
Chapter 2

2.1

1.1 Show that A has the right universal property. Let G be any sheaf and let F be the presheaf U 7→ A,
and suppose ϕ : F → G. Let f ∈ A(U), i.e. f : U → A is a continuous map. Write U =

∐
Vα with Vα

the connected components of U so f(Vα) = aα ∈ A. Then we get bα = ϕVα
(aα) since F(U) = A for any U ,

and since G is a sheaf we obtain b ∈ G(U). We define ψ : A → G by ψU (f) = b. This map has the right
properties.

1.2 a) Observe (kerϕ)P = lim−→U3P (kerϕ)(U) = lim−→U3P kerϕU is a subgroup of FP , as is kerϕP , so we show
equality inside FP . For x ∈ (kerϕ)P pick (U, y) representing x, with y ∈ kerϕU . Then the image of y in FP ,
i.e. x, is mapped to zero by ϕP . Conversely, if x ∈ kerϕP there exist (U, y) with y ∈ F(U) and ϕU (y) = 0 so
x ∈ (kerϕ)P . For imϕ one proceeds similarly, noting only that (imϕ)P = lim−→U3P imϕU since the presheaf
“imϕ” and the sheaf imϕ have the same stalks at every point.
b) The morphism ϕ is inj. resp surj. iff (kerϕ)P = 0 resp. (imϕ)P = GP for all P . By part a), this holds iff
kerϕP = 0 resp. imϕP = GP for all P , that is, iff ϕP is inj. resp. surj.
c) We have imϕi−1 = kerϕi iff imϕi−1

P = (imϕi−1)P = (kerϕi)P = kerϕiP .

1.3 a) By 1.2, ϕ is surjective iff ϕP is surj. for all P , that is, iff for all U and all s ∈ G(U) there exist
(Ui, ti) ∈ FP with ti ∈ F(Ui) such that ϕUi(ti)

∣∣
P

= sP , or shrinking Ui if need be, iff for all P ∈ U we have
ϕUi

(ti) = s
∣∣
Ui

with each Ui a nbd of P . The Ui cover U .
b) Let F∞ be the sheaf of holomorphic fns on CP1 vanishing at ∞ and F0 the sheaf of holo. fns. vanishing
at 0. Let G be the sheaf of holo. fns. and ϕ : F∞ ⊕ F0 → G be given over an open U by (f1, f2) 7→ f1 + f2.
This is a surjective map of sheaves since it is obviously surjective on every neighborhood not containing both
∞, 0. However, the map on global sections is not surjective: any holo. function on CP1 is constant, so the
global sections of F∞ and F0 are just {0}, while the global sections of G are C.

1.4 a) If ϕU is injective for all U then ϕP : FP → GP is injective for all P , and since F+
P = FP , G+

P = GP and
ϕ+
P = ϕP , we see that ϕ+ is injective by 1.2.

b) Since imϕ(U) ↪→ G(U) for all U is injective (the map being just inclusion) we see that the induced map
imϕ→ G+ = G is injective by the above, so imϕ is a subsheaf of G.

1.5 Reduce to the corresponding statement for abelian groups by Prop 1.1: ϕ is an isom. iff ϕP is an isom.
for all P , iff ϕP is inj. and surj. for all P , iff ϕ is inj. and surj. by 1.2 b).

1.6 a) The natural map is F(U) → F(U)/F′(U) → (F/F′)(U), and we may check surjectivity on stalks by
1.2. But FP → FP /F

′
P is clearly surjective for all P . The sequences 0 → F′P → FP /F

′
P → 0 → induced

by 0 → F′(U) → F(U)/F′(U) → 0 are all exact, so the corresponding sequence of sheaves is exact, that is,
ker(F → F/F′) = F′.
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b) By 1.4 it suffices to show that ϕ : F′ → imϕ is surjective. Checking on stalks and using 1.2 reduces this
to the surjectivity of F′P → imϕP , which is a tautology. By abuse, we now consider F′ as a subsheaf of F.
We claim that the map F(U)→ F′′(U) kills F′(U) for each U . Indeed, any s ∈ F′(U) has image that is zero
in every stalk, and hence must be zero by the sheaf axioms. Thus we obtain a map F(U)/F′(U) → F ′′(U)
induced by F → F′′, which gives a morphism F/F′ → F′′ that is an isomorphism on stalks by 1.2 and the
given exact sequence.

