o G(Kab/‘K) deﬁned by o ( Kab
o e, KK,
2.4 Variations with the Fields Involpeq
ve

Having considerf:d the effect on (z, LIKY of ext
10 consider extensions of K. Let K'/K be a s

‘,' K'® be the maximal abelian extensions of K

we look at the first of the diagrams in the st {

0. Taking the projective limit of the gri)
wmmutativc diagram:

ensions of . we turn now
pE}‘rable exilension and et
K respectively.
cmel_n of § 2.1 and the case
ups 1nvolved, we obtain a
Lo L
i"di ¥ :
K'*, 0k’ G:;\-!"
Here ¥ denotes the transfer (Chapter 1V, § 6), G2
§6), 3 denotes G(K"/k
G denotes G(K®/K) = G™(K'®|K). e e
Similarly, using the second of the diagrams in
| ' 7 the State e '
a commutative diagram: .

K™ _%8 5%
Ni'sx | i
v I

* 0k b

i,

where i is induced by the inclusion of Gy. into G,.

[Note that if K'/K is an inseparable CX[CnSlOﬂ; then in the first of these
diagrams the transfer, ¥, should be replaced by g} where ¢ is the inseparable
factor of the degree of the extension K'/K. The second diagram holds even
in the inseparable case.] A

2.5 Unramified Extensions

In this case it is possible to compute the norm residue symbol explicitly in
terms of the Frobenius element:

PROPOSITION 2. Let L/K be an unramified extension of degree n and let
FEGM be the Frobenius element. Let a€ K* and let v(@)€Z be its nor-
maﬁzed valuation. Then («, L|K) = F b,

Proof. Let y be an element of Hom (G, Q

: y((a, LIK)) = invy (&.67)-
Themp invg: H*(Gx, L*) = Q/Z has been defined as a composition:
i H 2(_G,_,K, I¥)_° HGyx2) " H(Gyx Q) - UZ

-ave v(@.dy) = v(x).5y, hence:

vy (@.8y) = yod~ Lov(@.0%) =

/Z). By Prop. 1, we have:

o(e).3(x) = v@F) = i
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This shows that B
(o LIK) = x(F )
: = J,
for any character X of Gy x; hence (e, L/K[) e
1 ! en i
y. Let E/K be a finite abe .:an ex
Sy,(;g;rofléﬁi Gg/x Maps Uy onto the inertia subgroup T of Ggx.

Proof. Let L be the sub-extension of £ corresponding to T. By Prop.
the ima.ge of Uy in Gyx 18 trivial; this means that the image of Uy in ¢, r
is contained in T. Conversely, let 1€ T, and let £ = [L:K]; 'tl}erc B
age K*suchthat?t = (a, E/K). Since ¢ € T, Prop. 2 shows that fdivides vg(a)-
hence, there exists b € E* such that vg(a@) = vx(Nb). If we put w = a Ny~

we have u € Ux and (4 E/K) = (a, E/K) = L.

The norm resjy,
due

2.6 Norm Subgroups

DEFINITION. A subgroup M of K* is called a norm subgroup if there eviy;

a finite abelian extension LK with M = NyxL*

Example: Let m = 1 be an integer, and let M, be the set of element:
ae K* with vg(@) = 0mod m; it follows from Prop. 2 (or from a direct
computation of norms) that M,, is the norm group of the unramified exten.

sion of K of degree m. ' .
Norm subgroups are closely related to the reciprocity map

0, : K* - G = G(K™/K)

defined in § 2.3. By construction, O is obtained by projective limit from the
isomorphisms K*/NL* — Gy, where I runs through all finite abclian
extensions of K. If we put:
R =1lim.K*/NL¥,
we see that f can be factored into
il
K* - K - G§.

where i is the natural map, and 0 is an isomorphism. Note that K is justt
comp{en'on of K* with respect to the topology defined by the norm subgroups

This shows that norm subgroups of K* and open subgroups of G corre-
spond to each other in a one-one way: if U is an open subgroup of G%, wilb
ﬁxed field L, we attach to U the norm subgroup 05 *(U) = NpxL™: if M
is a norm §ubgroup of K*, we attach to it the adherence of 0x(M); ¢
corresponding field L,, is then the set of elements in X*® which are invariant

by the Ox(a), for ae M. We thus get a “Galois correspondence” betwee?
norm subgroups and finite abelian extensions; we state it as a propositio?

bPﬁOposmorf 3. (a) The map L NL* is a bijection of the set of finil
avelian extensions of K onto the set of norm subgroups of K*.

he |

LOCAL CLasg FIELD THEORY

is bijection reverses the j .
() This / 1e inclusion, 143
© N(L.L) = NL n NL' and N(LAL

(d) A subgroup of K* which contgin )= NL.L,

S a nor
m subgroup is 4 norm sub

group- f,
or a direct proof, see “Corps L :
L s Locaux”, Chap. X1, §4)

_abelian extensions give th
Non-a elian ex give the same nor
msubgroups
as the

PROPOSITION 4. Let E[K be a finite extens
abelian extension contained in E. Then e g

) abelian opes:
won, and ler [ /K
ve: '
|  NewB* = Ny,
Proof. This follows easily from the properties of the nor
m re

in §2.4; for more details ' sidue symbol
proved in §2.4; 13, see Artin-Tate, “Class F;

i Y3 'y 3 e cld T 1
pp- 228 229, or “Corps Locaux”, p. 180. (These two books give :Iflc;’r{h;

case where E/K is separable; the general case reduces to th;
; : o this 2
that NL = K when L is a purely inseparable ey oofm]:{ 1;)8 observing

CoroLLARY (“Limitation theorem”). The index (K
3 ) . x (K*:NE*) digi
(B K1, Itis equal 10 (E: K1 if and only i EIK i i,
Proof. This follows from the fact that the index of NL* in K* is equal
to [L: K] !

be the farg@_”

2.7 Statement of the Existence Theorem
It gives a characterization of the norm subgroups of K*:

THEOREM 3. A subgroup M of K* is a norm subgroup if and only if it
satisfies the following two conditions:

(1) Its index (K* : M) is finite.

(2) M is open in K*.

(Note that, if (1) is satisfied, (2) is equivalent to “M is closed”.)

Proof of necessity. 1f M = NL*, where L is a finite abelian extension of X,
we know that K*/M is isomorphic to G ; henee (K*: M) is finite. More-
over, one checks immediately that N:L* - K* is continuous gn.d proper
(the inverse image of a compact set is compact); hence M = NL* is closed,
of. Bourbaki, “Top. Gén.”, Chap. I, § 10. As remarked above, this shows
that M is open. [This last property of the norm subgroups may also be
expressed by saying that the reciprocity map
, 0y : K* - G¥

ntinuous.]

oof of sufficiency. See § 3.8, where W _
$ theory. The usual proof, reproduced lfor in
ux”, uses Kummer and Artin-Schreier equations.

e shall deduce it from Lubin -
stance in “Corps
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i ivalent formulations.
We give now some eQuivaenl, % Gr py Prop. 2, the composi,

Consider the recipr
[:J4 e
K*— G2 - G(Ku/K) = 2
is just the valuation map p: K* - Z. Hence we have a commutayjy,
is jus

diagram: 0—>UK—+K*_>Z'_’0

1o o e
00— ];; "’G;?'_’Z—)O’

where I = G(K**/K,,) is the inertia subgroup of G¥, and G(K,,/K) is idey.
b Seag ar.

i ith 2. o :
nﬁ;iew;ap 0: Uy = Ix is continuous, and its image is dense (cf. Cor. i,

Prop. 2); since Uy is compact, it follows that_it is swjective..
We can now state two equivalent formulations of the existence theorer

TaeoreM 3a. The map 6: Ug = Ix
Turorem 3b. The topology induced on Uy by the norm subgroups is i}

natural topology of Ug.
The group Ji is just lim. Ug/(M n Uy), where

subgroups of K*; the equivalence of Theorem 3a and Theorem 3b follows
from this and a compacity argument. The fact that Theorem 3 = Theorem 35

is clear; the converse is easy, using Prop. 2.
COROLLARY. The exact sequence 0 — Uy — K* — Z — 0 gives by com-
pletion the exact sequence:
05 Ug—»K—-2-0.

is an isomorphism.

M runs through all nory

Loosely speaking, this means that K is obtained from K* by “replacing
Z by 2.

2.8 Some Characterizations of (o, L/K)

Let L be an abelian extension of X containing X, the maximal unranied
extension. We want to give characterizations of the reciprocity mup
0: K* - Gpx.

Since K,, = L, we have an exact sequence 0 — H — G — 2-0
where H = G(L/K,,) and 2 is identified with G(K,,/K). Choose a local
uniformizer 7 in K and write o, = 0(r) = (n, L/K) € Grx. We know that
9, maps onto the Frobenius element Fe Gy ,x. Moreover, we can Wit
Gyxasa d1r_ect product of subgroups G, x = H.I, where I, is generated by ¢..
Corresponding to this we have L = K. ® K,, where K, is the fixed ficld

of o, = O(z). In terms of a diagram, the interrelationship between the ficlds
1s expressed by

é
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where K, and K, are linearly disjoin¢

PROPOSITION 5. Let f1 K* — G pe ¢ 10
Momorphism gng assup

s
(1) the composition K* & G _, ¢ . 1K) 1e that:

natural map, is the valuation mqp , .
() for any uniformizing element n ¢
sponding extension K. ’

s Wwh -
K g O OW,[K)

S is the identity

is the

on the corre-

Then f is equal to the reciprocity map .

Proof. Note that condition (1) can be restated as: for o e k' .
on K, the power of the Frobenius clement, Fo® *€ K S0 induces

We know that f() is F on K, and that 0(n) §

§ Donr m)is F ¢

nand, /(x) is 1 on K, and 6(zn) is 1 on K. Hence f(n) 0=11 ;En“r) 01?!; the other

Now K* is generated by its uniformizing elements ny (write
(,m),n"“). Hencef= . e (write x”

PROPOS}T.ION 6. Let f:K* - G pea homomorphism and assume
of Proposition @éf_olds, whilst (2) is replaced by:

u as
that (1)

(2) ifae K*, if K'[K is a finite sub-extension of L and if o is a nerm from
K'*, then f(x) is trivial on K'. '

Then f is equal to the reciprocity map 0.

Proof. _It suﬂi_ces to prove that (2') implies (2). That is, we have to prove
that if 7 is a uniformizing element, then f(r) is trivial on K. Let K'/K bea
finite sub-extension of K,. We want to prove that 7 € NK'*. But 0(x) is
trivial on K, and so on K'. This implies n e NK'*.

2.9 The Archimedean Case

For global class-field theory it is necessary to extend these results to the
(trivial) cases in which K is either R or C. Let G = G(C/R). In the case
K:EF:C, the Brauer group is trivial, Br(C) =0. On the other hand,
BER) = H*(G, C*) = R*/R* and so Br(R) is of order 2.
_The invariant invg:Br (R) » Q/Z has image {0,1/2)
inve: Br (C) » Q/Z has image {0}. The group H*(G, C*)
eyelic of order 2 and is generated by u € Br (R) such that invg (1) = 1/2

“ider the reciprocity map (or rather its inverse) we have an isomorphism
G=H %G, Z) » HO(G, C*) = R*/RY.

in Q/Z and
= H*(C/R) 15
1/2.

Yo
=
B
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3. Formal Multipli
The results given in this chapter ar
matics, 81 (1965), 380-387. i
For our purposes, the'mam o
of a cofinal system of abelian extenSL_ons :
giving (& L/K) explicitly in such extenslio

§2.7. .

In order to 1
The results to be prove .
easily obtained) and they wi

cation in Local Fields
e due to Lubin-Tate, Annals of i'L-[m‘fna

quences will be: (1) the constructj,,
f a given local field K;(2) a f”?mu}al
ns; (3) the Existence Theoren,

as involved, we begin with the case K — 0
known in this case (but were .,
be trivial consequences

Ilustrate the ide
d were already
11 be shown to

Lubin-Tate theory.
3.1 The Case K = Q,

Let Q2! be the field generated over Q, by all roots of i,
g ;

THEOREM 1. by ol O

vel 2 k) 1 er .

Then Q2 is the maximal abelian ex{ "p o n o |
In order to determine (o, L/K) it 18 convenient to Spllt‘ Q. into parys
d over Q, by roots of unity of order prime

Define Q,, to be the field generate '
to p (so Q, is the maximal unramified extension of Q,) and define Q .

be the field generated over Q, by p'th roots_ of unit){,. i 1,2,... (so Q..
is totally ramified). Then Q,, and Q,= are linearly disjoint and

cyel Qnr'QP“"' = Qnr ® QP""

P
We have a diagram:

cycl

Qu F>Q"”
D

Now G(Q,,/Q,) = 2 and if o € G(Q,=/Q,) then o is known by its action
on the roots of unity. Let E be the group of p°th roots of unity, v = 1, 2,
As an abelian group, E is isomorphic to lim Z/p*Z = Q,/Z,. We
view E as a Z,-module. There is a canonicﬁmap Z, - End (E), defined
in an obvious way and this map is an isomorphism. The action of the
Galois group on E defines a homomorphism G(Q,./Q,) —» Aut (£) = [;
and it is known that this is an isomorphism. (See Chapter III, and “Corps
Locaux”, Chap. IX, § 4, and Chap. XIV, § 7.) If u € U,, we shalldenote by [u]
the corresponding automorphism of Q,./Q,.

; THEOREM 2. If & = p".u where u € U, then (a, Q?'/Q,) = a, is described
y:

(1) on Q,,, g, induces the nth power of the Frobenius automorphism;

(2) on Q,=, 0, induces the automorphism [u™].

shal

LOCAL CLASS Fipy THEORY

ese (1) is trivial and has ,
astzcrtion (2) can be proved by ](f;)ady been
s (Dwork), or (c) Lubin-Tate ik
rk. Assertion (2) of Theorer,
tive p°th root of unity ang

147

i mlgtr}?ved in § 2.5, Prop. 2
ods, or (®) hara lo.cai

ory (see § 34, Theorem 3)

2 is equ
. quivalent
fue U, then to the following:

oW =wl sy P (u!
1+Z )x"
n=1\ N 3

The
method
Remart: -

where W= 1+x.

‘ 3.2 Formgl Groups
The main game will be played with somer
jicative SrOUP law F(X, Y) = X+ Y+ xy

: . . and something ;
. omial expansion. The group law will e et o
s be a formal Power series in two

variables and we begin by studying such 2roup laws

DEFINITION.  Let A be a commutative ring with 1
We say that F is a commutative formal group law if:

(@) FX, F(Y, 2)) = F(F(X, Y), Z);

) FO, ¥) = Y and F(X,0) = X;

(c) there is a unique G(X) such that F(X, G(X)) = 0-

@ FX, Y) = F(Y, X); '

() F(X, Y)= X+Y (moddeg2).

(In fact one can show that (c) and (e) are consequences of (a) (b) and (d)

Here, two formal power series are said to be congruent (m’od deg n) if
and only if they coincide in terms of degree strictly less than . i

Take A = Og. Let F(X, Y) be a commutative formal group law defined
over O and let mg be the maximal ideal of Oy. If x, y & my then F(x, y)
converges and its sum x*y belongs to Og. Under this composition law,
myg is @ group which we denote by F(m,).

The same argument applies to an extension L/K and the maximal ideal
myin O;. We then obtain a group F(m,) defined for any algebraic extension
of K by passage to the inductive limit from the finitc case.

IEF(X, Y) = X+ Y+ XY then we recover the multiplicative group law
of I+mx.

The elements of finite order of F(my ) form a torsion group and G(K/K)
operates on this group. The structure of this Galois module presents an

m%hng problem which up to now has been solved only in special cases.
L2
e 3.3 Lubin-Tate Formal Group Laws |
m K be a local field, g = Card (k) and choose 2 uniformizing ¢
n@k 4 Let &, be the set of formal power series f with:
WAX) =nx (mod. deg. 2);
@ AX) = X* (mod. 7).

hing which replaces the muyjt.

and let Fe A[[x, Y

lement
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d. T{) if and
v be Congrucnt (ITIO ang
148 e B is divisible by 7. So the secopg
d and denote by

correspond!
Examples:
= X+X 1
(@) f(X) =7 3 (P)X2+...+ X7
K=Q, =P $0=pX+\ 2 !
& - ; four prOPOSitions will be proved in § 5 as cons
The following
of Prop. 5. Then there exists @ unique formal o
. Let f€&w 20 is.
PRPPOSIT;;;“ in A for which f is an endonn:fr;,:‘tnifsr} -
Fy with ol BT ) = ESCO S o F; = F,
(T S Letf Eg and Fy the corresponding group law of |
PrOPOSITION 2. L€ * ts a unique [al, € A[[XT] such

Then for any a€ 4 = Oy there exis

ith f;
(1) [a)y commuies Wi
() [y =aX (mod. deg. 2. o 1
Moreover, [a); is then an endomorphism of the group lay I';.
From Pro’p. 5 we obtain @ mapping 4 — End (F)) defined by .

For example, consider the case
K=Q, f=pX+ (g)X2+'--+X";
then F is the multiplicative law X+ Y+ XY, and
2 fa
Cml=denr1=3 ()«

PROPOSITION 3. The map aw> [a], is an injective homomorpli
ring A into the ring End (F ).

PROPOSITION 4. Let f and g be members of §,. Then the cor
group laws are isomorphic.

3.4 Statements

Let K be a local field and let 7 be a uniformizing element. |
and let F, be the corresponding group law (of Prop. 1). We ¢
M, = Fymy,) the Sfoup?sfpomts in the separable closure cqui]
the group lawﬁodl.pcdﬁ-g)n F. Letaed, xe M, and put @
gsis Ii’;;ps.u%. ;lh;sd-uk.oi : ;_g;%-l‘;(!qur;e_‘of. an A-module on M. ch}\ :
power ol LNE Hﬂﬁ?‘t ISthe set of elements of M,

abelian extension of K.