1.7 a) There is a natural map F → imϕ induced by F(U)
ϕU−−→ imϕU → (imϕ)(U), and on stalks we have the

exact sequences 0 → kerϕP → FP → imϕP → 0 where we have used 1.2 again. Thus by 1.2, the sequence
0→ kerϕ→ F → imϕ→ 0 is exact, so 1.6 b) yields the result.
b) Similarly, the map G(U)→ G(U)/ imϕ(U)→ (cokerϕ)(U) gives a map G→ cokerϕ, and identifying imϕ
as a subsheaf of G by 1.4 b), we see that 0→ imϕ→ G→ cokerϕ→ 0 is exact on stalks, so is exact by 1.2.
Now use 1.6 b) again.

1.8 It suffices to show exactness at Γ(U,F) as injectivity holds since F′(U) → F(U) is injecitve for all U iff
F′ → F is injective. Let φ : F → F′′ and ψ : F′ → F. Then for s ∈ F′(U) we have

(φU ◦ ψU (s))P = lim−→
U⊇V 3P

(φU ◦ ψU (s))
∣∣
V

= lim−→
U⊇V 3P

(φV ◦ ψV (s
∣∣
V

)) = φP ◦ ψP (sP ) = 0,

so since F′′ is a sheaf we have φU ◦ψU = 0. Conversely, suppose s ∈ F(U) has φU (s) = 0. Since the sequence
of stalks at P is exact, for each P ∈ U we have tP = (Vi, ti) with ti ∈ F′(Vi) such that ψP (tp) = sP .
Shrinking Vi if need be, we may suppose ψVi

(ti) = s
∣∣
Vi

. It follows that ψVi∩Vj
(ti

∣∣
Vj∩Vi

) = ψVi∩Vj
(tj

∣∣
Vi∩Vj

)

as both are equal to s
∣∣
Vi∩Vj

. Since ψV is injective for all V , we have the compatibility condition on the ti
to ensure (observe the Vi cover U) that they glue to a section t ∈ F′(U). Checking on stalks shows that
ψU (t) = s and left exactness of Γ(U, •) follows.

1.9 That F ⊕ G is a sheaf is obvious. Moreover, if f : F → H and g : G→ H are morphisms of sheaves, then
for every U we have maps of abelian groups F(U)→ H(U) and G(U)→ H(U) compatible with restriction.
By the universal property of direct sum in the category of abelian groups, we get unique homomorphisms
of ab. gpg. F(U) ⊕ G(U) → H(U) for all U , and these are evidently compatible with restriction because
restriction is a homomorphism (in particular on H). This gives a morphism F⊕G→ H, which must also be
unique.

If f : H → F and g : H → G are two morphisms, then for all U we have a unique morphism H(U) →
F(U)⊕ G(U) (implicitly using that direct sum and product of finitely many gps. are isomorphic in category
of ab. gps.) and thus a unique morphism H→ F ⊕ G, which is compatible with restriction because f, g are
morphisms of sheaves and hence themselves compatible with restriction.

1.10 By the universal property of direct limit in the category of ab. gps., there is a unique morphism of
presheaves “ lim−→Fi”→ G having the desired properties. Now use the universal property of the sheafification
lim−→Fi of “ lim−→Fi”.

1.11 Let sj ∈ lim−→i
Fi(Vj) be sections compatible on overlaps with Vj covering U ⊂ X. Since X is noetherian,

there are finitely many indices j1, . . . , jn such that Vj ⊆
⋃n
k=1 Vjk for all j. Thus, to glue the sj we need

only glue sj1 , . . . , sjn . By the definition of a directed system, there is an N > 0 such that sjk ∈ FN (Vjk) for
all k and since FN is a sheaf and the Vjk cover U , we obtain a section s ∈ lim−→i

Fi agreeing with sj over Vj
for all j; i.e. U 7→ lim−→i

Fi(U) is a sheaf (as the other sheaf axiom follows by an almost identical argument).

1.12 Let sj = {sij}i ∈ lim←−i Fi(Vj) be compatible sections, where Vj is a cover of U . Since each Fi is a sheaf,
the {sij} glue to give si ∈ Fi(U) for each i. If φi′i : Fi′ → Fi then we have φi′i(si′)P = (φi′i)P ((si′)P ) = (si)P
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since φi′i
∣∣
Vj

(si
′

j ) = sij for all j and P ∈ Vj for some j. Thus we conclude that the si are compatible with the
given maps defining the inverse system so we have an element s ∈ lim←−i Fi(U) restricting to sj over each Vj .

Suppose that fi : G → Fi is a collection of morphisms, compatible with the inverse system morphisms.
Define f : G(U) → lim←−i Fi(U) by s 7→ {fi(U)}i. The compatibility of the fi with the inverse system
morphisms ensure that this is an element of lim←−i Fi(U), and compatibility with the restriction morphisms
is clear (as the fi are sheaf morphisms). Thus we obtain f : G → lim←−i Fi. Uniqueness follows easily as
πi ◦ f = fi where πi : lim←−i Fi → Fi is projection onto the i th component.

1.14 The complement of Supp s is the set S = {P ∈ U
∣∣sP = 0}. If sP = 0 then there is a nbd. VP of P such

that s
∣∣
VP

= 0, and hence for all Q ∈ VP we have sQ = 0 since the restriction maps are gp. homs. so map 0
to 0. Thus, VP ⊆ S which shows that S is open and hence Supp s is closed.

1.15 Let f, g : F
∣∣
U
→ G

∣∣
U

. Define f + g : F
∣∣
U
→ G

∣∣
U

by (f + g)V (s) = fV (s) + gV (s). Observe that
this is a morphism of sheaves F

∣∣
U
→ G

∣∣
U

since the restriction maps are homomorphisms of abelian groups.
Suppose that fi : F

∣∣
Vi
→ G

∣∣
Vi

are compatible morphisms, with Vi a cover of U . Define fF
∣∣
U
→ G

∣∣
U

as
follows: any V ⊆ U is cover by Wi = V ∩ Vi. For s ∈ F(V ∩ U) let si = s

∣∣
Wi

and put ti = fi
∣∣
Wi

(si). Since
the fi are compatible on overlaps, so are the ti, which therefore glue to t ∈ G(V ∩ U). We set fV (s) = t.
We must check that this is compatible with the restriction maps: if V ′ ⊂ V then fV (s

∣∣
V ′) is the glueing

of fi
∣∣
V ′∩Wi

(si
∣∣
V ′∩Wi

) = ti
∣∣
V ′∩Wi

since the fi are morphisms. Since (t
∣∣
V ′)

∣∣
Wi

= ti, we obtain the desired
compatibility.

1.16 a) Since X is irreducible, it consists of one connected component, and hence any U ⊆ X is connected. If
V ⊂ U and f : V → A is cts. then f(V ) = a for some a. We extend f to f̃ : U → A by definining f̃(U) = a.
b) By 1.8 we need only show that F(U) → F′′(U) is surjective. Let s ∈ F′′(U). By 1.3, there is a cover
{Ui}i∈I of U and sections ti ∈ F(Ui) with ti 7→ s

∣∣
Ui

. Consider the set S of pairs (J, z) with J ⊆ I and
z ∈ F(∪j∈JUj) with z 7→ s

∣∣
∪j∈JUj

. We order S by (J, z) ≤ (J ′, z′) iff J ⊆ J ′ and z′
∣∣
∪j∈JUj

= z. The set S
is nonempty as for any fixed index j0 ∈ I we have ({j0}, tj0). Moreover, any chain of S is bounded above
by the sheaf axiom, so by Zorn’s lemma, S has a maximal element (I0, z). If I0 6= I, pick i ∈ I \ I0, set
V = ∪j∈I0Uj and let ti ∈ F(Ui) be as above. Since x = z

∣∣
V ∩Ui

− ti
∣∣
V ∩Ui

7→ 0 ∈ F′′(V ∩ Ui), there exists
vi ∈ F′(V ∩ Ui) mapping to x. Since F′ is flasque, we may lift vi to wi ∈ F′(Ui) and define t′i = ti + wi.
Then z, t′i are compatible sections and glue to t ∈ F(V ∪Ui). Clearly t 7→ s

∣∣
V ∪Ui

. Since I0 was chosen to be
maximal, we have i ∈ I0 so I = I0.
c) By part b) for V ⊆ U we have a commutative diagram

0 // F′(U) //

��

F(U) //

��

F′′(U) //

��

0

0 // F′(V ) // F(V ) // F′′(V ) // 0

in which the first two vertical arrows are surjective. It follows that the third is also, and hence that F′′ is
flasque.
d) This amounts to the fact that V ⊆ U implies f−1(V ) ⊆ f−1(U).
e) The sheaf G is flasque since if V ⊆ U then any s : V → ∪P∈V FP may be extended to s̃ : U → ∪P∈UFP by

s̃(P ) =

{
s(P ) if P ∈ V
0 otherwise

.