LOCAL CLASS FIELD I'HEORY

TueoreM 3. The following statements hold 9

(a) The torsion sub-module E_ is isomor i e
(b) Let K, = K(E)) be the field w”m_m{ ;i(‘ (a,s‘ an A-module) with k|4,
§ ed by EI over K. Then K. is an
(c) Let u be a unit in K*,
acts on Ep via [u'. ;.
(d) The operation described in (c) defines an i i
(e) The norm residue symbol (r, K.JK) is 1‘.” tsomorphism U, — G(K,/K).
(f) The fields K, and K, are linearly disjoint ang gob — K., K
We may express the results of Theorem 3 Py

p I\af\

Then the element % = (4, K /K) of G(K [K)
n al

as follows, We have a diagram:

}\.Jlr\ K'-
A,
-
7 L -
Here G(Knr/K) = Z and G(K,/K) = U,. Moreover every a e K* can be
written in the form « = 7" .1 and ¢, gives ¢ (the Frobenius) on K. /K whilst
g, gives [u~'] on K /K. e

Example. Take K = Q,, 7 =pand [ = pX + (P) XP4 ...+ X, The

formal group law is the multiplicative group law; f_‘_r"lg the set of p°th roots
of unity; K, is the field denoted by Q,« 1n § 3.1—and we recover Theorems 1
and 2.
3.5 Construction of F;, [a],

In this section we shall construct the formal group law F; and the map
ar [a],.

PROPOSITION 5. Let f, g€ §., let n be an integer and let ¢,(X,,..., X,)
be a linear form in X,,..., X, with coefficients in A. Then there exists a
unique ¢ € A[[X,,..., X,]]| such that:

(@) ¢ = ¢, (mod deg 2);

() fod=¢do(gx...xg).

Remarks. (1) The property (b) may be written

FX s X)) = dlg(X ) g

(2) The completeness of 4 will not be used in the proof. lMorcovcr, }hc
proof shows that ¢ is the only power serics with coefticients in an extension
of 4, which is torsion free as an A-module, satisfying (a) and (b).

Proof. We shall construct ¢ by successive approximations. More pr(i;
cisely, we construct a sequence (¢™) such that P € AllXy,. - Xalls ¢’1
satisfies (a) and (b) (mod deg p+1), and ¢” is unique (mod deg p+1).
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define ¢ =

We shall then

is asserted. ; o d)(p) has bee

* We take ¢l = g1 prOximaUOn $rt-- ‘;ggod deg p+1). L1“.1,
suppose_that the :ﬁn = g0 (g o %) E0ITBE ). For
ience of WIITES: . Then

Now ¢ it (mod deg p+2),

Now write o o0 = ¢u)°g+E,+1
) satisfies Ep+1 =

where Ep+1 (¥the. BES
(r+1): we have s ) (mod deg p
- T, ¢(~'*l)=fe(¢(‘”+¢p+1) =fo ¢ +1Pp41 b
2 gm ism) and

< e ri
(the derivative of fat the 0 (mod deg p+ 2,

— 4P i
¢mug+¢p+l°y=¢, ogTT ¢’p+1

e #*) . g EEP+1+(“—1IF+1)¢P+1 (mod deg p -

fop®i—¢

These equations show that :
¢’+1 - ""1/1!(1__” -)'

we must take

; d it remains t
is now clear ro(mod n). Now for ¢ eF [[X]], w

X7 (mod =) this gives

The unicity %
i t is,
I;(Xf)' - (?fr))l' " o together with f(X) =

Fod®—p®of= @PX))—¢P(X) =0  (mod 7).
So, given ¢ we can construct a unique @+ and the proof is cor

by induction and passage to the limit. |
Proof of Proposition 1. For each f€ &, let F (X, Y) be the unigue

of (X, ¥) = X+ ¥ (moddeg2) and fo F, = Fy o (fxf) whose c:

is assured by Prop. 5. That F; is a formal group law now requires |
fication of the rules (a) to (¢) above. But this is an exercise in the app
of Prop. 5: in each case we check that the left-and the right-hand «
solutions to a problem of the type discussed there and we usc the

statement of Prop. 5. For example, to prove associativity note that o

FAF(X, Y), Z) and F/(X, F(Y, Z)) are solutions of
HX,Y,2)=X+Y+2Z (mod deg 2)

HUX), /(Y), @) = JH(X, Y, 2)).

and

Proof of Propasirmr?_. For each ae 4 and f, g € 5, let [a], (1)

unique solution of 3
- [ldM=aT (mod deg2)

=0 (moddegp+1).

o show that ¢, has coct:

LOCAL cLass Frg; p THEORY
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f(La]; (1)) = Lal;, (g (Ty)

(that isfelalre = lal;s0 9). Write la]
Now we have
- Fllale 0,061, (1) = oy, (r (x Y)
FUEIL Bide s COngTucht t0 aX+-a ¥ (mod deg 2 ang ir.
9(%) pad Y.by g.( ¥} in e_1the1; side, then the result is the same if
Stimte'thc o Im question in f. Thus la];, is a formal hor?ls e S:ub'
of By into Fy. If we take g = 7, this shows thar (e fol o B et
phisms of Fy. ¢S are endomor-
Proof of Proposition 3. 1In the same w 3
- Way as outlined above, one proves

r =la),,.

f we replace X by

[a+2]r0 = Fy o (el x 1],
and ;
[ab],,, = [a], o (6], 4
It follows from this that the composition of two homomorphi
j i i ; phisms of t]

tyfisgust es tablished is reflected in the product of corresponding elemenltz
offi g / = 9 we soe that the map a - (4] is a ring homomorphism
of A into End (E). It is injective because the term of degree 1 of [a], is aX.

Proof of Proposition 4. 1f a is a unit in 4, then [a],_ is invertible (cf. the
progfiof Prop. 2) and so y = Fy by means of the 1somorphism lal,,.

Note that [r], = fand [1], is the identity (proved as before). '

This completes the proofs of the propositions 1, 2, 3, 4.

3.6 First Properties of the Extension K. of K

From now on, we confine our attention to subfields of a fixed separable
closure K, of K. Given fe &, let F; be the corresponding formal group
law and let E, be the torsion submodule of the 4-module Fj(my). Let
E} be the kernel of [n"],; so that E, = UEf. Let K; = K(E}) and
K=uK» If G, denotes the Galois group of K(E}) over K, then
G(K3/K) = lim G, .

—
PROPOSITION 6. (a) The A-module £, is isomorphic to K/A;
(b) the natural homomorphism G(K_/K) — Aut (E 1) is an isomorphism.

Proof. We are free to choose f as we please, since, by Prop. 4, different
choices give isomorphic group laws. We take f = nX+ X9 Then ae Ef if
and only if f™(a) = 0, where /™ denotes the composition fo...of n times;
that is £ = [n"] -

: Ifﬂemx_ then the equation nX+ X% = « is scparable and so s.ol.v.able
In K, its solution belonging indeed to nig,. This shows that M is divisible.
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Hence £ :
modules isom?fph’i;osubmodulc Ey
Let us consider ! ¢ sub

h that [7],% = -
a':cg{é ?: :m 4-module with g eleme
S1

: hic to K/. K./
lsrTAnr:l’m-}:autcnnOI'Phis“? GJEEG{' Kﬁ and End,
*-module £ But since £r = is injective by the definitio,

_ U. This map s 1"
G(K/K) = Aut (Ia) proved that it s surjective. We o
and it remains tOd Sofine L and K" as above. e have an ip

is divisible also:

module E} is isomorphic wit},
This is enough to show th,

induces an automorphism

Take n > 1 an x = 1+a"A. Let o€ Ef be a primitive ¢
» U",whereU;~ ¢ 3 ek |
t(:l(zfllf indclgnlien: of EJ such that ["]; = 0, but [r Jra # 0. |
as follows:
we define ¢ e

¢ =1
Now f = X*+nX;sof/X = X 14n. Hence
f_(j,.‘_(:'.-_l_.));: (f("_”(X))""l-l-n,
f(--l)
f degree ¢"—¢" " and which is irreducible, since it is an |
polynomial. All primitive elements o are roots of ¢. Thus the

G(K?/K) is at least (¢— 1)g"~". On the other hand, this is actually :
of the group Uy/Ug. Hence G(K7/K) = Ux/Ug. It follows that

G(K,/K) =lim G(K}/K) = lim Uy/ Uk = Uy,

which is o

and this completes the proof of Prop. 6.

The same proof also yields:

CoRroLLARY. The element  is a norm from K(x) = K.

Proof. The polynomial ¢ constructed above is monic and end
Hence N(—a) = n.

37 ".lme. Reciprocity Map
We shall study the compositum L = KK, of K,, and K, and !

(o, LIK), ae K*. We need to compare two uniformizing clemen
o = 7, ue Uy, g i

Let R,, be the cOnTpletLOnofK,, (remember: K, is an increas!

it:]f; :;r;lspie;eﬁﬁeld; -put‘-is-ﬁbtitself.-complcte) and denote by A, '
bidnecgil :nd Y fﬁﬁmﬂﬁl‘l K,.,ls complete; it has an algebraica!!
nd %.W?mng'parameter in K,. We take

and ge ,. S amanan e

A. 1 of £y consisting (see above) o |

(K/A) = A this gives |

LOCAL CLASS FIELD THEORY

1. Let o€ G(K,/K) be ()0 1
L nr e I'."()be; [ -
it 10 R, by continuity.  Then thepe exists g ;Jirzﬁ'e{;“;z:-?iz?fphum‘ and extend
¢(X) = ¢X (moddeg?2) and ¢ 4 URit, such thay es ¢ € A, [[X]) with
(a) ‘¢ = qf) o [ll]f;
®) o Fr = Fyo (6% );
© éolaly = )y ¢ for allac 4,

Proof. Since g-—l is SU!jccti\-'e on 4, and on (

p. 209), {hcre exists a ¢ e A [X]] such that P(X) - :
gisaunit and °¢ = ¢ o [u],. This i provc& by SL= E
and we refer the'reac_icr to Lubin-Tate for tpe {dcthci(l:s Thi i

does not necess?rlly give (b) and (c) but can be adju‘stecli t }:ils o e
putations are given in Lubin-Tate (where they appear '1;)(12 Py 2 in
Lemma 2 on p. 385). Note that together the above co;diti ) ﬂ)n'd e
fact that ¢ is an A-module isomorphism of F,into F, e e

Ls
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cf. “Corps Locaux”,
X (_mod deg 2) where

Computation of the norm reciprocity map in LK

Let L, = K,,.K,. Since X,, and K. are Linearlv dicin:

: . ' i - g carly disjoint over K
Galois group G(L,,/K)‘ls the product of the Galojs groups G(I\?r-f'!\’)’ '1[2;
G(K/K). For each uniformizing element 7 e 4 we define a 1101'11011‘-1‘;)rphtism
¥, G(L./X) such that: ‘

(@) ry(n) is 1 on X, and is the Frobenius automorphism ¢ on K
(b) for u € Uy, r.(u) is equal to [47']; on K, and is 1 on K.

We want to prove that the field L_and the homomorphism r,, are independent
of @. Let @ = nu be a second uniformizing element.
First, L, = L,. For by Lemma 1, Fy and F, are isomorphic over K,,.

Hence, the fields generated by their division peints are the same. So
e il
»

R.,.K, = R, .K, On taking completions we find that K, K, = K.
Inorderto deduce that K,,. K, = K. K, from this, we require the following:
.LELNA 2. Let E be any algebraic extension (finite or infinite) of a local

field and let w € E. Then, if o is separable algebraic over E, o belongs to E.

Proof. Let E, be the separable closure of £ and let E’ be the adherence
of Ein E,. We can view « as an element of E’. Hence it is enough to show
that ' = E.

I#SE G(E,/E). Since s is continuous and is the identity on E, it is also
the identity on E’. Hence G(£,/E) = G(E,/E") and by Galois theory we
have £’ = E.

It follows from Lemma 2 that L, = L, and so L, = L is independent

ofz,

We turn now to the homomorphism r,: K* — G(L/K). We shall show
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is independent of .
154 s imply that r_(co)-ISl ™ ang . bextension of [, ; 1
This will 10 : Since these generate g te su . This wil 55
_ r. (@) Zers. K*x . pro ;
that (@) = 1'_'.( ‘))n the local uniformt » the 527 Theorem 3) and the fact that 7, _ Krf both the existence theoreis
' coincide 2 ince M is open, there cxi g
the 7o 0 W ) is the Frobenius automorpj; Since pen, Hhere exists n > 1 syuep y
resuitwﬂlfo oW On K rol . 5 . AN 4 ite index, there exists m > 1 guc that Ug = af: -
we look first at r'(w).ther hand r (@) is 0 o0 K5 50 We must | ﬁnll) up V,.. generated b /(, such that nm ¢ pf- hence :M bl
iy ? ! (o] n.m Y 54 and m 3 COntains th
g1 Onthe? subgro K . Now let e
on K s : t ¢E43[[X]] be as in Lep, extension of K of degree , and consider t N CF K, be the unramified
ru(@) on Ko gefo 1° : ' Uy, and a€ Z, we k 1¢ subfield L, == kn
3 K, = K(E) WIkES ¢ E, onto E.  So if A€ E, then IGges = kv ’ s Rt i L, ), s e e 2w L.
é :;;minﬂ an isomorp: ° [ogk at r ((;),1 and we want to <jo.. . and to tl}ft_: a-zlh pTw.cfr of the Frobenius clcn::;t t'mh;ql;a" to [u™'] on K=
: «h ueEp W€ o 7o ‘ is trivial if and only if v e Ul and ¢ = On K hence (un®, L, /K
write ).; ¢U;) :;:il;d‘; remarked, f:glio)lgl) —;ﬁagw);qﬁggr (\(’:;;'ltc: g g This shows that V,,, NLh . Si(r)]ézoilfm, Le.ifand only if un® e )
this is 4 : that is A » D) = 1l bextensi 7 M contains ¥, M is s
We want to show f'hat;la;:;l’:"(u)are described in (a) and (b) above group of a subextension of L,  Q.E.D ) zs 15 BE T0Rn
n . .
ang the e%eg:n‘g ‘i':l( e i o =¢o [u], by (@) of Lemma 1. j 4, Ramification Subgroups and Conductors
as coec -1 .
¢ '(¢01))=’¢(’p = S¢([u ]f(}l))- - 4. 1. Ramification Groups
i A Let L/K be a galois extension of local fields with Galois
enes so(u) = o [ulse [u 1w = P(p). We recall briefly the definition of the - © alos group G(L/K).
4’(}‘) b ‘< ind d aroups (For details, the reader sk c ]L:iDPLr numbering of the ramification
: i t r. 1s independent of : ! °r should consul 5 e
So r, is the identity on.K.and xt_follqws t: Gn(§ e ppm:”l, . Locaux”, Chap. IV.) onsult Chapter I, §9, or “Corps
Thus r: K* G(L/K) is the reciprocity map .9, P 5); Bl the function i.: GIL/K) - {Z U o
let x - ' {Z U o} be defined as follows. For
seG(L/K), let x be a generator of 0, as an O algebra aﬁd put

eorem 3 have now been proved except the

All assertions of Th | :
ic(s) = v(s(x)—x). Now define G, for all positive real numbers u by:

L = K® which we are now going to prove. B oy i)
seG, if and only 1 i;(s) = v+1. The groups G T
3.8 The Existence Theorem groups of G(L/K) (or of L/K). In urd{jr(top dcf;i q“r ilfallllfd(:EL[T‘m:mCmmn
p f . g 8 : : : ¢ quotient grou
Let K* be the maximal abelian extension of K it contains A it is necessary to introduce a second enumeration of the ramilicationugroup;;
! called the “upper numbering”. This new numbering is given by G =G

Existence Theorem is equivalent to the following assertion (§ 2.3,
3a). If Iy = G(K®/K,,) is the inertia subgroup of G(K™®/K), then the r.

where v = ¢(u) and where the function ¢ is characterized by the properties:

(a) ¢(0) = 0;

map f: Ux—* Ix is an mmrphi‘m.
Let L be the compositum K,.K,, and let Iy = G(L/K,,) be (1 (b) ¢ is continuous;
subgroup of G(L/K). Consider the maps (c) ¢ is piecewise linear;
e, (d) ¢'(t) = 1/(G, : G,) when u is not an integer.
! T, I, _The G"s so defined are compatible with passage to the quotient: (G/H)*
: :Z?f;::gﬁﬁg;:clw map and e is the canonical map 7, — /, ldse:ﬁlx::: g)r::agGe"’(:f6:('«;(:111ﬂfoGr‘/fij(nI%niPtItzC l;:l;rtizfi;nll]mM] v TR oL e
Clls .

On the other hand, the composition e o 0: Uy — I has just b On the other hand, we have a filtration on Uy defined by Ug = I+mk.
puted. If we idenﬁfy'l} with U it is u u':l KHenge ti]f: chm We extend this filtration to real exponents by Uy = Ug if n—1 <v < n.
e o0 is an isomorphism. It follows that both- g isml{: _ (Itn.}hould be noted that v in this context is a real number and is not to be

As it ' : ; R confused wi i !

Existet‘:vc .ii;ve MY po_tqi, the first isomorphism is equivalent ith the valuation map')
-nce 1heorem. The second means th — Kb o o THEOREM 1. Let L/K be an abelian extension with Galois group G. Then the
contain K. R T at L = K, since both L 4 p L
- 3% : ocal reciprocity map 0: K* — G maps Uy onto G* for all v = 0.

Proof. (1) Verification for the extensions K} of §3.6.
i+1  Tets = 0(u)e GKLK). We have

[Aternative Proof: Let us srove d:
rnative Proof. Let us prove directly that every open subg
Let ue UL with i < n and u ¢ U

of K‘! Which of fir inde :
il;ofﬁﬁw index, is a norm subgroup correspondin® |
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ing element. We choose a prjp,;, "
0 but [*""'],a # 0. O
(3.3, Theorem 3), wher,
EX

156 ik apifo ¢

_jp, where A2 ) =
i(s) = vgg (5t o g sl
rf)ot @ fc;r /1;[31“ 1;’ T el (see §
that s, (@) = 1* g ‘
a unit. These imply th: 4 [1+ﬁ‘v];ﬂf = F(w[n v] ).