Define φU : F(U)→ G(U) by s 7→
(
P 7→ sP

)
. This is injective since s = 0 iff sP = 0 for all P iff P 7→ sP is

the zero map.
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1.17 Suppose Q ∈ P . Then every open set containing Q contains P so lim−→U3Q iP (A)(U) = lim−→U3P A = A. If

Q 6∈ P then there exists an open U containing Q and not P . For any open V containing Q the set V ∩ U is
open, contains Q and not P . Since lim−→V 3Q iP (A)(V ) = lim−→V 3Q iP (V ∩U) = 0 we conclude that iP (A)Q = 0
for such Q. Observe that

i∗(A)(U) = A(i−1(U)) =

{
A if P ∈ U
0 otherwise

= iP (A)(U).

1.18 Define ϕU : lim−→V⊇f(U)
F(f−1(V )) → F(U) by the collection of maps resf−1(V ),U for all V occurring

in the direct limit (observe V ⊇ f(U) implies f−1(V ) ⊇ U). The universal property of sheafification then
gives a map ϕ+ : f−1f∗F → F that is functorial in F (essentialy because ϕ is just a collection of restriction
maps). Since f−1 is a functor from sheaves on Y to sheaves on X, this gives a map τ : HomY (G, f∗F) →
HomX(f−1G,F) determined by g 7→ ϕ+ ◦ (f−1g).

Now define ψU : G(U) → limV⊇f(f−1(U)) G(V ) by inclusion of G(U) as a term in the direct limit (ob-
serve that U ⊇ f(f−1(U))). Composing ψ with the map to the sheafification yields a map ψ+ : G →
f∗f

−1G, functorial in G (again, roughly because ψ is defined by the identity map). Thus we can define
σ : HomX(f−1G,F)→ HomY (G, f∗F) by g 7→ (f∗g) ◦ ψ.

It remains to check that σ ◦ τ = idHomY
and τ ◦ σ = idHomX

. Perhaps a stalk calculation?

1.19 a) If P ∈ Z, every open V 3 P in Z is of the form U ∩ Z for some open U in X. Thus, (i∗F)P =
lim−→X⊇U3P F(U ∩ Z) = lim−→Z⊇V 3P F(V ) = FP . If P 6∈ Z then since Z is closed there exists an open U 3 P
with U ∩ Z = 0. Now (i∗F)P = lim−→X⊇V 3P F(V ∩ Z) = lim−→X⊇V 3P F(V ∩ U ∩ Z) = 0.
b) Recall that the stalk of a presheaf is the stalk of its sheafification at any point. If P ∈ U then
lim−→V 3P j!(V ) = lim−→V 3P j!(U ∩ V ) = lim−→W3P F(W ) = FP . If P 6∈ U then no open set containing P is con-
tained in U , so lim−→V 3P j!(V ) = 0. If G is any sheaf on X with GP = FP for P ∈ U and GP = 0 otherwise, and

the restriction of G to U is F, then we have a map G→ j!F given by composing G(V ) res−−→ G(U∩V ) = F(U∩V )
with the sheafification map to j!F. The condition on stalks shows that this map is an isomorphism on all
stalks, hence an isomorphism of sheaves.
c) If V ⊆ U we map F(V )→ F(V ) by the identity; otherwise we use the zero map. This gives a morphism
j!(F

∣∣
U

)→ F. We use the map F → i∗i
−1F = i∗(F

∣∣
Z
) described in 1.18. The sequence we obtain is exact on

stalks (two cases: P ∈ Z or P ∈ U) and hence exact.

2.2

2.1 Define ϕ : SpecAf → D(f) by the map p 7→ p∩A = i−1(p) induced by the map i : A→ Af . One checks
easily that ϕ is a homeomorphism with ϕ−1D(f)→ SpecAf given by p 7→ pe (by commutative algebra there
is a 1-1 corr. between primes of Af and primes of A not containing (f)). For example, ϕ takes the basic
open set D(g/fr) to D(fg) and so is an open map. We define ϕ# : OSpecA

∣∣
D(f)

→ ϕ∗OSpecAf
on basic

opens D(g) ⊆ SpecA by OSpecA

∣∣
D(f)

(D(g)) = Afg
id−→ (Af )g/1 = OSpecAf

(ϕ−1(D(g))). This gives a well
defined sheaf map since every point has a basic open nbd.

2.2 Let P ∈ U and V 3 P be a nbd. of P in X such that (V,OX
∣∣
V

) is affine, say isomorphic to SpecR.
There exists a basic open nbd. D(f) ⊆ U ∩ V containing P that is open in V . By 2.1, the locally ringed
space (D(f), (OX

∣∣
V

)
∣∣
D(f)

) is isomorphic to SpecRf and is hence affine. Thus (U,OX
∣∣
U

) is a scheme.