Su
i = ‘] a b n
write B = [®t)s and we have

If we -1-1,p # 5 ol

"B =0 F (% [a']s®) = “+ﬁ+.—> 1,7>1

ccordinglys 1o
for some 7;; € Ox: A s@-a=87T Y 1B
and e@-=o®)
i g';lemcnf in K7 whilst § is a uniformizing ¢/,
Now « is a unl ormizin
E
5[
4t
v 3
2_
1
1 1 1 o
ST e A g1
u
Figure 1,

in K5 and K3/K3 s totally ramified. Its degree is ¢’ So we ha:

mined the / function of 0(u); namely, if e U’ but u ¢ U'*1, then i(0(

oy " TSI S US =1 then the ramification grov:

fm‘l':; turn now to mwmmg of the G,’s. That is, we ¢

th og.‘? ""‘”‘vw‘ﬁmﬂm the extension K7, which
e conditions (a) to d) above. Namely, “

Wi Pt g
% &

is a primitive (n—th root (ih,,

LOCAT 1 xoe
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- h(u) = Pk ppu) = o g(_w
‘ Jo(G: G ]
v = G, with v = &(u). :
Then G ,, = #(). The graph of ¢() is shown in Figure 1

“l_l<u<qg-—1,then '(y) — 1,0
Ifq‘ : q ) Ilr,f)(_z:)‘];(clﬁ i-1 Yoo )
Soifl‘__l <v < i, then G* — U(L.;\) for vfg\ g )and (Ux- UK) =q‘_q1—1_

The general case
@ Verification in the general case.
Having proved Theorem 1 for g j¢ follows for g
. . WS L n = U K7 by taki
projec_tl"e Illmltsl; Hence Fllso ffir {\n ..f\m, since both extensions gav?: lt;%:
same intertia subgroup. Since K, K, is the maximal abelian extens;
result is true in general. iR
This concludes the proof of Theorem 1.

COROLLARY. The jumps in the filtration {G"} of G oceur only for integral

values of v.
Proof. This follows from Theorem 1, since it js trivial for filtrations of
Uy and Theorem 1 transforms one into the other. ’
[This result is in fact true for any field whicl, is complete with respect
to a discrete valuation and which has perfect residue field (theorem of
Hasse-Arf), cf. “Corps Locaux™, Chap. 1V, V]

4.2 Abelian Conductors

Let L/K be a finite extension and let 0 : K* — G(L/K) be the corresponding
reciprocity map. There is a smallest number » such that 0(U7) = 0. This
number » is called the conductor of the extension I/K and is denoted by
SL[K).

PROPOSITION 1. Let ¢ be the largest integer such that the ramification
group G, is not trivial. Then f(L/K) = ¢ x(c)+1.

Proof. This is a trivial consequence of Theorem 1 and the fact that the
upper numbering is obtained by applying ¢.

Now let /K be an arbitrary galois extension. Let y: G — C* be a one-
dimensional character and let L, be the subfield of L corresponding to
Ker(¥). The field L, is a cyclic extension of K and f(L,/K) is called the
conductor of y and is denoted by f().

PROPOSITION 2. Let {G,} be the ramification subgroups of G = G(L/K)
and write g; = Card (G,). Then

=Y, 2(1-1G)
i=0do

Where¥(G) = g7 ' Y (s) is the “‘mean value” of x on G.

5€Gy
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158 Lif s trivial on G, (that is, equal to |
26D = Ctrivial on
Proof. We BaYE Ane i nom-
1 for
were) s XCO chaps. IV ¢ e () +1
to “ Orp e _'_g -‘=—'q'7L/K_ Cx iR )
ff.’-(]-—-x((r',)) =040 -
oy h that the restriction x|G. # |
%t é (0 ere ¢ is defined as in Pro,
E i iti it suffices to shou
= f(L/K) 8 L g is transitive, 1 sh
W K Smgng;ence of Herbrand’s theorem (§ 4.1,
thisis @
4.3 Artin's Conductors
; . extension With Galols'gro.up G = ¢
Let L/K be & ﬁmtcfgélfilt;:t,xis an integral combination of irr
¢ y be & AR : f v as the number
cllfarzctcrs). i dcﬁ_ned the comg!uctor of x
& i
= Za)—1G)-
e l;)gﬂ
1, this /G0 coincides with the previ
as follows. For s€ G, set

the details)

If y is irreducible of degree
We define Artin's character dg :
ag®)=—/ igs) ifs#1

ag(l) = f’};l ig(s).

Here f is the residue degree [: k] (not to be confused with the con
and i, is the function defined above.
ProposiTioN 3. Let g = Card (G). Then

1
Jo)=(ag, 1) = ;; ZGX(S)%(S)-

Proof. The proof depends on summation on successive ¢
G,—G,4, and is left as an exercise. (See “Corps Locaux™, Chap

'PROPOSI'I'ION 4. (a) Let Kc L' c L be a tower of galois exicn
% be a character of G(L'|K) and let y be the corresponding character
Then f(x) = ().

(b) Let X C—:K' < L and let { be a character of G(L/K') anil
the corresponding induced character of G(L/K). Then

whire Yt o) = Y(1). vx®xx) + S/ SV,
re KK [/ Cr!SfduedggrceofK:/Kmdh : T
Proof. 2 ( ki 18 the discriminani
ey T8 prookdepesasion properties of the i; function ai

relation betwee #H Rt
“Corps Locm,‘}’?h‘pdi.%;?nt and the discriminant, and can bc |

G, Hence (the reader is ..,

LOCAL CLAss FIELD THEORY

THEOREM 2 (Artin). Let y be 1, character
f)ise positive integer.

oot Let x be the character of the rationa
1t follows from representation theory that
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of a representation of G. Then

1 representation M of G.

(1) =dim M

and
xG)) = dim MG,

Thus in
g
Zg;(x(l)—x(c,,)),

each term is positive (= 0) and so f(y) > 0,
It remains to be proved that f(y) is an inte :

; S ger. According t o
offtuer,  can be written y = z myt where meZ andg f(‘)" zilst}wdorm{;
by a character Y, of degree 1 of a subgroup H, of G ¥ 1s induce

H * ki [ S .
Hence, since S = U Doy, +fese /), F07) is an integer
provided that f(i/,) is. But since i, has degree 1, f(iy) may be interpreted
as an abelian conductor and so is obviously an integer. This proves

Theorem 2.

4.4 Global Conductors

Let L/K be a finite galois extension of number fields and let G = G(L/K)
be the Galois group. If y is a character of G, then we define an ideal 16%9)
of K, the conductor of y, as follows. Let p be a prime ideal in K and choose
a prime ideal P in L which divides p. Let G, = G(Ly/K,) be the corre-
sponding decomposition subgroup. Let f(x, p) be the Artivn conductor of
the restriction of y to G, as defined above. We have f(y, p) = 0 when p is
unramified. The ideal

()= [|pfs®

is called the (global) conductor of .
In this notation, Prop. 4 gives:

PROPOSITION 5. Let K'[K be a sub-extension of L|K. Let \r be a character
of H = G(L/K’) and let yi* be the induced character of G(L[K). Then
f(*) = DRER- Nigyx(i(¥)),

where by.,x is the discriminant of K'|K.
We apply Prop. 5 to the case iy = 1 and we denote the induced character
U* by S¢/m (it corresponds to the permutation representation of G/H).

Since f(y) = (1) we obtain:
CorOLLARY. We have f(sg,m LIK) = Dy
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9 =—1if s # 1 and uy(s) = Card (G)—1 ¢ s=1. No

. Vg = ug+bg

10 :
i is a character of some Tepresentation

where bg i and oul
sae = ug if an i i
Note: dg G only if L/K i tamely ramified. o i

of how wild the ramification is, G IS @ measure

THEOREM 5. .Ler [ be a.prfmc number not equal 19 the resid ¢
e there exists fzﬁmtel'y generated, projective Z[Gl‘ due characteristic,
(haracter bg a.nd this module is unigiee up 1o i.x'omorphils-; module Bg \ with

Proof. This fc.ollows .from a theorem of Swan ;"Plllo logy™
Theorem 5, ;ombfx‘nccll \:all‘tl? "1;)hcorcm 4 above and 11,10 rcn??rl?ﬁa’t ;32 ((;)963)6

order of s is divisible by als . i
:;,::!eflhe | by L. [See also the LH.ES. seminar quoted

For applications of Theorem 5 1o the construction of invariants of finj
G-modules, _see M. Ra}’paud, “8ém, Bourbaki”, 1964/65 c\s O‘ 1;1110
These invariants play an important role in the functional c,ua.t'DOSL f-%'
seta functions of curves. don ot e
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tures, K will be a global field, as has been dcf
the number field case completely, butin the |
ur proofs, in that the second inequality
accompanying key lemma for the existence theorem are proved
extensions of degree prime to the characteristic. (The reader inter
filling the gap can consult the Artin-Tate notes,f pp. 29-38.)

As in Local Class Field theory, there are several aspects: (1) The
logy theory of Galois extensions of K. (2) The determination of thic
extensions of K. (3) L-series analysis.

We will discuss the first two, leaving the third to Heilbronn (Chap!
except for a few remarks.

Sections 1-6 constitute a statement and discussion of the recipio

Throughout these lec
Chapter II, § 12. We treat
field case there is one big gap in 0

and the main theorems on abelian extensions, with no mention of co

loiy.b We hope that this preliminary discussion will serve both as or)
and bait for the reader. In sections 7-12 we give the main proofs, b:

the determination of the Galois cohomology of idéle classes and the !

group of X,

This chapter is strictly limited
lted to the central theore In the exer
i _ i ms. In the exc
he end of the book the l'tadl."l"mll find a few concrete examples and '

1 Harvard, Dept. of Mathematics, 1961,
162
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cent liter;
t literature stattered in the text

R . 5ys ic hikl:
s used in this chapter is given at th?: ;;[;ahc bibliography. A list of

results- There are some references to re
t we have made no attempt to give a

b
syﬂlb-"]
1. Acﬁon of t-he GKIOIS Group on Primes and Completi
LetLbea finite Galois extension ficld of g with Galoj Ristions
alois

1.1 First R we haw_: a few lines on our notation ;
and O € G, th_en the action of ¢ on g wil] be dC[‘lO;\r:j and language. Yfagel
1o the situation. If teG we use the COHVcnn; by 6a or a’, according
(ﬂ‘)‘ = ﬂ(“)_' : 0 o{ta) = (¢7)a and so
A prime 1s an equivalence class of valuations o n
of K; we usually ficnote a prime by the letter v (;F w( :ﬂrm -
archimedean or'dzscr'ere; if v is discrete we write O for itp”-mlc may be either
3, for the maxu‘nal ideal of ©,. We reserve the sv nibol‘\«;}afl,mm-n Hig dn
Let w be a prime of L, then with the definition |a| o P!“‘”f‘“ ideals.
that @w is another prime of L and o(tw) = (C‘T}ul- e *;-JG_\ al,, it follgws
ring of w, then 09, = D,,. A Cauchy sequence ﬁ;r W ;c\{cz; ;hcb"’iﬂu‘d\‘lon
a Cauchy sequence for ow and conversely a Cauchy \c'qncnce fn . c'r. e
on by o~ !, gives a Cauchy sequence for w; so o iwndxxccq g Cf;rmqn,lactcd
isomorphism o, : L, L,, of the completions of L with res cé?“tx;)’ tz;n
primes w.and i respectively. If w is over the prime v of K :,\\)pis aw 1;3
this map is a K,-isomorphism. Clearly, o, o 1, = (07),. ’
The decomposition group G,, of w is the subgroup ’

group G = G(L/K).

alized valuation,

Gy= {G € Giaw =y}

of G. Note that

() G, = {0 € Glotw = tw} =1G 17",
thus the decomposition group of w is determined up to conjugacy by the
primé v. By what we have said ¢ is a K,-automorphism of L, if 6 € G,
and 80 we have an injection i of G, into G(L,/K,).
1.2. BroposiTION, (i) L, /K, is Galois and the injection i: G, — G(L,/K,)
is an isomorphism.

(i) If w and w' are two primes of L over the prime v of K, there exists a
0 € G such that ow = w'.

Proof. Letting [X] denote the cardinality of a set X, we have

g [Gw] “<- G(LH/KL‘) ‘: [L“ : Kl‘]‘

and these inequalities are equalities if and only if (i) is true. Letr = (G: G,)

and 16t (0}), 1 < i < r, be a system of representatives for the cosets a,G.,
of il G. Put w, = o,w for 1 < i < r. These are distinct primes of L

1Yins:=.§‘vcr v;let w,forr+l <i<s be the remaining such, if any. Then
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‘ es
(G.] = (L Kol :omtﬁe obal degre®
degrees is qU& ] on taking dimension

=1 . gll we have used, is an €asy consequence

he surjectivitys ¥ ; i .
euk spproximation OS] g T, since D, > My s <,

(o)
Write M for the set be extende

. : i f K are in 1
very prime v o e G, 1.€. the primes O
:;czyms to saying that_ﬁx W/ the primes of L, and for cacl

ith the of . lois group of the corre«p
of I, its stabilizer Gy 1S

local field extension LK

morphisms
;.I Fé'obC:::’tb‘::lt:is :pdimm, unramified prime of L over the |
.1. Supp

f K. (This is true of walmost all”” primes v, W, i.e. for all but finitely
ol A,
Then j

1) G 5 G, = G(L,/K,) = G(k(W)/k(v)),

_k(w)) denotes the residue class field of K.(mi?
r‘:]:;:f:tkt?)v(g:?p. rE’).D Since these residue class fields are finite (e
group G(k(w)/k(»)) is cyclic with a canonical generator,

F:x—x™,

where Nv = [k(v)] is the “absolute norm”. Hence we see from (1) t
is a unique element a,, € G,, which is characterized by the.property

¢,€G, and o™ =a" (mod P,)

for all ae O,,. This automorphism o, is called the Frobenius autor
associated with the prime w. An immediate consequence of this d¢/

2.2. PROPOSITION

. Ay sen eqn . 4)
1 =t o,
Thus the Frobenius automorphism is determined by v up to conjui
we define G Ll

F;x(v) = {conjumcyclmog Ty W OVer v) = (the set of ¢,,’s for »
§ is a finite set of primes of K contain: . ,
the primes ramif l WQRK containing the archimedean pr!

the conjugacy

SKv] S;ZS;{LW : KUJ B [L : K] [()

t ence T = 5 which implies fi
uality througho™ ne fact that the sum of (.
e €g follows from the bijectivity

s over K,; see Chapter |y

d to a prime W of L), Propositi,
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SITION. Let o e F ) )
23 PROPO Fy k() hape order f, so that iy generates th
£ ates the sub-

B> = {l.o.....,a/ Y. Thep

grOUP s TLCi A L, v splits into [ -
wach of degree f [/\(1.1) LK) I particular. o \',m’us-[ 75 <0>] factors,
only !TFL{K(U) = 1, the identity clemeny of G. WIS completely if and
24, Remarks. This proposition tells s
dccomposition law for unramified prim
Jefinite generator for the decomposition
Since FLIK is a function to classes of

for all characters v of ¢;

/(Fyx(®)) 0 Bl Artin w;
ﬁis non-abelian L-series in terms o - :\I‘hi\:i‘:i)];fc;@n define
; i . rove
the fundamental ?jthd)mm” (= Cebotarev) Densiry Theorem: Let 136" b
a conjugacy class in G; the primes with F(r) ( have J?néiﬂ‘ [’5]1[010

jcular, for each conjugacy class @ (lnrn o .
In particular, é njugacy class €, there exists an infinite number of
primes v of K such that F,,.(v) = @.

In the CYCIOthlC _Ca?C.. rChCh.t"\l;lrc\ 5 :hgnrum 1s equivalent to the Dirichlet
theorem on primes i arithmetic progressions (see 3 4 belew

men TCthOtIiI‘C.fV s ﬂ‘lcnrcrn it lnll-:‘\\\. almost trivially that a finite Galois
extension L of X 1s uniquely determined (up to 1somorphism) by the set
spl (L/K) of primes of K which split completely in L (cf. exercise 6)
Unfortunately one knows no way to characterize directly, in terms of thc;
;_u‘lthmetic of K itself, those sets 7 of primes of X \‘\-'hICil arc of the form
Spl (L/K), except in case L is abelian. The decomposition law for abelian
extensions, together with the complete classification of such extensions, is
given by the main theorem below (§ 5); but no such theorem is known for
non-abelian extensions, i.e. “non-abelian class field theory” does not exist.
From the abelian theory one can derive decomposition laws of sorts for
some soluble extensions (cf. Exercise 2) but this is not what is sought.
Recently Shimura (‘A reciprocity law in non-solvable extensions”, Crelle’s
Journal, 221 (1966), 209-220) has given an explicit decomposition law for
certain non-soluble extensions obtained by adjoining to Q the points of order
on & certain elliptic curve. The idea is to relate the behaviour of primes in
those extensions to the zeta-function of the curve, and to identify that
zeta-function with a modular function, the coeflicient of whose g-expansion
can be calculated explicitly. The degree of generality of such examples, and
whether they will point the way to a general theory, is unclear; but at any
rate they are there to test hypotheses against.

that knowledge of Fy i gives the

s, and more, since it chooses a

group.