2.3 a) Suppose OP reduced for all P and let s ∈ OX(U) be nilpotent. Then sn = 0 in every stalk, so sP = 0
for all P ∈ U hence s = 0 by the sheaf axiom. Conversely, suppose OX(U) reduced for all U . If s ∈ OP is
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nilpotent, pick U, s′ representing s so (s′)n = 0 in sP hence there is a nbd. V of P with (s′
∣∣
U∩V )n = 0 (as

restriction is a homomorphism) hence s′
∣∣
U∩V = 0 since OX(U ∩ V ) is reduced, whence s = 0 in sP .

b) Let P ∈ X and let U 3 P be such that (ϕ,ϕ#) : (U,OX
∣∣
U

) ' SpecR is affine. Then (U, (OX)red
∣∣
U

) '
SpecRred. Indeed, the topological spaces SpecR and SpecRred are homeomorphic (as every prime contains
the nilradical) via the surjection R→ R/N . There is a natural map ψ : OSpecR → OSpecRred defined on the
basic open D(f) by the quotient map Rf → (Rf )red = (Rred)f (since localization commutes with quotients).
Then the map (ψ ◦ ϕ#)V : OX(V ) → OSpecRred(ϕ

−1(V )) is a map to a reduced ring, and therefore factors
through OV (V )red. The universal property of sheafification then yields a map (OX)red → ϕ∗OSpecRred that
is an isomorphism on stalks, hence an isomorphism.
c) This amounts to the commutative algebra statement that any map from a ring R to a reduced ring S
factors uniquely through Rred and the fact that the push forward of a reduced sheaf is reduced.

2.4 The result holds when X is affine. In general, cover X by affines Ui and cover the double overlaps Ui∩Uj
by affines Uijk. Then we have an exact sequence of rings

0 // Γ(X,OX)
g // ∏

i Γ(Ui,OUi)
f //

∏
i,j,k Γ(Uijk,OUijk

)

where g is given by s 7→
∏
i s

∣∣
Ui

and f is given by
∏
i si 7→

∏
i,j,k(si − sj)

∣∣
Uijk

. The functor Hom(A, •) is
left exact, so we obtain the exact sequence

0 // Hom(A,Γ(X,OX)) // ∏
i Hom(A,Γ(Ui,OUi)) //

∏
i,j,k Hom(A,Γ(Uijk,OUijk

))

Meanwhile, since to give a morphism X → SpecA is to give morphisms Ui → SpecA that agree on the
coverings of double overlaps, we have the exact sequence of sets

0 // Hom(X,SpecA) // ∏
i Hom(Ui,SpecA) //

∏
i,j,k Hom(Uijk,SpecA)

(where ”kernel” is interpreted in the appropriate sense, i.e. in the category of sets). Piecing these sequences
together, we have

0 // Hom(A,Γ(X,OX)) //
OO

��

∏
i Hom(A,Γ(Ui,OUi)) //

OO

��

∏
i,j,k Hom(A,Γ(Uijk,OUijk

))
OO

��
0 // Hom(X,SpecA) // ∏

i Hom(Ui,SpecA) //
∏
i,j,k Hom(Uijk,SpecA)

,

where the second two vertical arrows are bijections. Thus the first is also.

2.5 The closed points of SpecZ are the prime ideals (p) with p ∈ Z not equal to 0. There is a single open
point (the generic point), namely (0). The basic open sets are of the form D(n) with n ∈ Z and consist of
those primes not dividing n. The local ring at the closed point (p) is Z(p) and the residue field is Fp while
the local ring and residue field at (0) are both Q. Since there is a unique homomorphism from Z to any ring
defined by 1 7→ 1, 2.4 implies that every scheme X admits a unique morphism to SpecZ.

2.6 Let R be the zero ring. Then SpecR = {∅} and OSpecR(∅) = R = 0. There is a unique morphism
f : SpecR → X to any scheme X defined by inclusion on topological spaces and OX → f∗OSpecR given by
the identically zero morphism.

2.7 Given a morphism (ϕ,ϕ#) SpecK → X we obtain a point x = ϕ((0)) ∈ X and a sheaf morphism
ϕ# : OX → ϕ∗OSpecK , which gives a local map of local rings ϕ#

x : OX,x → OSpecK,(0) = K; in particular
mx 7→ 0 so we obtain a morphism k(x)→ K which must be injective since k(x) is a field. Conversely, given
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a point x ∈ X and an inclusion k(x) ↪→ K we define φ : SpecK → X by φ((0)) = x and ϕ#
U : OX(U) →

OSpecK(ϕ−1(U)) for each open U in X by OX(U) → OX,x → k(x) ↪→ K, where the first arrow is the zero
map when x 6∈ U and is inclusion into the direct limit when x ∈ U .