G, to know F
Accordingly,

[ 2(F), by means

1/ 1L is enough to know

3. Artin’s Reciprocity Law

3.1 First of all we give some notation. S will usually denote a finite st
of primes of K including all the archimedean primes. If we are considering a

¥ o 2 : ; s0 include the primes of K
particular finite extension L/K, then § will also include the p
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belian group on the el |
15 the free @ en
9 L, WewlldenoE T gl see Chapter I §17)
bgroup of ite lian .cxtensmn.. en the conyyy,
=S (85 that LK 18 & N ments and 50 Fuyx 15 8 map from o
Assume 00W 1/K) are t:,ned ¢this to 8 homomorphism (to b de
ex
. we
. By linearlly " o utting A
) o180 GBS 1 P
¢S A
; sn 0 except for a finite number of
integers and 7 section concerns the change in 13,

ppose that L'/K’ and L/K are
fields are
Fux when the

' ctively, such that ;

Y 3 ou G and G YGISPC 1
field extensions With Gﬂ;’;stﬁ: nstural map G’ = G (every automop,
and X' 2 K, and let aLK) Let S denote a finite set of' primes of 4
of L'/K’ induces one of L/ &; and those primes ramified in 7. ang

n
cluding the mh;med;ﬂ}‘;bow those in S. Then

be the set of primes 0
iggram
4.2, PROPOSITION. The diagr S
el O
Nk IL

Frx
el

where the g 816 ® L2 - o
The first PIPOED. panged. SU

commutes, where N denotes “norm’’.
Proof. By linearity, it is clear that it is enough to check that
OF vy =F x(Niext')
: i 4 '¢S. Let Np.,xv' = fi,
for an arbitrary prime v’ of X' such that n: ¢ K/K J
is the prime of K below v'; thus f = [k(v): k(v)]. Let 0" = 7,
o = Fyx(v). We must show 0(c") = a/. Now o and ¢’ are detern
their effect on the residue fields. Let w' be a prime of L' above |
w be the prime of L below w'. For x € k(w) < k(w') we have
3 = 3 = (00 o,
as required. :
Ifae K* (i.e. a is a non-zero element of K), then we write
(@} = 3 n,o,
vgS
where 7, = v(a) for all v ¢ S; thus (a)° is an element of /°.
We can now state the reciprocity law in its crudest form

2;;. RECIPROCITY LAW (Crude form). If LIK is a finite abelian ¢/
S is the set of primes of K consisting of the archimedean ones o

GLOBAL CLASS FIp LD THEORY

in L, then there exists ¢ ~
S s )
if @ € K* is sufficient]
In words, 1 Y near to | gt : :
set S, then F((a)®) = I:ISF ()@ = at all primes in 4 large enough
v

167

0 sueh thay ifae K* gng la—1|, < e for

In the number field case the subgroup (3™ s oper i K
and We claim that the condition la—1], < g c
for €S, Where 11 = [L: K] Indeed if e |y
weak approximation theorem, there exists be
forall v € S, and then

foralln > 0,
an b.c replaced by g ¢ (Kxy
tter 1s satisfied then, by the

K* such that lab™"—1|, < ¢

F((a)’) = F((b"ab™")) — F(®Y'y F((ab=m) < 1.

Thus, in the case of number fields, althoy
I]eighf;;cmrhoods of 1 at the primes of § de
over K. In particular, for archimedean prim
unless v is real and n is even, in which cg
sufficient. .

Using the approximation theorem in L instead of K, one can replace the
condition *“‘@ is a local [L : K}-th power in §” by “a is a local norm from L
to Kin S”, but for that we shall use the technique of idéles (see 4.4 and 6.4

belo)e: The shift in emphasis from n-th powers to norms was decisive,
and is due to Hilbert.

gh the set § depends on I, the
pend only on the degree n of L
1es there is no condition needed
s¢ the condition @ > 0 in K, is

3.4, Example. The reciprocity law for cyclotomic extensions. This reciprocity
law may be verified directly in the cyclotomic case k = Q, L = Q({), where
{ is @ primitive m-th root of unity. This particular result will be used later
in one of our proofs of the general result (sce § 10, below) so we give some
details. In the rational case it is conventional to denote primes by p and the
associated valuations by v,. The set S will consist of the archimedean prime
and those primes p which divide m (see Chapter IIl). For p¢ S and w
above p, the powers of { have distinct images in the residue class field k(w).
so we have

PROPOSITION.
F(v,){ =" forall p¢S.
From this we deduce
COROLLARY. IfaeZ, a > 0 and (a,m) = 1, then F((a)*){ = ("

Consequently, if a is a positive rational number with |a—1[, < [ml, f.or
all pe S, then a is a p-adic integer for all p dividing m, and wnz canrwntc
a = bfe with (b, m) = (c, m) = 1, and b = ¢ (mod m); hence L:S= {¢ and
50 B(@)°); = {* = {° = F((c)%)(. By lincarity this gives F((a)){ = { so
that F((a)®) = 1.
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168 e of 81 explif-:it description of Fp/x, and fo;
For another eX875 - operal recl
Artin's &

nection between ercise 1-
: ity law, see ex asy because one can use

L case was € X )
3.5. Remark. The V7 I-?to;m the effct of the F(v)'s for variable o,
book olian extensions of complex quadratic fj.|,|

f elliptic curves i,

a :
direct proof works for Jar invariants ©
i d In the general case no <

division points a0 Unity.
muliplia 8 i ‘:'g;;:l):oc;fﬂilbgrt), although Shi.mura and
is known (cf. the 12;11 }; great contribution, using abelian varictic.
and WEll have ma cscc Shimura-Taﬂiyama: “Complcx M u]nmi_
of EI:IIPIIC cz:m{es.and b Appﬁc&ﬁons to Numbf:r Theory”, Pul
Abelian, VACERE 961, and more recently Shimura, “On the
gc;;ﬂ gggn;'of:.ﬁ;l dof }\utomorphif: Fugctions : II”, Annals of )
(1965), 124-165.) The proof of the reciprocity 1aw in the general «

indire(;t, and can fairly be described as showing that the law hold

it could not be otherwise”. .
field case, as Lang has shown (“Su

. In the function
3.6 RengE S » Bull, Soc. Math. Fr. 84 (1956), 3¢

wune variété algébrique”,
L d’une variété alg theorem about the field K

reciprocity law relates to a geometric  the
¢ has carried out in detail the program initiated by 1 2

curve C. Sern L
book, ““Groupes algébriques et corps de classes”’, Hermann, Paris |
analogue of the reciprocity law is described as follows. Let /: ¢

rational map of a non-singular curve C into a commutative algeb:

G: let S be the finite set of points of C where fis not regular. Thc
a homomorphism of the group of divisors /° into G and

THEOREM. If ¢ € K takes the value 1 to a high order at cacl:

then f((¢)) = I
This theorem is due to Rosenlicht, and independently, but lu

It was Serre and Lang who applied it to class field theory.

3.7. Definition. Let K be a global field, S be a finite set of pri
including all Lh.e archimedean ones and G a commutative topolog
A homomorph'xsm ¢:I° - G is said to be admissible if for cacli |
hood A of the identity element 1 of G there exists ¢ > 0 such that
whenev_er ae K* and [a~1|, < eforallve S,

If G is a discrete group, we sip;ply take N to be (1). Thus

3.8. i gy gt
Reformpdationgf the Recipr ocity law: Fy is admissible.

In thi . {5
group, iﬁﬁ“f‘ ;myqup G = G(L/K) is discrete. 1f G I !
maps into a finite lubm k l? md.({n]y if it is a Grossencharak

OUp, 1t s a Dirichlet character). Dirichlet o

proCitY law and the classicy) i

LO 5 5S
G BAT CLASS FIELD HHUR\

ir L-series wi > arz
ormed tht?ll' Lseries ;h sthh Ch:!.l'dCtCl‘S', ATHN was orig
; si i
o 14 his rd ‘pt y a;v I order to show thay in thflmmy poal
) defined in terms of characters of the Galois group o
g were really Weber

LA other words that y(F(
_series, 11 O ds that ¥(£(v)) was ad iHle £ :
IJEOfthe abelian Galois group. missible for each linear character

i chevalley’s Interpretation by Ideles

The set of elements of the idele Eroup Jg (see Chapter I7 &
b5 > § 1~
e value 1 at all the v-th components, ve g, i dcniwlt‘:j by i;ﬂ e
has & non-unit component at only a finite number of o I 1 medy s
b ; ] DET Of v-components: if t}
ve) valuation of the v-th component v of + T
(additive) ponent x, of xis n, € Z we write
S q
(=Y nver,
vegsS
4.1. PROPOSITION. Let K and S be as before, G be a complete commutati
. 9 f r . e
ropﬂlog“'al group and ¢ an admissible homomorphisn of IS into G o
Then there exists a unique homomorphism Woof Jy — G such that

(i) ¥ is continuous;
(i) y(K*) = 1;
(i) Y(x) = &((x)°) for all x e J.
Conversely, if Y is a continuous homomorphism of J. » G such that
WK = 1, then y comes from some admissible pair S, ¢ as defined above
provided :fhere exists a neighbourhood of 1 in G in which (1) is the only subi
group.
Remark. It is clear that if such a 1/ cxists then it induces a continuous
homemorphism of the idele class group Cy ~ Ji/K* into G. This induced
homomorphism will also be denoted by . Furthermore, if such a  exists
for a given ¢ and S, then by the unicity statement, it is unchanged if Sis
enlarged to a bigger set S* and ¢ replaced by its restriction ¢ to I < IS,
Similarly, two ¢’s on I°® which coincide on 1% for some finite S’ o S are
actually equal on I° (cf. Exercise 7).
For applications G can be thought of as a discrete group or the circle
group.
Proof. Suppose we have an admissible map ¢ IS —+ G. If such a § were
to exist, for any a € K* and x € Jy we would have
Y(x) = ylax) = Y((ax), ) p((ax)2),
where (ax), is the idéle with the same v-component as @+ for all ve S and
value 1 elsewhere and (ax), is the idele with the same r-componcntq as ax
forall p ¢ S and whose v-component is 1 at all ve S (thus (ax), € Jx)- By
the (weak) approximation theorem (see Chapter II, §6) we can find a sequence
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170 j e
ch that @, .
{d,} of elemcnts d')'efi:; ;u((a x)!).¢((ﬂ"x)3) e lim (}5(((1” ,\‘)5)'
wOLs ) n-r e
function ¥/ by

Hence given ¢ ™ i Y(x) = lim $((a,%)°)-

6] R o — 1t all Primeiv €S, and consequen,
Asn,m ¢((a,JC)s)=¢((£g) )—}1

Gb(("m-")s) O

issible. Thus the limit exists, since G |
nt of the sequence {a,}, because it cyi.,
is continuous. If the componcy
i imes v ¢ S, have Y(x) = lim qS((g'n)b); and if i

o f x’are sufficiently close to 1 at primes v e S},
v compo? entibc; Jarge n, and by admissibility, ¢((a,)®) will be |
it: (t?hos';"hi Iz;t two conditions (i) and (iii) are trivially verified
a, _ x~1and 1 foralln respectively.

0se we arc :
th:‘.“:ll“(}g;i 1. We will find a set S so that (a) the restriction

comes from a function on I° and (b) if we call this function ¢

issible.
gy imes of K let U® be the set of ideles in J, |

For any finite set S of pr :
peS and a unit of K, for v¢ 5. b

the v-component is 1 at all it of
arbitrarily large we can make U° an arbitrarily small ncighb

the identity of Jg. If Nisa neighbourhood of (1) we can choose 5 ¢
large so that Y(U®) € N, since i/ is continuous. Then taking N sma
we see that Y(U®) = (1) for some set S by the “no-small-subgr
thesis. We choose such a set S. Now J§/US is canonically isos
IS and so 1, when restricted to J§, induces a continuous homon
of IS into G. b

It remains to verify that ¢ is admissible; in words, given a neiol!
N, then /((a)®) € N whenever a € K* is near enough to 1 at all :
in this case (a)® is near to a in J; and so by continuity y/((a))
¥(a), which is 1 since a € K*, '

in G, because 4 is &
and ,thc limit is independe

ch sequences.
= : then we

42 Conou reciprocity law h"’d"ﬂ?f a finite abelian ex:

Ki . :
:{c;, ,);::Id Y ﬂ'fherg exists a Qn;bmow homomorphism \ of J,
() ¥ is continuous,
(i) (k¥ =1,

(111) '}’(x) HFul((x)‘)fwdl xfﬁl:, where S consists Of the archi

primes of K and those ramified in I,

given a continuous homomorphism  : /, .
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guch @ map ¥ = ¥y /x Whose existence ywe have just noy
s Stulated is called

Artin map associated with the tXlension L/K, 7y |
_" " t

the LIS post
map J‘ — G(LI’K); but since it acts “‘i\‘iil”)‘ g E‘-dS Aht.cn dc_flncd € &
map of the fdéle class group Cx = Jy/K* into G({ ’K]] may be viewed as a

The reciprocity law for finite abeliay extensic :

1 slons w %
sec § 10): fa the mcantfme Cc-rtlam Propositions will bc“l“ l.)L proved later
made whlcl} dcpeqd on its validity. Suppose that 7/ g~ I;ft;\cq 1}11d remarks
field extensions Wltthalms Broups G’ and (; rcspééli\rglg ai‘(;hharc ﬂ}‘)elian
g o K. Let 0 be the natural map ' -, ¢ Then in ter that L' > ,
Artin maps Proposition 3.1 becomes ms of idéles and

4.3. PROPOSITION. if the reciprocity lay holds for LIK and L'|K" ¢
! 1A, then

Ve

Jx -
" =~ 1]
L e |

T — o

is @ commutative diagram.
Proof. Let S be a large finite set of primes of K, and 5’ the set of primes

of K" above S. We have then a diagram

I
-~ "- A

s .
Jhl T >
¥ |

y s Y
(2) J\L /K . jﬁ: a
Y? I

3 Uy T
n N

The non-rectangular parallelograms are commutative by the compatibility
of ideal and idéle norms, and by Proposition 3.2. The triangles are commuta-
tive by (4.2) (iii). Thus the rectangle is commutative, i.e. the restrictions of
Vrge Ng,x and 0 o rp k- to JE coincide. But those two homomorphisms
take the value 1 on principal idéles by 4.2 (i), so they coincide on (K')*Jg,
which is a dense subset of J5. by the weak approximation theorem (Chapter
II, § 6). Since the two homomorphisms are continuous, they coincide on
all of J;. which is what we wished to prove.

For proving Proposition 6.2 below, which is in turn needed for the first
of our two proofs of the reciprocity law in §10.4, we need the following

VARIANT. Suppose L/K satisfies the reciprocity law,
ViWagxJy) = G(L/M).

and K = M < L. Then
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172 i K' = M, but with the upper b,

(2) wit
1/ar TEM

YN Ml“ff") 2

. 3 JS'

Consequently the same is tnexe with Jj

set is dense in Jy We are done. s 1
COROLLARY. If the reciprocity law 1o

by '/fL/K(NLIKJ D=1

) = 1; the next theorem states (amon, -

kernel of ¥ /x-

oved. It shows that

Consider diagram
= G(L/M).

zontal arrow 7%

1t follows that !//L/K(“'{‘NL/
things) that K*Npx/1 15 the
Main Theorems on Abelian Extensions

5. Statement of the sy
5.1. MAIN THEOREM ON ABELIAN Extensions (Takagi-Artin).

(A) Every abelian extension LIK satisfies the reciprocity law (ie. they, |
very

an Artin map '.[’ux)n is. surjective with kernel K* N.r__:x( J) and Jiesis

(B) The Artin map Yk
induces an isomorphism of Cyx/Nyx(Cp) on to G(L/K). .
(C) If M > L > K are abelian extensions, then the diagram

¥A/K "
Ce/NaypxCnt — G(M/K)

, l

J, VL/K

CK/NL!KCL T G(L/K)

commutes (where 0 is the usual map and j is the natural surjective map v jic)
exists because Ny xCyy © Npjx Cp).

(D) (Existence Theorem.) For every open subgroup N of finite indev i
Cx there exists a unique abelian extension L|K (in a fixed algebraic closure
of K) such that Ny;xC; = N.

The subgroups N of (D) are called Norm groups, and the abelian extension
L such that Ny ;xC, = N is called the class field belonging to N. In the
number field case every open subgroup of Cy is of finite index in C;.

5.2. A certain amount of this theorem may be deduced readily from the

rest. First, given (A) and (B), then (C) is a special case of 4.3 (put K' = £

and L' = M)

3.3, Secondly, the uniqueness, though not the existence, of the correspor
dence given in (D) follows from the rest, Given the existence, let Z and L' bc
two finite abel.ian extensions of K in a fixed algebraic closure’of K and let M
be the compositum of 7, and L' (which is again a finite abelian extension of A

mmutative diagram aboye i he horizon-
tal : 3 , under (C). Since the ho :
4TTOWs are isomorphisms (by (B)) we see that Ker § — G(M/L) is the 150°

replaced by M*J3,, and sipc. that
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ic image, under p 1
i e, Yaxs of the group N, . C,/n

LR

morp i : My C

e ed feld of ﬁhe grc;up Ker 0, is uniquely dclcrminc\c?;.s ;{-suk;rfh?s v,
e NLIKCL' Applying the same reasoning with L replaced by I l,c of M,
o Cir = NuxCu then L — 1. e see that

For some special examples of class f
For the functorial properties of (h
s changed, see 11.5 below.

commutative diagram of (C) aljowe o '
o III, §1), as L =(L) i”?“_s Us to pass to the inverse limit
(see Chapter 111, 3 runs over all finjte abelian extensions of K, W
obtain 2 homomorphism ; e

¥x:Cx—lim G(L/K) ~ G(K™/K),
L

elds (Hllbm‘[ class fields) see exercise 3
e Artin mMap when the ground field K

where K*® is the maximal abelian extensiop of K; and then, by (D)
G(K™[K) = lim (C/N),
i—\;—

where the limit is taken over all open subgroups N of finite index in Cy. Thus
we know the Galois groups of all abelian extensions of K from a kng;vledgc
of the idéle class group of K. The nature of the homomorphism
Yxi Cx = G(K™®/K) is somewhat different in the function field and number
field cases. The facts, which are not hard to derive from the main theorem,
but whose proofs we omit, are as follows:

5.5. Function Field Case. Here the map y/, is injective and its image is the
dense subgroup of G(K"®/K) consisting of those automorphisms whose
restriction to the algebraic closure £ of the field of constants k is simply an
integer power of the Frobenius automorphism F, (see Artin-Tate notes,
p. 76).