2.8 Suppose given a map ϕ : Spec k[ε]/ε2 = {(ε)} → X as schemes over k. This gives a point ϕ(ε) = x ∈ X
together with the diagram of local rings

OX,x // k[ε]/ε2

k

aaBBBBBBBB

<<yyyyyyyyy

(since (0) ∈ Spec k 7→ (ε) ∈ Spec k[ε]/ε2). Since the map ϕx : OX,x → k[ε]/ε2 is local, we have ϕx(mx) ⊆ (ε),
from which we deduce that the map k(x)→ k[ε]/ε ' k is an isomorphism. Since ε2 = 0, we define ψ : mx → k
by ψ(z) = ϕx(z)/ε and note that this is well defined, k-linear (by the commutativity of the above diagram),
and kills m2

x so yields an element of Hom(mx/m
2
x, k).

Conversely, suppose given a point x ∈ X with residue field k and a k-linear ψ : mx → k killing m2
x. We

define ϕx : OX,x → k[ε]/ε2 by ϕ(α+z) = α+ψ(z)ε, where α ∈ k and z ∈ mx (using that OX,x/mx ' k). One
checks using the linearity of ψ and the fact that ε2 = 0 and that ψ kills m2

x that ϕx is a local homomorphism
with the above diagram commuting. Finally, define a map ϕ : Spec k[ε]/ε2 → X by ϕ((ε)) = x and
ϕ# : OX → OSpec k[ε]/ε2 by the map OX(U) → OX,x

ϕx−−→ k[ε]/ε2 where the first arrow is 0 if x 6∈ U and is
inclusion into the direct limit otherwise. One easily checks that this gives a map of sheaves.

2.9 Suppose ζ1, ζ2 are two generic points of Z. Then since ζi = Z, an open set contains ζ1 iff it contains ζ2.
Letting U = SpecR be an affine nbd. of ζ1, we identify ζi = pi ∈ SpecR. Since p2 ∈ p1, we have p2 ⊇ p1

and vice versa, so ζ1 = ζ2. This settles uniqueness. As for existence, let Z be irreducible, nonempty, and
closed and let U ⊆ Z be a (nonempty) open affine. Then U = SpecR is dense in Z and irreducible. By
Zorn’s lemma, R has minimal primes, and the irreducibility of SpecR implies R has a unique minimal prime,
ζ ∈ U . It follows that ζ = U (closure in U) and since U is dense in Z, we have ζ = Z (closure in Z, hence
also X as Z is closed).

2.10 Observe that R[x] is a PID. The prime ideals of R[x] fall into three types:

1. The generic (and open) point (0), with residue field R(x).

2. Closed points of the form (x− α) with α ∈ R. The residue field in each case is R.

3. Closed points of the form (x2 + αx+ β), with residue field C.

As a set, SpecR[x] = R ∪ (C −R) = C with the bijection sending z ∈ C to ((x − z)(x − z)) if z 6∈ R and
to (x− z) if z ∈ R.

2.11 Again, Fp[x] is a PID, and the points of SpecFp[x] are

1. The generic point (0) with residue field Fp(x).

2. Closed points of the form (f) with f a monic irreducible polynomial of degree d ≥ 1. The residue field
is Fpd .

Since xp
n − x is the product of all monic irreducibles (over Fp) of degree d|n we get the formula

#{monic degree d irreducibles} =
∑
d|n

µ(d)pn/d
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by möbius inversion.

2.12

2.13 a) Let U be an open set of X that is not quasi-compact and {Ui} an open cover of U that does not
admit a finite subcover. Using the axiom of choice, we can find a sequence of Ui, say Uij for 1 ≤ j with Uij+1

not contained in Vj := ∪1≤k≤jUik . Then the Vj form an ascending nonterminating chain of open subsets of
X. Conversely, suppose that X is noetherian and let {Ui} be an open cover of the open set U ⊆ X. Let
S be the set of finite unions of the Ui, partially ordered by inclusion. Every chain evidently has an upper
bound, so by Zorn’s lemma S has a maximal element, which is easily seen to be U , viz. U is quasi-compact.
b) Let Ui be an open covering of X = SpecR. Covering each Ui by basic opens, we may suppose that the
Ui are all basic, Ui = D(fi). Then the fi generate the unit ideal, so in particular, finitely many of them
do, giving a finite subcover. Let R = k[xi] for 1 ≤ i be a polynomial ring in infinitely many variables and
consider the set U = supD(xi). This is not quasi-compact, so by a) SpecR is not noetherian.
c) Let U be an open set and Ui an open cover, which we may assume to be basic (Ui = D(fi))as above. If A
is noetherian, then the ideal (fi) is generated by finitely many of the fi, say fi : i ∈ J with #J <∞. Then
Ui with i ∈ J is a finite subcover.
d) Take A = k[xi]/(x2

i ) for 1 ≤ i. Evidently A is not noetherian, but the space SpecA consists of a single
point (0).

2.14 a) Recall that the set ProjS consists of those homogenous prime ideals that do not contain the irrelevant
ideal S+. If every element S+ is nilpotent then S+ is contained in the nilradical and hence in every prime of
S, so ProjS is empty. Conversely, if ProjS = ∅ then every homogenous prime ideal of S contains S+, so S+

is contained in the intersection of all homogenous prime ideals and is therefore contained in the nilradical.
b) Let p ∈ U . Then there is some s ∈ S+ with ϕ(s) 6∈ p. The set D(ϕ(s)) is an open nbd of p in U .
The morphism f : U → ProjS is given by contraction. Each homogenous prime of ProjT contracts to a
homogenous prime of S, and when p ∈ U , the contraction ϕ−1(p) does not contain all of S+ so is in ProjS.
Continuity follows since contraction preserves containment relations, and the sheaf map is given by.....
c) Since ϕ is graded, we have ϕ(S+) ⊆ T+. If ϕd : Sd → Td is an isomorphism for all d ≥ d0 then every
prime that does not contain T+ cannot contain ϕ(S+): indeed, if there is some t ∈ Tr not in p then tk 6∈ p
for all k and since r > 1 we may choose k so that rk > d0, thus producing tk = ϕ(s) for some s ∈ S+ so p
does not contain ϕ(S+), thus giving ProjT ⊆ U so in fact equality holds.

We now show that f : ProjT → ProjS is an isomorphism. Let {ti} generate T+, so {D+(ti)} is
a cover of ProjT . Then {D+(td0i )} is also a cover of ProjT . Put si = ϕ−1(td0i ) (here we use that ϕd
is an isomorphism for all d ≥ d0). Then fi = f

∣∣
D+(ti)

→ D+(si) is a morphism of affine schemes (as
D+(ti) ' SpecT(ti) and D+(si) ' SpecS(si)) corresponding to the ring homomorphism ϕi : S(si) → T(ti)

induced by ϕ. But ϕi is an isomorphism since si has degree at least d0, and ϕd is an isomorphism for all
d ≥ d0. Thus, fi is an isomorphism. Now the D+(si) cover ProjS since any p ∈ ProjS fails to contain some
si (otherwise the contraction of p, which is in ProjT , contains ti for all i and hence T+, a contradiction),
so to show that f is an isomorphism we need only show it is injective (since a bijective local isomorphism
is an isomorphism and surjectivity follows from the fact that the D+(si) cover ProjS). If f(x) = f(y) then
ϕ−1(x) = ϕ−1(y) = p ∈ ProjS, from which it follows that xd = yd for all d ≥ d0 (here xd = x ∩ Td). Pick
z ∈ x not in y and let s ∈ S+ be such that s 6∈ y (recall S+ 6⊆ y). Then sd0z ∈ x is of degree at least d0 and
so is in y. Since y is prime, this implies that z ∈ y so f is injective, hence an isomorphism.

2.16 a) We have U ∩Xf = {x ∈ SpecB
∣∣fx = fx 6∈ mx ⊆ OX,x} (where fx = fx since f and f agree in a nbd.

of x). Putting x = p ⊆ B this is {p ∈ SpecB
∣∣fp 6∈ pBp} and it is easy to verify that fp 6∈ pBp iff f 6∈ p, so

U ∩Xf = D(f). Hence Xf intersects every open affine (hence every open) in a (union of) basic opens, and
so must be open (for x ∈ Xf pick an affine open nbd. U of x in X so U ∩Xf is open in U hence in X, and
is contained in Xf ).
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b) CoverX by affines Ui = SpecBi for i = 1 . . . n and let ai = a
∣∣
Ui

and fi = f
∣∣
Ui

. By part a), Ui∩Xf = D(fi),
so ai = 0 on D(fi), i.e. ai = 0 in (Bi)fi

. Thus there is ri ≥ 0 such that aifri
i = 0 in Bi. Letting

N = max1≤i≤n ri we find that the global section afN restricts to 0 on each Ui and is therefore 0.
c) Let Ui = SpecBi for 1 ≤ i ≤ n be a finite affine cover of X. Put b