5.6. Number Theory Case. Here x 1s surjective and its kernel is the con-
nected component Dy of Cg. So we have obtained a canonical isomorphism
Cx/Dg =~ G(K*®/K).

However, as Weil has stressed (“Sur la théorie du corps de classes”, J.
Math, Soc. Japan, 3, 195 1), we really want a Galois-theoretic interpretation
of the whole of Cx. The connected component Dy can be very complicated
(see Artin-Tate, p. 82).

3.1, Example. Cyclotomic Fields. Consider Q™/Q, the maximal cyclotomi_c
extension of Q. Let 2 = lim Z/nZ; by the Chinese remainder theorem this

o n . -
S Isomorphic to I1 Z,, where Z, is the ring of p-adic integers. 2 acts on

P 3
any abelian torsion group (for Z/nZ operates on any abelian group whose
“ponent divides n) and the invertible clements of Z are those in ]:[ Up

Where U, is the set of p-adic units in Z,.
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7 consisting of all roots of nie,

174 ; ol Y5
rsion grouP U,; u induces an automorphjs,

onsider the O €
Now ccan define { for all u I;I ; PH— S
(e pme hic to the direct produ s X1, o

4 Jo 18 isomorp ;
The idéle group /e Jedq e have x = @.{t, 2, 13, .}, Gope,

. I X ) k-
fucy i Ao sa = (sign X=) Flp e Q"
p -
=2, 3,. .. ; MOLCOVET, this decompy;,

U, for ; e ‘
ndu, € Yp positive rational number which js , ,

and where > 0, and| onl . : P-ag
is unique, because | ;S ;f;:ncc 3&0 is canonically isomorphic to R* ., I [v

i all primes p. ' ;
unit for all p e which is the Galois group of the .
so there is a map of Cq L P :

' ion. { -
cyclotomic Fnte?]? pens is the following. If x€ Co anq X = u by this ..
What in fact 1ap is an easy exercise, starting from 34

¥(x) — rv=* (this result 1 .
Fhs:pgndent oipar(ts (B) and (D) of the main theorem). Thus the kerne]
in

is R*, which is the connected component Dq of fq. We E.z)wc now yseg
up the whole of Co/Dq; 50 if we grant part (B) of the main theorem, e s
that every abelian extension of Q must filrcady ha.we appeared as a subfj;
of Q™, and that part (D) holds for abeha'n cxt'ensmns- of Q.. .

The connected component R} of Cq is uninteresting; similarly, Cy 1,
an uninteresting connected component when K is complex quadry.
essentially because there is only one archimedean prime. It may we|| 1
that it is the connected component that prevents a simple proof of 1

reciprocity law in the general case.

6. Relation Between Global and Local Artin Maps

We continue to deduce results on the assumption that the reciprocity lus
(but not necessarily the whole main theorem of § 5) is true for an abelinn
extension L/K.

6.1. For each prime v of K, we let K, denote the completion of K at v, I
L/K is a finite Galois extension, then the various completions 7, with
over v are isomorphic. It is convenient to write 7.° for *“‘any one of the com-
pletions L, for w over v”, and we write G* = G(L’/K,) for the local Galos
18111'0311:, ;Vb}:;i:h we can ic.ientify with a decomposition subgroup of G (see 12
iy an case this subgroup is unique, i.e. independent of the choic:

Assume that L/K is abelian angd that there is an Artin map

wl-l W "’GL =
For each prime y of K we ha:e e -C

1
*
L :—-_J.____"‘“—’JI —Vux | o
v
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j, is the mapping of an x e g*
w:;;ttuis x and whose other Coﬂlptﬁnengtzrtchi er(i;n jﬂt o
he v-th component. Call y, =y, ivi 50 ¢ K v
62. PRoPOSlTIOz’- If K, = #f — L’ then YN

articuiar,L alft.,(f{ v) i f\”;{ f;"g M[;lu(h;tvfxi.(l«u)*) =1.
oof. L€ = € Ihe hixed field of AT

is fgen{iﬁed with G(L*/.4 )_ under our identifig%iélf{lifntﬁésgggs : G(L'HM)

group with the lo?al Galois group. Then y — M., where w ignpom}on

above v, and the diagram ks a prime

L ol J¢ whose v com-
1s the projection onto
= G. In fact

wxM*) < G(L®|A4). In

LE
MM —
\ w Y
i
N.lr,‘x.,' INae/x

]

! t i
K, —— J,

is commutative. By the ‘variant” of 4.3 we conclude that
YN e, A*) = ')!’L,’KNM,’.\' < G(L/M) ~ G4,

6.3. We shall call y,: K — G° the local Artin homomorphism, or by its
classical name: norm residue homomorphism. If x = (x,) € Jg, then we have
x=lim[]]i(x))

s | J

\weS
and consequently, by continuity, we have

wl_;’}{(x) = 1—[ dla‘(‘tu)

v

(this product is actually finite since if x, is a v-unit and v is not ramified,
then it is a norm of L°/K,). Thus knowledge of all the local Artin maps v,
is equivalent to knowledge of the global Artin map Y. Classically, the
local maps v, were studied via the global theory and, in particular, were
shown to depend only on the local extension L*/K,, and not on the global
extension L/K from which they were derived. Nowadays one reverses the
procedure, giving first a purely local construction (cf. Chapter VI) of
maps 0,: KY — G, = G(L'/K,). We will take these maps 6, from Serre
and show that H 0, satisfies the characterizing properties for ¢, in particular,

that [T 6,(a) = 1 for all a e K* (see § 10).
- 0
The local theory tells us that the Main Theorem of 5.1 is true locally if
We replace Cy by K*, ¢ by ¥, and G(L/K) by G(L°/K,). In particular
K*INL* ~ G(L'/K,)
ad in this isomorphism the ramification groups correspond to the standard
filtration of x *INL"*. Going back to the global theory we get a complete
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176 compositI'Oﬂ in terms of idéle classes, even iy .

description of prime de
ified case. > 4
f&III:l:)r the question of abelian and €Y
and the Grunw
Wang, “On GrunwW
6.4. We can now gi;’c an app:
Jaw formulated in 3.3. i be abellan, and der 5 o
trong form). N consis;
: Rsclff:::d{::nl‘p‘::;:gf o}]g and those ram;ﬁed in L. If an elemen; ks
(1 »
{"; fr’:rm from L* for all ve S, then Frx((@) )_— 1 B |
is For if j,(a) is a norm for v € s we can write j,(@) = Npu . (b)) for
b,el’. T;wn by Corollary 4.2
b s W OB W=, i
1= El’((‘a)j)-’l:_LwnUn(a)) = FL/I(("} )QI;]‘;’J’;:( L /A.,( ) FL.F.(((U\‘),

clic extensions with given Joca] bk
see Artin-Tate notes Chapter |, !
y dnd

corem
afd-:;?:gTiom ", dnnals, 51 (1950), pp. 47145,
arently stronger statement of the reciproe,,

by 6.2. ;
For the concrete description of the local Artin maps .IIJU by means of , ;
norm residue symbols (a, b), in case of Kummer extensions, and the ;p

cation to the general n-th power reciprocity law, see exercise 2.

7. Cohomology of Idéles
7.1. LJK is a finite Galois extension (not necessarily abelian) with (),
group G. Write A4; for the adéle ring of L; then J; is the group of inverijh,
elements in 4, = L @x Ag, and G acts on L @y Ax by i~ 0 @ 1: 50 ¢
acts on J;.

However, we want to look at the action of G on the cartesian prodi.
structgre of J,. Suppose x €J;, then x = (x,), where w runs throu gh M,
o€ Ginduceso,: L, —+ L,, (see 1.1)and (0%),y = 0,,x,, that is, the diagrams

A (I L*, —" g
Iw ll.w Jw[ }an
Ji —J g e " Jy

commute. (Note that the jma i i
geof LY inJ, isn -invariant subgr
the smallest such subgroup containinng: isLH L"(')t)  mariant e
53

wlv

7.2. PROPOSITION Le
. fv ,
€ My and Wo €My, with W, over v. Then there are

mutually ingerse isomorphismsg

e, Il L) e MG, T+

W res
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and, Hr G H U cnru.fwu
( " o w) gt H'(G,,U,),

here U, denotes the group of units in L,
g The assertions remain valid when HT g replaced by A"
he proof‘ is immediate from Shapiro’s lemma (< .

vi::v of Proposition 1.2 of § 1. @ (see Chapter 1V, §4) in

Thus the coho;nglog}' groups H'(G,, L%) are canonically isomorphic for
4ll w over v, S0 1t 1s permissible to use the notation H'(G" (L)) for
one of these. ’ any
1.3. PROPOSITION. (@) Jx ~ Jf, the group of idéles of L left fixed by all
elements of G.

® A(G I = |1 (@)%,

ve Mg

where || denotes the direct sum.
Proof. (a) is clear from Chapter 11, § 19. To prove (b) we observe that

1) JL=li_)mJL,S, whereJ,_ls=H(HL:,)xH(ﬂUw)

s veES\w/u veS\wio
and S is a finite set of primes of K containing all the ramified primes in
L/K and the archimedean primes. The limit is taken over an increasing
sequence of S with lim §' = M. The cohomology of finite groups commutes
with direct limits, and any cohomology theory commutes with products,
so it is enough to look at the cohomology of the various parts. By 7.2 and
Chapter VI, § 1.4, [ (]—[ Uw) has trivial cohomology if S contains all the

vésS \w/fo
ramified primes. Hence
H’(G, JL. S) o HSHI'(GU’ (Lu)*),
ve

by 7.2. Let S — My; we find
A7G,J) =~ T[A(G", (L)),
74. COROLLARY.
(a) H(G,J,) = 0.

(b) H*(G,J,) ~ Tl (i— Z/Z), where n, = [L": K,].

v v

Here, the determination of H! is just Hilbert’s “Theorem 90" for the local
fields (see Chapter V, § 2.6 and Chapter VI, § 1.4). The second part follows
from the determination of the Brauer group of K, in Chapter VI, § 1.6.

8. Cohomology of Idéle Classes (I), The First Inequality
We recollect the exact sequence 0 — L* — J, — Cp = 0. The action of

Gon C, is that induced by its action on Jj.
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8.1, PROPOSITION. Cx = . :cqucﬂcc gives risc to the homology sequep,

C
A yos HOG,J) = HOG,C) > H'(G, 1),
0-—} ]

that is 0= K*— Jx— CL —0.

e abelian case is to define

. - h
.ark. Our objectint B
ok Yux: CelNgxC = OL/K) = G

= A%G, Cp), and on the other 1. .

2 ¥ N, C —H (Gs LJs ]Lr,_“l,\‘;:

By the Proposition abOVc'Cx/ L/K C-;-] {EE VI, §2.1, suggests that b ,!“L.

%G, Z). Comparison with Chap _ 1€ globy

Co= (G, al;t to prove about the cohomology of C, is essentially p,,

s 4 t‘;: ;:;cal theorem Serre proves about the cohomology of /*. Thi

'Ssaz-i"f:zt the case. Abstracting the common features, one gets the genery)

i . ;

notion of a “class formation”. [cf. the Artin-Tate notes. ]

We recollect that if G is cyclic and A a G—mogule the Herbrand Guuotien,
is defined by (G, A) = [H*(G, A)Y[H'(G, A)] if both these cardina)y;,
[H*(G, A)] and [H*(G, A)] are finite (see Chapter IV, § 8).

8.3. TueoreM. Let L/K be a cyclic extension of degree n. Then h(G, C,) — .

Proof. We take a finite set S of primes of X so large that we can v,

Jy = L*.J; 5, where
Jrs=]1 L:) x[] (H Uw)'

veS\wjv vES\w/v

More precisely, S is to include the archimedean primes of X, the primes
of K ramified in L and all primes of X which “lie below” some primes whose
classes generate the ideal class group of L. Denote by 7 the set of primes
of L which are above primes in S, Hence

CoxJLf ~ Jps/(L* A Jis)=Jp /Lt
th?re Ly = _L* N Jps is the set of T-units of L, i.e. those elements of /.
which are units of L, forwg¢T. It follows that
WCo) = h(7,, YINLy),

if the right- ide i R .
;q:m"—‘“_ﬁh;g;ﬂg SI(? 15 defined (we note that it is Impossible to use the above

: € O missing, since then the right-hand side is not defined).

i nce § contains all ramified primes
thc Nris pr !
goup I] ( U") has trivia cohomology, as remarked in 7.3. Hence

vES\efmwly
L:')) =[]n LI);

h(Jy,s) = W1l I
veS \wjp

veS\wjp
so by 7.2 Vi
Y 7.2 we have M) = [1 7, where the n, are the local degrees (sce
Chapter VI, §1 4). Thi L er ‘
The “global part” onur s, L . 10¢al part” of the proof.
Part™ consists i determining h(Ly); in order to prove that
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e=" we have to show that nh(Ly) = [T n,. We do this by constructing
(270 : 5 )

a] vector Spacc, on which G operates, with two lattices such that one has
a I

uotient #/i( L) and the other has quotient ] n,.
Herbrand d i

¢ V be the real vector space of maps SiTSR, 0 V B wheee
7], the cardinality of T.  We make ¢ operate on ¥ by defining

(= ([w) = f(e~*w) (s0 that (af)(ow) = (1)), for ol eV, 5 £ 6 wnd we'T
(d{,)ut N={f€ VIf(w)e Z for all we T}, Clearly, N spans V and <

ganvariant. We bave N2 ] ([ Z,), where Z, =2 for all w, and the

otion of G on N is to permute the Z,, for all w over a given ve S. Hence.
a
A"(G,N) ~ HJ}*(G,H Z“,) ~ [1 (G, Z)
ve Wi LL
by Shapiro’s lemma again. Therefore

h(N) = HS([ﬁ°(G", Z)J[HYG", Z)] =] n,.

veS

Now define another lattice. Let A be a map: L; - V given by A(a) = fu
where f,(w) = log|a|,, for all we T. The unit theorem .(or at any rate its
roof!) tells us that the kernel of 2 is finite and its image is a lattice M° of V
Epanning the subspace V'° =_{fe V1Y fiw) = 0}. 1

Since the kernel of 4 is finite, h(L;) = h(M") (see Chapter IV, §8). Now
¥ = V°+Rg, where g is defined by g(w) = 1 for all we §,. We define the
second lattice M as M°+Zg. Then M spans V and both M° and Zg are
invariant under G. Hence h(M) = h(M°). WZ) = nh(M°) = nh(L,).

Now M, N are lattices spanning the same vector space, so h(N) =-h(M)
by Chapter IV, § 8. Hence || n, = I(N) = h(M) = nh(Ly), as required.

8.4. CONSEQUENCE. If L/K is cyelic of degree n, then
[Jx/K*NpxJ] = n.

This inequality, called in the old days the second inequality, was always
proved by non-analytic methods having their origins in Gauss’ theory of tl:e
genera of quadratic forms, of which our present ones are an outg.rowtll.
For us it is the first inequality, since the other inequality is deduced with the
aid of this one. |
8.5. CoNSEQUENCE. If L/K is a finite abelian extension and D is a subgroup
of Jy such that

(@ D c Ny
(b) K*D is dense in Jy,

then L = K. ‘ |
Proof. We may suppose that L/K is cyclic, since if L = s Iian?] Lt/hI:
is cyclic, then D < NyxJy © Nyyxdp. Serre has proved that locally
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S of K¥ which contain U, for almgy,
; Now we assume that G i cyclic of pri
Prime order p; ip this case we

L)) and K*NyxJ, are op, 3
Ny ke Pen, p, ¢ oy that A° = A and by the ficgt i, 8l
Quality 8.3 thay 8% = n{f'; so

tha
knoW h to sl O o
enough to show that [/7°(g ¢, _ i
be (G, Cp] = (C: NikCy) divides n.

1 + are open SUDSE il N

L
norms$ Np.ix. “h is simply .
(whic ;ense since its subset K*D is depq,. S a1

50 NL/x-IL d .
; and the latter 13 sN, Ji ] =1; 50 n=1 by th,. oy it : ke the one assun . -
closed in Jx that is, [a/K™Ne’r " Preyi we will ma - MPpUon that in (pe function fielq ;
the whole of T val to the characteristic of K. (The other case is treated j lcasc ety
b cated in i X
consequence. e that in the Galois case an element » _ (x) ;?ates, Chapter 6.) 1 the Artin-Tate
mphasl where. i.e L ey 3. We now show that we may ¢ her
- Remark. We emphase cal norm every e x e, ok Step 3 : ¥ lurther assume thx :
8.6 ly if it 1s alo : Lok (L) B ts of unity. 1at K contains the

is in Nm-%zifand o8 et fact, if we adjoin a primitive .y
for all v € Vig- . My and L/K | ' Igiscs ot ot i unity £ to K,
S is a finite subset of My /K is a finire abefjy, extension K’ = K(C) whose degree i divides (n—1), andj-‘io is E)ri\:;c%f)t t?:;

8.7. C.O NSEQUEN;?L/% is generated by the elements Fy(v) for €8 f: ime 0. S0

gt mt.’njs - G(L/K) is surjective; ¢f. 3.3). ‘ s

the map Fuxk: G’ as the subgroup of G(L/K) generated by the F[,.A(l ) Wit
P T the fixed ficld of G'. For v¢ S, the Fy, () Vieweg |, m

vgS; let M Il trivial, so for all v ¢ S, M,, = K, if we |, over,

G(MJK) ~ G/G' are a rm of this extension.,

Ll i ey
1

m
|
|

5l
ivially, every element of K, 15 a n0
TI.E:ZLYD i js (idéles with x, = 1 for v e S);_ever.y element of p g , locs , o )
orm, i.e. D CKNM xJu: By the weak approximation theorem (see Chapie, The degrf?e ob LK over K Is n, and .L and K are linearly disjoint over K,
;} 6,) ,K...Jsl."s denfsc inJx. Soby8.5wehave M = K and ¢’ |5 thia \xfl- ) So there 1s a comrputatwe diagram with exact rows (we drop the subscripts
fl é g ‘ since they are obvious):
0 .
8.8. CorOLLARY. If L is a non-trivial abelian extension of K, ., o C,L——— Cx — ., fo‘;\' C, S
infinitely many primes v of K that do not split completely (i Jor witis e > C
Fix) # 1) : ' . ‘ ‘
For we have just seen that such primes exist outside of any finite set § C‘y Y, CoINC,. . i
9. Cohomology of Idéle Classes (IT), The Second Inequality Nl N N i
Here we deduce what in the non-analytic treatment is the secong inequaliy, CL——— Cf—— Ce/NC, ——
This inequality can be proved very quickly and i allinte e i
Chapter VIII '{heorem : falie<y anc casily b}.’ and['\“? s Here Con is the Conorm map; and the composite map N.Con is simply
p B 5), and classically was called the first inequality. W. ) 1 . s
o raising to the mth power (see Chapter 11, § 19, for this and the definition of

the Conorm map). The group Cx/NC, is a torsion group in which each

give Chevalley’s proof (Annals, 1940).
element has order , for if g e Cx, then a” is a norm, i.e. @" € NC,. Thus the

9.1. THEOREM, Let LIK be a Galois extension of degree n, with Galois group G
Sa map Ny, x Con kk 't Cx/NCp - Cx/NCy is surjective since (m,n) = 1.
) “%D(G* Co)] and [B*(G, C,)] divide n, Hence the map Ny, : Cy./NC,. —+ Cx/NC, is surjective; so if [Cy-: NCy.]
@ A'(G, ¢) = () | divides n 50 does [Cy: NC,]. .
Step 4. We are thus reduced to the case where # is a prime and K contains

Proof. The proof will be i
e £ the 7-th roots of unity. In fact we shall prove directly in this case the more
general result:

Step |1,
i ;imc-Suggo:;cth[:}t the theorem hys been proved when G is cyclic and | | |
[7°@G, Cp)] divides gig ;'}Clmma (see Chapter V1, § 1.5) it follows that | Let K contain the n-th roots of unity and L|K be an abelian extension of
follows, again by the uZ?y JchE,G’ C;lf-) = (0). Using this triviality of ', 1! Prime exponent n, with say G(L/K) = G ~ (Z/nZ)". Then
a, that 2 - .
(A%, Cp)] divides n. _ (1) [Cx: NyxCy] divides [L: K] = ',
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just seen, ; y
For although, as V¢ hav;gfathod to be used does not simplify at ., o
ypecths tructions in the proof are usefu] r,, | "¢
dlge ,

er=1
;lzlzctscra s== 1, and some of the cons
e Chapter 111), we know that I = K(Q/a,

(see 9.2 and 9.5)- x
By Kummer Theory (5 Take S to be a finite set of (bad) prime. ;‘F °

K
for some @y, @z- -+ 4 €

that : ‘
ontains all archimedean primcs,

2) () Sc L
5 (I(IJ) S contains all divisors of 7, . tatives f
(by making S contain representatives of ; .

lll J = K'JK,S 2
=) o? generators for the ideal class group), ‘
f the numerator and denominator of ,,,

(iv) S contains all factors o .
ust means that all the g, are S-units, that is, they Blome.

Condition (iv) j
Kon= K Jg s they are units for all v¢_S. B
5 ' K;) for the field obtained from X by adjoining 5, —

Write M = K(Y/ 5 :
of all S-units. By the unit theorem the group Ky has a finite basis s, ,
extension is finite, and M is unramified outside §'by Kummer Theory d'

condition (ii). Now M > L> K and
Ks=M*"NnKso " nKso K* n Ky = KZ.

By Kummer theory with [M: L] = o', [L: K] = n" (given) and [A7: k] _ .
we have
() [Ks:L"nKg]=n', [L"nKs:Ks]=n" and [K;:Ki)-
respectively. We claim that s = [S], the cardinality of S. By the unit theope,.
there are [S]—1 fundamental units, and the roots of unity include.
n-th roots; so Ky =~ ZP1™! x (cyclic group of order divisible by n) and
(4) [Ks:K§] =n''=n*, wheres=t+r.

[L:M: r;(call we want to show that [Ck: Nyx Cy] divides »”, ie. divide:
"N Ks: K5]. So we need to show that N, C, is fairly laroe  we e
to provide a lot of norms. ol e
:hIer xts)a prime of L above-a v ¢ 8, then, since MJK is unramified outside §,
ezerr? ecx;uus map Fy.,; (w) is well-defined. By consequence 8.7, the £, ,(x
ﬁasis ?‘oi G%/E). Choose w,..., w, so that Fauw) (i =1,...,t) are 1
that F,y () iif:and let 'Un- ++» U, be primes of K below them. We asser!
$0 FMT(IE‘J) ris Ee ﬁn’«flé("r) (=1 =y, (In fact, each of the vs is unramificd,
subgroup of (Zjnzyr 1o L1 M/K decomposition group G, (M/K) i a cycle
chosen so that thclg‘ ’ s?i:; :lther pein l.-il}]e order 7 or trivial. The w's wert
Go(ML) is non-triyial. 50 t;re; on-trivial, so the MJL decomposition grour
» 80 the L/K decomposition group

GL/K) = G, (/K Gu(M/L)

G
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N). Thcrcfore, G =@
tira 't !
Notice also thgy we havuc‘

. ia], i.e. v splits completely in 1 (5 ;2
grivial, 1.6+ U . see Propogsit
it is gonerated by the Fy,\ 5y — g7 5
2 5Ku;f0ralli=1:-'-,’- o {4
“write T = {21, - > v}. We claim thy
H\n _ .
(5) (L) m KS = {a € I\Sl(l € K‘: r()r a” ve 7-}

ince L, = K, forall pe 7.

n fact, since Luw = Ay | ; and w above o
14" 0 Ks i contained in rEhe right-hand sige. C‘.(L),ni'r:c:?clll?w:s trivially that
C/HEM' If further a e K7 for ?;1 VET, then Tge K .ﬁ)rg,,al]!f flE K, then
is left fixed by all Fyx(v) = F, (1) these generut; GO veE T:lfnd 50
This proves (5)- WMIL) so 2aelL,

Let

6 E=[TKF % [T

() ves "'IEIT ’ xuél;lu 'I‘Uw
where U, is the set of v-units in K ; 5o p o 7.
see Remark 8.6)—for every element of K*is a ;;;;-Si A]so}f = ;’\IL‘_,K_]L

VI, § 2.1), which is kil . > Sinee K /NLY, o G,

see Cbaptel‘ ’ ] 1s killed by n; we llﬂ\"c K* _ L* for I v
and so all the element_s of these K3 are norms, and the elem:nts ar ULE 1,
all norms for v unramified (see Chapter V7, §1.2, Prop. 1) of U, are

Now
[CK/NUK C,_] = [foK*NL;KJL]

divides [Jx: K*E] because E = N, J,. The set S was chosen ((2)(iii))

so that
Jg = K*J!c.s = K*JK.SUT
therefore [Cx/Npx Cr] divides [K*Jy ¢ 1 K*E].
indices of groups is
[CA:CB][Cn A:C n B] =[A:B],
so to prove (1) it will be enough to show that
0 [Jx.SuT:E]./[KsUr?KﬁE]="r

(thre KSUT:K * ﬁJK,SuT)'
First, we calculate [Jy s 1@ E].

JK,SUT:]—IK:?H K3~ H s

ve S veT vgSuT
0 [Jg,sor:E] =[] [K*: (K*N"], by (5). From Chapter VI, § 1.7 (cf. also
S

the Artin-Tate notes, p. xii), we see that the “trivial action” Herbrand
quot!cnt*h(K:) = n/|n|, where ||, denotes the normed absolute value. But
alsok(Kn) = [K}: K*"]/n because the n-th roots of unity are in K*. This
means that [K) : K*"] = n?/|n|, and

@®) Ursor:E]l=n*]] |n];* = n?*, by the product formula

vesS

A general formula for

since |n], = 1 if o ¢ S.
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will also need in a Mo
g‘ [U,: U] =nln]..
fact that A(U,) = 1/lnl, (see Chapter vy |

which follows fro;n t:le ;
8) we see that to pr
32)( : [KSUT:K* N E]=n%"=pt
acing S by SUT, we have [Ksr: K ;] — e

As in (4), repl :
be enough to show that K*nE=Ks5,r

Trivially, K* n £ > K5, 1, 50 it remains to prove
(11) K*nEcKsr,
and this will result from the following lemma.
9.2, LemmA. Let K contain the n-th roots of unity. Let S pe Subset of o,
satisfying parts (i), (ii), (iii) of (2) in the above proof, and Jo; 7 i

ve (7), it will be enough to show that

’ bf) 1 5¢ rm
primes disjoint from S, and independent for Ks in the sense that ;;;E.. ,,
K; —» [] U,/U™ is surjective.

vel
Suppose that b € K* is an n-th power in S, arbitrary in T, ang ,, unit o
SuUT. ThenbeK*" .
Proof of Lemma. Consider the extension K’ = K(7/b); it will pe e
to deduce that X’ = K. Put e
D=]]K} x []U" x U
01:].'; d nI:IT U‘QJ T o’
by arguments similar to ones used before (see af
: 4 ter (6))! DcpN.
Therefore, by thr:- first lpequahty in the form of consequence 8.5 1'1; QA j'
;10 plt'ﬁvc. that X' = K it is sufficient to prove that K*D — g J Butml:‘
n : K i
ypothesis, the map K —»UH(U,,/Uv) > Jgs/D is surjective. Henge

Jx:]{o:dfds D, ??Id) o;x = K*ys = K*D as required.

uce TO,
S m the lemma, we have to check that 7 is independer
¢ sense of the lemma, I et Hd b
. enote the kernel of the map

K5 - U/ju :
: .,Ur( +/U2)- To prove that ap Is surjective it suffices to show that

(K 'H) = . "
5 HT(U,;-U:J. This latter product is just n' by (9), becaus:

’nlu =] fornUET On
. th
consequently (K : gy = ;‘:}t}{le(g)hand, by (5) we have H — Kg A (L*)
The proof of th 3

I S satisfies -2 with T empty is interesting

conditions (i) (i), (i:;
(l).' (i), (iii) of (2), then an S-unit which is a local

n-th power at gy Primes in §

9.4. ConsequEnc
: E ]
Artin map w:HO(G éjff

1.an n-th poyer».

(538
L= G, then \y must pe an isomorphism

Is abelign i
5 With Galois group G, and there is a
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consequence 8.7 of the first inequali(y -
guict, 0" e O o g Uity already tells ys thyy y
1o be $uTective: i 1OV LH%G, €3] < (6], then 3 eq ewcide
isomorphism: -
CONSEQUENCE. (Extracted from the proof of Theorem ¢ 1) Lernp

9.5, .
me and let K be a field, not of characteristjc M, containing the n-th ooy

r <] ~ - - o - B

Let S be a finite set of primes of K satisfying the conditions (j) (ii)

- \ ] »

apr
gflmlry' — w(n/ o - i
and let M = K(J/Ks). Then, if the reciprocity law holds for M/K

(,‘ii) of(2):
we have

12) K*Npx Iy = K*E, where E — [T(K*y x U

ve S vés K

Consider the case L = M of the proof of 9§ (so that T 18 empty, t = 0
ads =" Then the E of that proof is as given in (12), and E < .«‘\'\, 2T
By (7) with L = M_, we have [Jo: K*E] = n* = [ K). On the other
hand, if the reciprocity law holds, we know that

[CL’ H NA”(K C'\f] = [‘]K i K*"\‘.‘-f,f\"}.\f] — “‘;

hence (12) must hold.

This result we put into the refrigerator; we will pull it out for the proof
of the ‘“‘existence theorem" in the final section §12.

9.6. CONSEQUENCE. Let L/K be a finite (not necessarily abelian) Galois exten-
sion. Since H'(G, C;) =0, the exact sequence 0 — L* — Jp— C,—0
gives rise to a very short exact sequence 0 - H*(G, L¥) - H*G, J,). Now
HYG,J) = [] H*(G", (L)), by Proposition 7.3, so there is an injection

ve Dk
(13) 0 H*(G, L% - [] HYG" (I)").
ve g

We shall see later (from the fact that the arrow B, in diagram (9) of § 11
is an isomorphism, for example) that the image of this injection consists
of those elements in the direct sum, the sum of whose local invariants is 0.
We thus obtain a complete description of the structure of the group H *(G, L*).
In terms of central simple algebras, (13) gives the Brauer-Hasse-Noether
Theorem, that a central simple algebra over K splits over K if and only if
it splits locally everywhere. In particular, if G is cyclic, H* ~ A°, and we

have the Hasse Norm Theorem:
If ae K*, and LK is cyclic, then ae Ny, L* if and only if a€ Npox, L™*

orall v e M.
Specializing further, take G of order 2, so L = K(\/b)‘
Ny x(x+yy/b) = x* = by?,
50 (if the characteristic is not 2) we deduce that a has the form x2—by? if

and only if it has this form locally everywhere. It follows that a quadratic
Jorm Q(x, y, z) in three variables over K has a non-trivial zero in Kif arz.d only
if it has a non-trivial zero in every completion of K. Extending to n variables,
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in the Minkowski- 1 At A
we may Ob?fmy if it has a zero locally everywhere

a zero jf&ﬂ £ i
One may consider the general problem, “if a e K+ 3, Nivs

isae NL*?" Unfortunately, the answer is not always ¥es! (Seq ||

9.7. We return to the scquence (13). We write H3(1/x) . l4

HA(LYK) for HA(G" ™). Thus (13) becomes &,
(13) 0~ HYL/K) - [ H¥(L/K,).

Serre (Chapter VI, § 1.1, Theorem 3,_CoroHary 2) has deterp, in
it is cyclic of order n, = [L*: K], with a canonical genery,, Ti

H¥G,J)) = U HYL/K,) ~ ] ( 2 Z/Z).

n,

qur’-llh;u, f

and

1,

0= HXL/K)~ ]| C L Z/Z).

Ifae ][ H*(L'/K,), or ae H*(L/K), we can find its loc

(more pr.ecisely inv, (j,(@), where j, is the projection on the
of a), which will determine it precisely.

,We are interest?d in the functorial properties of the m
L' > L 5 K be finite Galois extensions with grou ps

G' = GL/K),

ap inv,,

and

3 G=G(L/K) ~ G/H,
ere H = y
e GL'L). Ifge H*(G, J,), then infl @e HXG", J,.) and

Thus nothip
g chan ; .
Mmanner to the 8% under inflation SO we

Brayer
i 3 group of
Chap:eE-K\)/f HYRIK), Where K if tand e
,§81), and more gcnerally for

2
*EH (Gx/xs Je) = lim HZ(GL/K Ji)
L , :

by definition, the Ji

y See Cxer © 0
I'Cige
€4

ed f/‘;/. 5

al Invarianty ;,

l‘hcnmp‘.-

!:‘

Can pass in an invariant
. the Jocal invariants for
€ algebraic closure of x (see

s
18 being taken over aj] finite Galos
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e H*(G’,J.), then res %'y ¢ H*(H, Ji) and

= G’ .
5 nv,,(res§ o) = Myeiny, (o),

here we My, lies above ve M, ang Mopw = [L,: K,] (
w ately to the local case, for which sce Chaplc; \V

. edi
I%I:)lrps Locaux”, Hermann, (1962), p. 175),

Galols hcre' N
Finally we mention the result for corestrictio;

Aghiny L/K need not be Galois. If o & HA 7T

again one reduces
I, § 1.1, or Serre’s
Murcovcr, L/K need not be

1, though we will not use it,
; '), then cor §'a’ & R G', T
an
Frocus e s g - .
19 inv, (cor§u’) = 2 inv, (x),

where the sum is over all primes w & WM, over p e My (see “Corps Locaux™
p. 175).

9.8, COROLLARY. Let a € Br (K) or H*(G(K /K), Jx), where K is the separable
algebraic closure of K. Let L be an extension of K in K. Then res¥(a) = 0
;fcmd only if [L,: K,]inv,(a) =0 for every w over v (this is only a finite
condition, since almost all the inv, () are zero).

In the case when L/K is Galois, there is an exact scquence
infl

0 —— H*(L/K) — > Br(K) —*- Br(L),
and « € H*(L/K) if and only if the denominator of inv, (x) divides (L1 K
for all w over v.

10. Proof of the Reciprocity Law

10.1. Now let L/K be a finite abelian extension with Galois group G. We
recall our discussion in § 6 on local symbols in which we noted that if a
global Artin map existed we were able to reduce it to the study of local
symbols and remarked that, conversely, if the local Artin maps are defined
we could obtain a global Artin map. We propose to carry out this latter
program here using the local Artin (“norm residue”) maps defined in
Chapter VI, § 2.2.
Let the local Artin maps be denoted by 0,: K} — G"; we define a map

UIJK—"G

by
0(x) = [] Ou(x,), x€Jk

ve Mk
This is a proper definition, since (by Chapter VI, § 2.3) UU(‘xv) = FLymv(v)v(x,)
(t(x,) being the normalized valuation of x,) when v is unramified, and
ux,) = 0 if x,e U,; so 0,(x,) =1 for all but finitely many v. (Indeed,

even if L/K were an infinite extension, the product for Bk Wogla, Be coRe
vergent.) It is clear that 6 is a continuous map.
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set of arc - e

Take S, € W 880 Pl ) = F(O™). Thus, 6

in L/K; th;_:r“; ;3 A‘ ctin map (() and (iii) of Corollary 4 5 )
conditions R
.o i) of 4.2) is tha

dition ((ii) of =[] 6(a)=1 forallaeK*
o= 1], |
we will have proved the reciprociy lay

Primeg
Sheg Ly,

y ”}C Othn.

if we can prove thi.s: ) : X
Isoozlf ;O prove the reciprocity law, it will be convenient ¢, State ty,

theorems, and to prove them both at once, gradually eXtending p,,
€0 » = e iy

which they are true. .
fo’;'HEOREM A. Every finite abelian extension /K satisfies ¢/ |
law, and the Artin map 0:Jx — G(L/K) is given by 0 = [ ¢

, then ) inv, (2) = 0. ’
THeoREM B. Ifa € Br (K) uéx

Remarks. After what has been said above, Theorem A 1., been whjp.,

down to the assertion that
Y [l 6(a)=1 forallae K*

ve Mg
The sum of Theorem B is finite since inv, (&) = inv, (j,.a) = o for 4
but finitely many a.

If aeBr (K), then a € HX(L/K) for some finite extension L/K, je ,

split by a finite extension of X
Logically, the proof is in four main steps.

Step 1. Prove A for an arbitrary finite cyclotomic €xtension 7/,
Step 2. Deduce B for ¢ split by a cyclic cyclotomic extensjon.
Step 3. Deduce B for arbitrary ¢ € Br (K).

Step 4. Deduce A for all abelian extensjons,

has a cyclic cyclotomic splitting field,

10.3, Steps 2 and 4 ; . .
is about 2 g, % 'neg':’i:!““f’ﬂ between A and B, A i about A° and B

by - lemma Connecting them.

chmctc{-Ko?c ; ﬁml:e abelian extengjop with Galois group G. Let X be &

trivia] G—modul;. If :EZ;!HOID i e A e ot 110t s

Position groyy o Ticis denote by 5 the Testriction of y to the decom-
. t:: belthe connecting homomorphism

Ifx = (x)es : H e Q/Z) 1 HZ(G, 2

D5 S MIN, T, B9G, 7). Then the cur
) %.; G, J,).

dhs
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r each v we have

. Fo .
LEM"‘A mnv,(x. dy) = X.((’rfk‘u)),

and 50 E inv, (x.8y) = 2(0(x)).
2 We refer to Chapter VI, §23. The projection Jordp = (L)
induces 8 map. & ;i 2 2 v
jorese,: HXG, J1) = HX(G,.J,) » HY(G,, (1),
and as restriction commutes with the cup product, so
inv, (X.6y) = inv, (j,.resg (%.6%))
= inv,((j,.%).5y,)
= inv,(X,.5y,)

= ¥,(0.(x.)),

(he final step coming from Chapter VI, § 2.3,
It follows immediately that

x(g(x)) == Z(IDI gu(.\'u)) = g Il‘(Gl'('\‘t‘)) = g‘il]\’l, (Kti}:)

i =aeK* c J.. Denote by
heck Step 4, apply the lemma with x = ge K
2 F}Eoi;age of ain A°(G, L*). Thend.éye A%G,L*) < Br (f?), as we necc_i.
?{‘}:ecimage of @.6y in H*(G,J,) is a.dy, where a is the image of a in
A%G,J,), and by the above lemma, Z inv, (@.dy) = x(0(@)); so if Theorem
s L/ v

B is true for all & € Br (K), it follows that y(f(a)) = 0, and since this is
is i A.
all yx, that 6(a) = 0. This is Theorem ‘
mfl?of?::’xeck }étcp 2, take L/K cyclic. Choose y as a generqtmg chgracter,
i.e. as an injection. of G into Q/Z. Then cupping w'uh dy gives an~1s§m0;}
p.h.ism A° x H?, so every element of H*(L/K, L*) is of the form a.dy.

Theorem A is true, then by the above lemma
Y. inv,(a@.dy) = x(0(a)) =0
v

for all a € K*, which is Theorem B. . _ lo-
104. Step 1. (Number Field Case.) We want to*p pove T /IS Riagias
tomic extension, then [] 0,(a) = 1 for allae K*. K(0) for

Let L/K be a finite UCYCIOtomiC extension. Then We hive:LK(CC) because
some root of unity {, and it will suffice to treat thle tc.asc e
of the compatibility of the local symbols 6, relative

K(O)y */K,; cf. Chapter VI, § 2.4. . ith Galois
(, g:l!ﬁ’cagiié to the case K = Q. Suppose that M = K({), wit
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hismof R*into G, = G(C/R)~ f 4 1

3 ushomomorp_ o ¢ Y~ {+1),and (N _
i and 6, induce maps of R*/RY into G(C,’R)Jund Ulp JIE or;;i}c*s)o‘\\l.
o 1 » SO we

190 _
define L = Q({), with Galois group G. Tpe, ir

G, A
; 0 i’_ | ce @ =N 5
diagram £ o Hed to check that y/, is onto—in other words, we hay
Jx T jUstjl:n:t the null map. rds, we have to check that
| L ), so consider the effect of s on Q; . b
quj 1! 7 Ct;‘::l(:i)’oo. Therefore Q) = Q; the only ramification
is 8
Ty — G 1=1p(—7)=l.[/z(—*7)a,!r7(~7)1,{fm(~7)=1}{,7(7)_“5“(_1)’
A 8 : N . o —7 is a 2-adic norm and so Y,(=7) = 1. Now y.(7) ;
Ly & commutative, since | %% =i, s0 wo(—1) is also the map i —j, j.c. is no::r(iv)i; e e
| 1 & "
LIQ cyclotomic. We ; .
w TN, Second Proof for may proceed entirely locally,
(Nx¥), g Ku/QpXv | ithout using our results of the early sections, but using the cxp}iicitclic)z;l
: : idue symbol in cy i : :
(see Chapter II, § 11, last display formula) and since the diqerqe.. | computation of the norm residue symbol in cyclotomic extensions, due ori-
lagrams - aally to Dwork.
Kf_.?.v__., G | g]Lct ¢ be a root of unity; by Chapter VI, §2.9
0 (x) — Fpsign (x) *
NJ L | (1) C ‘ ¢ , forxeR ;
l‘* 5 l | ad by Chapter VI, § 3.1, if x€ Q}, x = p’, with u a unit in Q, and v an
Q, — G, integer
. _ " P, when { has order prime to p.
are commutative whenever v is abo i { u- v d
3.1 above). Thus i, §'(x) = B(Nx/:(‘-:’ti (;g: SllllaferVI’ §cf12.1, ef. Propositioy @ ¢ {*~", when [ has p-power order.
S 3 an i :
;&g (@) = 0(Nxsq(@) for all ae X, If Theorem Axis truseo,fci? }338:&“1&_,‘ We need to check that || 6,(a) = 1 for all ae Q* and to do this it is
=1forallbe (a) = L/Q, then b
ey Q, 50 6'(a) = 1 for all a€ K, because ; is Injective, sufficient to show that [[0,(q) =1 for all primes ¢ >0, and that
st Froof for LIQ eyel, j ; T ;
the sense of 3.8 hoé?s fﬁraz})glg}' ch k[:Ov_v that the reciprocity law. | HGP(—I) = 1. Furthermore, it is enough to consider the effect on {, an
dis < omputation (see 3.4), i.c. we hauve .. » . . .
i?:t:m::?;e' e F.]S._., G(L/Q) = G, for some(S Usi)n Ii] “e‘hfl\( o Ith power root of unity (/ a prime). One checks explicitly that the effect
rg tion (Proposition 4.1) we get an Artj : g the Chevalley is trivial, using the tables
We obtain induced Jocg] maps ,: Q* - G n mal? Y:idy— G, and
We can pass to the Jimit and take 1, » (see § 6). Using Proposition 43 (p=o
Q™ of Q. This pi ¢ L as the maxima] cyc] b i T . G
% - This gives us local maps E o~ a cyclotomic extension g =" p=
2¢ Want to show that these v.'s arp.h » = G(Q7/Q,), for all primes {, p#lo
1§, 2 We do this by using the cflara f t' e as the 6,’s of Chapter VI, |
foPosition 3, cierization given by Chapter VI, § 15 {, p=q=I
We have to check three things, Firg | | @ — {, p# 1, p#aq/(including the case p = )
. - ustly, that Qm; contains the maximal B Cq—l' p=Lp#q
I (¢, p#lLp=4a

unramified extensioy, Qar .
n Q3 of Q,; this follows from ChapterT, § 7. Applicati
»§ 7, Application

Secondly, if
1 aeQ, the nr
valuation of o a ';’p(“)]Q = Fvp(a) 2
% and F the | » » Where v,(«) is the normalized (Since the Galois group is abelian, it does not matter in what order one

Thirdly, jf HO ;i Tobeniug e

: Q, is a finj element of G(O™ /) 3. p:. -

. v Q)i this is cleas applies the automorphisms 0,(— 1), resp. 0,(9))
how that every element

p .
Vo(@) ;ea;/es M pointwise-ﬁxe?b:l’:;eﬂmon in Q™ and g - A
= 0 . ; ’ s fo 3 - H1Q,~ ) .
p = Up for all fipjte Primes llows from Proposition 6.2, Hence 10.5. Step 3. (Number Field Case.) 1tis enough to st
of Br (K) has a cyclic, cyclotomic splitting field. In other words, for every

the Same b We
35 0, (see Chapter VI §2 9must not forget to check that Yo IS
9). %€ Br (K), there is a cyclic, cyclotomic extension L/K such that for every

Y Proposition 6,2, ¥, is a con-
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. K] is a multiple of the denomipg,
alor of

Llf
10“.!8;‘3;?;5 inv, () = 0 for all but a finite Numbe, A
rove the o Pripy,
ber field K of finite degree over Q, a f

rimes S of K, and a positive Inleger ’:,[ r}b‘em EXISIS a cyelic, cyejy, ::( et oy
sion L/K whose Jocal degrees are d";’..i‘f f] g a.t the non-are f'll'm(’(f(‘m.z ety
of S and divisible by 2 ! real archimeaean primes v of S (i g N

is complex). _
Proof. It is sufficient to construct L in the case K = ( ( multip,
the degree [K: Q]). Take r very Ial:ge and g an odd prip. Ply
_ 0(7/1) has a Galois group isomorphic to the direct - o
Lig) = Q( ; tsum of .
group of order (4—1) and cyclic group of order ¢"~*, 50 has 4 Subfiel |
which is a cyclic cyclotomic extension of Q of degree g1 Now L
[L(@): L' (9] = q—1,
and so on localizing at a fixed prime p # c© of Q we have
[L@P: L(9)”] < (q—1);
: . :
since [Z(g)™: Q,] = c0 as r — oo (this follows for example fro;,, |
that each finite extension of Q, contains only a finite num}, the faq
unity), it follows that [Z'@P: Q,] » 00 as r . o 0
[L(g)?: Q,] is always a power of g, it is divisible by Eefore, s
power of g if we take r large enough. Y a sufficient]y large
Now let ¢ = 2, and O
group l'somoqrphic zo':he%l}f-effﬂn: (%(\/]) for r large. L(2) has a Gl
group of order 22, Let ¢ b ¢ Efcyghc group of order 2 and a ¢y
€= (={Cand 0) = Q). The sutomoropon ot OF U and sa
of the form 0, { " for (')dd '€ automorphisms of Q(¢) over Q ar
oneseesthate_, , ,..,(¢) = u(f)' ,‘and f’::(f) = {*—~{7* Since (¥ = _|
this implies that the automgr h'. since either 4 or — y 4271 js = | (mod
Where 41 = | (mod 4) and th 1: Isms of Q(¢)/Q are induced by those ¢
Also, since o {=-¢ Q®) i:ntl:ey form a cyclic group of order 2%
rcalirpri?z is 2, ot real, and so its Jocal degree at an infiinte
W IL2):L(2)] = 2
= Z, and the
ﬁ'e#]if ;ve can make [L'(2)» . 0 ;ag;e_ argument as above shows that for
. ¢ by taking r Jarge enough pl dVisible by as large a power of 2 4
now the prime factors of ;1re
915 .., q, and possibly 2, then for large

€nough r the composi
. Positum of 7/ ;
é !Cychc cyclotom Ly, - L'(g,) and possibly L'(2) is a complex

Iny

 Given @ num

The exy,. 0

MIC extension
foraHPinaﬁnfte set ,;f Q whose Jocal degree over Q, is divisible

Cyclic cyclotomje extensio

general recinpaq: ns s
Teciprocity [y, €em to be at the heart of all proofs of the

We have
been able to get away with a very trivial
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ce lemma for th;m’ .bcca}pe we have at our disposal b
ocal theory. In his original proof Ayip used a mo?th csk;omology
: € subtle lemmg -

XI5
4nd the ! “ :
example Lang, “Algebraic Numbers”, Addison wey) 19
¢y, 1964, p. 60,

se0 08 tice that the necessary hypot}
t notic ' hypothesis that o, P
f?ol:'n the statement there.) P be unramified 1s omitted
We may prove the reciprocity law for function fields on the i
put the special role of “cyclic cyclotomic extensions” in t} HHIHe lines,
over by “constant field extensions”, 1¢ proof is taken
3 goes through, if we replace “cyclic cyclotomic extension” b
y

Step ;

uonstant field extension™; we have only to take for (he in the |
¢ constant field extension whose degree is m times the leastli o
ommon

multiple of the degrees of the primes in §,
For step 1, we check the reciprocity law directly for constant field exten

sions; in fact, if we denote by ¢ the Frobeniusg automorphi
. phism of k/k
k is the consta;r:t field of K, then for each prime v of K (he eﬁeét ,o\fvil:(re)
. - v AU
on K is just 6", where deg v = [k(v): k] is the degree of v. Henc lli
eﬂ‘ect on k Of a(a) is H O_u(a) deg v s U.Eu(a)dt'gl‘ - O,d:gu == {f Siﬂ.cc deg c g
v Sl &=

for all ae K* (the number of zeros of an algebraic functi i
the number of poles). nction a 1s equal to

11, Cohomology of Idele Classes (I1I), The Fundamental Class
11.1 Let E/L/K be finite Galois extensions of K; then we have an exact
commutative diagram
0 0 0
1 |
R f 2(L/IK, Bt BN IR s ARG
i l |
L | 1
(1) 0 —— H*E/K,E*) —— H*E/K,J;) —— HYE|K,Cg)
|
| |

0 — —» H2(E/L, E*) —— HX(E/L,J;) —— H*E/L, Cg),

where we have written H*L/K, L*) for H*(G(L/K), L*), etc. In this diagram,
the vertical lines are inflation-restriction sequences; these are exact since
HYEIL, E*) = (0) (Hilbert Theorem 90, Chapter V, § 2.6), H'(E/L, Jg) = (0)
(Corollary 7.4) and HY(E/L, C,) = (0) (Theorem 9.1) [see Chapter 1V, §5,
Proposition 5]. The horizontal sequences are exact, and come from the
Squence 0 — L* — J, — C, —» 0, since again H'(L/K, C) = (0), etc.

We pass to the limit and let E — K, where K is the algebraic closure of X,

10 obtain the new commutative diagram
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0 g 0

0 HALJK,L*) 21— H LK, J)) = g2, K.
| I

y 2 o o
@ 0—— H(EKY) —2o H(K,Jg) = K ey

(= HZ(L’K*) i, Hz(L: JK) —a ., ][2(‘[4) (“;\-1
where we have written H*(K, K*) for H*(G(K/K),K*), ¢t Certaiy

maps with which we shall be concerned below have beer, labelleg ;, :

diagram.
11.2. We are going to enlarge the above commutative diagram.
For the Galois extension L/K we have the map

in\"l — Z invw : HZ(L/K! JL) = Q/Z,

and Theorem B of 10.2 tells us that the sequence
& 0 HALK,LY) 2, H*(L/K,J,) _inv: Q7
is a complex.}

Since inv, (infl @) = inv, (2) for all ae HYL/K, J,) (sce 9.7, (14)) ..

have a map inv, : & A Ty — Q/Z such that the diagram
HL/K, 7)) v Q/z
(4) Inﬂ) ’f

In a similar manpey we have a complex

2 BT 2 g s
» —n . H? inv,
But now, iny, (res g) ) HL,Jp) 1w, /7.

of L over p of X, an;nﬂmin}'z(of)’ Where o ¢ HA(K, Jg) and wis a prime
commutative diagrap, wi K] (see §9.7, (I5)). Thus we have the

HY(K,Jp)

s e Q/z

res I
n

2
S

()
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Image of &2 = Ime, in H3(K, ;) be denoted by p2
Now :“- by HA(L, C?)"“' It foqlloxvs that we have 3 mag ngl Eﬁsg K)ﬂm)
:J by invz (resp. inv,) 021" H*(K, Cr)req into Q/Z (resp. HA*(T, C:“;\-)3
due 7). Thus for ae H*(K, Cr)iepy We have Bi(a) = Inv,(b) whcr;;
into :, ({his is independent of the choice of b). We have now e;;plained

eg(btwo jower layers in diagram (9) below. .

t We deﬁne
9 HXL/K,CL).ee = {a € H¥(LJK, Colinfla e HY(K, Cg) )

regs -
rhennps infla = 0, and so f, induces a homomorphism

B, H}LJK, Cpieg — }ij,
1

i

st B(a) = By (infla),

Ifa= &b with be H*(L/K, J}) then
B1(a) = B, (inflb) = inv, (infl b) = inv, (b).
(Note the difference in construction of f; and f,; the point is that

HY(L/K, Cp)reg = Im ¢, but they will not 'u? general be cqu.al.)
We put all the information from (3)-(8) into (2) to obtain a new commu-

tative (three-dimensional) diagram

0 0 0
|
N vy l Ly Y R .
B> H(L/K, L*)—> HY(L|K,J,)—>H(L|K, C)),ey 0
T T~
Ty Lz
N s B i3 2 s f_ v - ¥ — )‘O \I
0—>H*(K, K¥) —H {A.i’i)\%‘ —'*f‘/ (AQ\):;;
N B . T e l
! v - ‘_ﬂ-“;-_\gQ;Z
Y . i3 Y. " _;}21 ) Pome— |
1L, K¥)—>HL,Jp) AL, )
) — T n
Bl WS o I\“"‘-\__‘ﬂ\
invy TT—

0) Tz

. o d the “bent”
: §oe . . g : multiplication by n an
In which i is the inclusion map, n is alild vertical sequences are exact,

sequences are complexes, and the horizontal
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how that
) We propose 10
”('sz;)wu} H(K, Cphres = HY(K, Cr) = Q/z.
1

Now Im (inV1) i’y
iple of all the local degrees of L/K, by (., ollary 5,

1 . v,
(inv,) we have the inequalities _—

1
Z/Z is the subgroup 1o 2/Z, where ,,

common mult
since Im f; 2

ﬂ;[HJ(L/K’ CL)J 2 [Hsz/K, CL)rez] = [Im ﬁ]] = [Im (iny v
econd inequality, Theorem 9.1. It follows th 4y if n __IJJ = hy

by the s .
: ' nsion L/K, then we have equalj * Ny for
particular finite €xte % ¢quality throughnutqf

B, is bijective and the sequence
am 00— HA(E/K, L) -, HY(L/K, Jp) v 0/z
is exact (for if 0 = invy (8) = By 16, then &,b = 0, ang p €] )
Now if /K is a finite cyclic extension, then » — "y b(}(_‘augfll 1),
elements Fyx(2), whose orders are equal to the local degr-)uirhc Frope .
the cyclic group G(L/K) by Consequence 8.7. So if, in Pﬁrtir:t; Py gener,
sion L/K is cyclic cyclotomic, then (11) is an exact Sequence (EU ar, the eyy,,
of §10.5 says that the groups H*(K, K *) and H(K, I '1' UL the Lep,
the isomorphic images under inflation) of the grc;u KS ‘rez the Unions
HYL/K, J,) respecu'vFIy, where L runs over al] cyclic Ciclgo([df"" L*) 4
of K. Consequently, in our commutative diagram () the Commpllixc;ten\ :

0— L HYK,K*_»
H (K:K )——y—on(K,JK)_lﬂz_, Q{,‘Z

50 11

and
0, Hz(L,X_*) . Hz(L JK’) Invy Q/Z
are . R TN
are exact. Therefore ker (inv,) = ker (e,), so B, (and si milacly §.) m
3 ust o

injective maps i Sk
sions with aﬁ)-bi?;::uwff gy e Surjective, since there exist finite ey
: y high local degrees and consequently even j exten-

nv, and

10v; are surjective,
be an arbit?ary ﬁm't}:eé:; i:-)Oth & a-nd Bs are bijective maps. Now, letting
01s extension, we conclude that flisa ,b;jqc,‘fp
; Lyt

b HZ(L/K’ CL)reg = Zl Z/Z 5
ut HZ(L/K; CL) 4 h ’
o, reg 18
S0 it is the whole'oflf’;'bgmu}) of H*(L/K, C,) which has order dividing !
(2L/K’ Cu. Letting L — K we see that -
H (L/ ’ Ck)rcg = HZ(L’ CK)'

Thug we
can I€move the .
SUbscripts “rag’ .
» We haye Proved the fono‘ghs]g e {rom our diagram ®)

RESULT, 2
#(wx, C) is cye

o Is the . ;
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: ment 41k is called the fundamentqy
:’l;f;::t G_Xhil?ited g IWeil (see the diSCussiogia:SI ;J.EG tQ:loe\)‘i;cnS]i"(Im e
b determination of the Strpcture of HX(LIK, C) is due to‘Nak]c Con}-
p o Hochschild were the first to give a Systematic cohomolgg; zib’am.ﬂl.
cht of class ﬁe!d theory; see G. Hochschild ang T, Nakayama %‘éﬂ treat-
me a Class Field Theory”, dnnals, 1952, and the references co(:i:'tnt;loqi
dlne

logy ln
in. i

'hf;e iwo lower layers of Q1agram (9) and the vertical arrows betwee
- ke Sel}sc f?r an arbitrary finite separable extension LIK of ﬁnitr;
i 7 and in this more general case, that much of the diagram is still
o utative, because the a?gumen_t showing the commutativity of (7) did
o require L/K to be F}alms. Using this, and replacing L by K’, we see

L o K’ o K with L/K Galois, then restricting 1, from LIK to

that if
' gives the fundamental class 1 ;..

L
11.3. Applications. The rf:sults we have obtained show that the idale classes
constitute 2 class formation. In particular (cf. Chapter 1V, §10) the cup
product with the fundamental class u; x gives isomorphisms
A(G(LIK),Z) 3 A *X(G(L/K), C,),

for —o0 < r < o, such that for L > K' 5 K with L/K Galois the diagrams
A(G,2) 3 A7*3(G,C)) 076, 2) 5 A6, ¢y

resl r:sl and :m—T curT
A(G,Z)3 A*3G', C)p) B&,Z) s B30
are commutative, where G = G(L/K) and G' = G(L/K").

Case r=—2. There is a canonical isomorphism (see Chapter 1V, § 3)

G(L/K)y" - CxINyxCr,

which is inverse to the Artin map. Using this as a definition in the local
case, Serre deduced the formula inv (@.0y) = 3(0(a)) in Chapter VI, §2.3; we
have proved the formula in the global case, so one can reverse the argument.
(The isomorphism G ~ H~*(G,Z) is to be chosen in such a manner
that for ¥ € Hom (G, Q/Z) ~ H'(G, Q/Z) and o € G, we have y.0 = x(9)

(12

2 1
upon identifying - Z/Z with H (G, Q/Z) as usual.)
n

Reversing the horizontal arrows in (12), with r = =2, and letting L= K,

we obtain the commutative diagrams
Co b, GK™K) Cx —*— GKXIK)
(13) v and y T

Coﬂl l
Co — ¥, G((K')*/K') Cy

Yo GUK)IK),
where the s are the Artin mapsand Visthe “Verlagerungt”. The right-hand

t Called the * transfer " in Chapter IV, § 6, Note after Prop. 7.
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; sses the so-called translation theorem, and_m fact regy);. .

o expr: 3, which in turn came from an almost O_b‘_qous Property 3 o

directly from 4.5, F(v). The commutativity of the lc-u.'.‘ .
han,

1 mo hisms 2 aned
;I'lc Fﬁb(eln;)uscazugso g proved by a straightforward but somewp,, "
lagra no

licated computation with the Frobem'lls_ auto_:)morp hisms which Was fip,
COIES ;);aArtin in connection with the “principal ideal theorem™ (sce (. !
ma R

3, and Serre, “Corps Locaux”, p..l30).
Case r = —3. This leads to an 1somorp

IX, § 2. I
11.4. Application to the Cohomology of L*. The general idea is to determp,

the cohomology of L* from a knowledge of the cohomology of the ;5

hism used by Roquette in ¢}, -

and the idéle classes. : )
Let Z/K be a finite extension, with Galois group G. Then (). exacy

sequence 0 — L* - J, = C;, - 0 gives an exact sequence

A g
o B7Y(G,J) = A6, C) » A'G, L)~ A(G, )
in which the kernel of fis isomorphic to the cokernel of g. We k0,

Hr—I(G,JL) - H Hr-I(Gl,Ei) A H Hr—B(Gu, Z)

vedix vex
(see Proposition 7.3), and
AY6,C)=A"3%G,Z);
so the kernel of
[:R'G Y- ][ A6, %)
is isomorphic to the cokernel of
. 9::[1A%6",2)» A"(G, 7).
It is easy to see that the map g, is given by
g4 (Z z,) =Y cordz,.
Using the fundamental dualit g i
. y theorem in th i -
which states that the cup product pairing Qoo of finie s
2(6,2)x 876, 2)~ 86, 2) » Z/nZ

is a perfect duality of finite groy
dual of the kernel of the mapgr SO e By s

176 S T g,

which is defined by (h(z)), = res @ ]
Caser = (), ) P Ay

Kerf - (a[a € K*, a is a loca] 10rm everywhere
a[aEK*,aisaglobalnorm )’

and COkCr g js dual to ker 11 G 2: 3
» ( ) )) FOI‘ ex p if
s . am l 1 ]A
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for some v, thcgl this is an injlcction, so local norms are global norms
. eyclic, then H*(G, Z) ’2: HYG,Z) =0, so local norms are globai
IfG and we recover Hasse's .th?orcm, 9.6. On the other hand, if fo
Forl::éc G is the Vlerergrugpe, it 1s possible that G* ig always onc, of th;
;ﬁ:gw ups of order 2, s A2%G", Z) = 01bm HG, Z) = 7)27. Explicitly,
“.-cuﬂcoﬂSidGr Q(/13, /17)/Q; here (1—;;) = G—; = 1, and the extension

! ified at 2 because 13 = 17 = 1 (mod 4), 5o all the decomposition
! oups &re cyclic. Thus the set of elements of K* which are local norms

- serywhere is no.t the same as the set of elements of K* which are global
jorms (see exercise 5)- .
case r = 3. H*(G, L*) is cyclic of order n/ny, the global degree divided

by the lowest cc;mmon mul‘t‘iplq of Ehc local degrees, generated by Oty
: HA(C) —» H (L*)), the. Teichmiiller 3-class”. This can be killed by
inflation (replace L by a bigger L' so that the no for L' is divisible by n):
s H(K/K, K*) = 0.

For a more precise description of the situation, announced at the
Amsterdam Congress (Proc. 11,66-67), see Tate: “The cohomology groups
of tori in finite galois extensions of number fields”, Nagoya Math. J.
27 (1966), 709-719.

Group Extensions. Consider extensions M/L/K, where L/K is Galois with
group G, and M/K is Galois with group E and M is a class field over L
with abelian Galois group 4. So 1 -+ 4 — E— G — 1 is exact. By the
Artin isomorphism A =~ C; /Ny, Cy (see Theorem A of 10.2 and Con-
sequence 9.4). We want to know about E.

11.5. THEOREM. (i) Let o€ E have image G e€G.
w(@x) = ow(x)a "', where w: C,—A is the Artin map.
(i) Let v e H*(G, A) be the class of the group extension E; then v =\ .(urx),
where Y, is the map: H*G, C,)— H*(G, A) induced by y:Cp— 4,

and where uy . is the fundamental class for L|K.

It is straightforward to see (i). As usualin such cases the situation becomes
clearer if we consider an arbitrary field isomorphism o: M — M’ rather
than an automorphism. Denoting ¢L by L’ and the restriction of o to L

by &, we have the picture

Gﬂ

Let xeCy; then

M T __ WM

._.-gE,

L
and by transporting the structure of M/L to M'[L" we see that, if xe C,,

and y e M, then (y'(6x))(0y) = o(w(x)(»))-
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yit did the local case (“On Galojs ¢

200 b |

. vial; it is really a genera] Ups o |

jj is non-trtV! 1946), but ! corem o, o |

P.a(;?c Fields" Doklad, .Tate notes, P- 246). We do not o atgy‘ o |

Jass formations any USe of the result in these notes. et |
and will not make of H*(G, Cy) was known, Weil (g, | The

11.6. Before the structure Math. Soc. Japan, 3 (1951), 1-35, lookeg . Mie 3

C]aSSBS”J J.

du Corps de ite point

the oppos! of view. Taking M to be 7 the |

Mgy

situation from. so that |
abelian extt.'_nswl;egf hfm (self whether there was a group CXtensigy, /F |
group)» %ﬂb;sc which fits into a commutative diagram of s . § o
= G(L, . . '
G (1 il CL —_— 6 =¥ G D 1
1 i s
a9 [ - | ,l

—wE G — 1

i

here E = G(L'h/K) and if so, to what extent was it unique 7 i i |
w e = £ Il |

function field case, Yy is for all practical purposes an isomorphmn_ S
c:istence of such a diagram is obvious. Moreover, in that case, ;. ,,

theoretical transfer map ¥ (Verlagerung) from & to Cp (which has lt\‘u:;f. |

in Cy) gives a commutative diagram

J 4 — CK c CL
(15) !7; !l#x

| !

E —ﬂyEa%

as follows from the commutativity of the left-hand diagram (13). Inspire
by the case of function fields, Weil proved that also in the num ber field case
a diagram (14) did indeed exist, and was essentially uniquely dctcrm:r::,;
by the condition that (15) (together with its analogues when K is replaced
by.an arbitrary intermediate field X’ between K and L) should be commu.
tative. In particular, the class u e H%(G, C,) of such an extension & was
unique, and that is the way the fundamental class was discovered.

Nowadays one can proceed more directly, simply constructing & as : :

i;“l;n:(;isti?n thG by C; corresponding to the fundamental class B
ng the unicity as i 1 N

(cf. Artin-Tate, Ch, 14), ty as reflecting the fact that H'(G,(,) =1
The k : ;

As Weﬂe:::zla:i‘sth:hmap W:& - Eis the connected component D, of (;
“ » € search for a Galojs-like interpretation of & (or eve

2 “natural” construction, i
furnished witp, “natu(:':i”wuhom Tecourse to factor systems, of a group

mental problems of number theory

now A = G(Lnb/L) is a p]‘()rjnilc _1}\-;:";_ !

map W': & - E) seems to be one of the fund j
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group, Weil also
Y Iepresentations
Y Hecke's L-series

upport of the idea tha‘t & behaves like 2 Galojs
ln_s how to attach L-series 1g characters % of unit
Jescrd These L-series of Weil generaljze simuitﬁncOug]a
of -t'GrasseﬂCharaktercn” (which are obtaineq from re
|lmi
factor *
L.serl

i . . Presentations wh;
ough Cx via the arrow 1 jj (15)) and Artins “non aci)\c"l?m?’
-abelian

which are obtained from Tepresentations which factor through g

¥ icular thI’OL!gl‘l G~ l?/A, via the arrow W ip (15)). (The iqte ugh E,

OFlHeckc’s and Artin’s L-series are those of Weber obta rsection
ab . : g

oentatiom of E*" = Ce/Dy, ie. flom ordinary congruence characters.)

:Jsing Jiguer’s thcorem on group characters, Wei] shows that his L-seriés

o be expressed as products of (positive or negative) integral gt
;{ cke L-series, and are therefore meromorphic,
e

0 proof of the Existence Theorem

We still have to prove the Existenc; Theorem (D) of 5.1. Qur proof, more
traditional than that used by Serre in Chapter VI, works just as well in the
[ocal case.

If H is anopen §ubgroup oflC,{ of finite index [Cy ; H], we say temporarily
that H is normic if anffl only if there is an abelian extension L/K such that
H=NyxCr The existence theorem asserts that cvery open subgroup H
of finite index in Cy is normic. (We have already shown that if L/K is abelian,
then Npyx Cy. 1s an open subgroup of Cy of finite index; in fact the normic
subgroups are just the inverse images of the open subgroups of G(K**/K)
under the Artin map yigy: Cx = G(K™/K).)

First, two obvious remarks: If H, > H, and H is normic, then H, is
normic (the field L corresponding to H has a subfield L, corresponding to H,).
If Hy, H, are normic, so is H; n H, (take as the field the compositum
L L.

Next, we go to 9.5 in order to prove

Key LEMMA. Let n be a prime, and K a field not of characteristic n containing
the n-th roots of unity. Then every open subgroup H of index n in Cy is
normic.

Proof. In fact, suppose H is open in Cx with [Cx: H] = n. Let H' pe
the inverse image of H in J,. Then H' is open in Jy, so there is a ﬁmte
et § € My such that H' > [[(1) x [[ U, = U®. Furthermore, H is of

vesS vgs

index n in Cy, so H’ > J7. Therefore H' = [] K" x [[ U, = E, say.

ved vgs

Thus H = H'/[K* 5 EK*/K*, and from consequence 9.5, it follows that

His normic,

ML s an extension of K, there is a norm map N: C;, = Cy; conversely,

f'we start with 7 < Cx we get a subgroup N~ }(H) = Cp.
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- if LIK is eyclic and H e Co and if Ni(H) < ¢
o
ﬁ’fﬂrmfcﬁ’;xﬁ}(ﬂ) and let M/L be the class fie)4 of

i, 1§ Hop,,,.

f

N is transitive; the difficulty i ;
] o &

M/Kis abelian. if something is the norm group from ,
OnN-aha

int of f Ct: . 0 I
(In -pomthcn i dy the norm group from the maximy) abep ey |
extension, 8). But this has not been proved here if it STsut

exercisé

extension (5¢ 4 Z/K to be cyclic, and we would be already g, " "

g . . T : .
Galois extension Since H' is invariant under ¢, -

MK 15 2 M/K is a group extension, 0 - 4 - £, o '

E/4 = G is cyelic,
of E.
We can use the first part of Theorem 11.5. Lety be the Artin my, -
To show that 4 is in the centre, 1t 1S enough to check that !
Y(x) = oP(x)o ™" = Y(ox)

for all xe C; and g€ E. Now : C, + A has kernel H', so we o,
check that ox/x € H', which is clear since N(ox/x) = 1. vant 4
Proof of the Theorem. (In the function field case we can only ..,

case in which the index is prime to the characteristic; for the pepery) .

see Artin-Tate, p. 78.)
We use induction on the index of H. If the index is I everything ;. .|

Now let » be a prime dividing the index. Adjoin the n-th roots of i, .
K'to get K, and replace H by H' = Ny.x(H). By the last lemma, it 1 -

to consider H'. The index of H' divides the index of /: we can 150, |

(Cg.:]{')_-—- (Cx: H), otherwise H' is normic by induction hypothesi
) :)hn divides (Cy.: H'). Take H{ so that H| - H’and ((“—.r H)) "

H): _c above Key Lemma, H; is normic. Let I be its cla};s. fi Ii |
[l NL\/"CL' Put H” = NL-}}'(H’) Theﬂ | -

[Co:H"]<[Cp:H'T = :

Rl [ ki H]=[Cy:H].

i N g x/H' is an injection, whose i is H{/H’
ontained in Cy./H',) : ©mase B AL o
Hence H" is normic

by i i . .
apply the above lemma i iuceion hyp othesis; L/K’ is cyclic, so we cur

again; so H' is normic.

. and Nk Cy = H, 50 H g norm w |
Sl §}] g

since ) hy |
FOW s |

|
M ou Eof |
Galog et it is enough to show that 4 = G(M/L) is i, i 1 Singe |
e Cer b
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first ¥ ii) [4] is the cardinality of the s¢i 4

Note T T 1 1
3 = denotes inclusio 2 e
(ll) 0 with th possibility of equalit
J b Y.

X 4. Jg, JS
K K* (non-zero i
.13 slements of X) (x) 73.1]
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