∣∣
Xf∩Ui

= bi/fi
di ∈ (Bi)fi with

bi ∈ Bi. Set d =
∑
i di (finite) and b′i = fd−dibi ∈ Γ(Ui,OX). Since b′i

∣∣
Xf

= fd−difdib we see that

(b′i − b′j)
∣∣
Ui∩Uj∩Xf

= 0 so by part b), for each pair i, j there is an integer dij with fdij (bi′ − bj′) = 0 as
an element of Γ(Ui ∩ Uj ,OX). Letting D = maxi,j dij (finite since the double overlaps have finite affine
covers by hypothesis) we find that fDb′i ∈ Γ(Ui,OX) are compatible on double overlaps, so give an element
a ∈ Γ(X,OX). By construction, a

∣∣
Xf∩Ui

= fDb′i = fD+db so in particular a
∣∣
Xf

= fD+db by the sheaf axiom.

d) Define ϕ : Af → Γ(Xf ,OXf
) by a/fn 7→ a

∣∣
Xf
/fn

∣∣
Xf

. (Observe that f
∣∣
Ui∩Xf

∈ Γ(Ui ∩Xf ,OXf
) = (Bi)f

is a unit for all i and hence f
∣∣
Xf
∈ Γ(Xf ,OXf

) is a unit). The map is a homomorphism since restriction is,

and is injective since otherwise fka = 0 for some k by part b), so a/fn = 0 in Af . Surjectivity is part c)
above.

2.17 a) Let gi : Ui → f−1(Ui) be the inverse to f
∣∣
f−1(Ui)

: f−1(Ui) → Ui. Observe that gi.gj agree on

Ui ∩Uj (because f
∣∣
Ui∩Uj

◦ gi
∣∣
Ui∩Uj

= f
∣∣
Ui∩Uj

◦ gj
∣∣
Ui∩Uj

= idUi∩Uj
and f

∣∣
Ui∩Uj

is an isomorphism, so we can
“cancel” the f from both sides). Thus we can glue the gi to get a morphism g : Y → X that is locally—hence
globally—inverse to f .
b) By 2.4, we have a morphism f : X → SpecA corresponding to the identity ring homomorphism A →
Γ(X,OX). By 2.16 d) we have Γ(Xf ,OXf

) ' Af , and the isomorphism makes the diagram

A
id //

��

Γ(X,OX)

res

��
Af

∼ // Γ(Xf ,OXf
)

commute, from which it follows that f
∣∣
Xf

: Xf → SpecAf is an isomorphism for each f = fi. Since the
fi generate the unit ideal, SpecAfi

covers SpecA. Thus the hypothesis of part a) are satisfied, so f is an
isomorphism and X is affine. The converse follows from the quasi-compactness of an affine scheme; see 2.13
b).

2.18 a) D(f) is empty iff f is contained in the intersection of all primes; i.e. iff f is nilpotent.
b) If the map of sheaves OX → f∗OY is injective then A = OX(X)→ OY (f−1(X)) = OY (Y ) = B is injective.
Conversely, if A→ B is injective, then Af → Bϕ(f) is injective for all f ∈ A (if a/fk 7→ 0 then ϕ(f)mϕ(a) =
ϕ(fma) = 0 so fma = 0 since ϕ is injective). This shows that the map f# : OX(D(f)) → OY (f−1(D(f)))
is injective for all f (where we use that f−1(D(f)) = D(ϕ(f))). Thus the map of sheaves is injective since
it is injective on a base of opens of X, and hence injective on every stalk.

Let f ∈ A. Then if D(f) is nonempty, there exists q ∈ SpecB with f 6∈ ϕ−1(q), or what is the same,
every nonempty D(f) ⊆ SpecA contains some f(q). Indeed, if f ∈ ϕ−1(q) for all q ∈ SpecB then ϕ(f) ∈ q
for all q, and is hence nilpotent. As ϕ is an injective homomorphism, it follows that f is nilpotent and hence
by a) that D(f) is empty. Thus f(Y ) is dense.
c) If ϕ is surjective, then A/ kerϕ ' B so their spectra are homeomorphic, and SpecA/ kerϕ = V (kerϕ) ⊆
SpecA is a closed subset. Now let s ∈ (f∗OY )p be represented by s̃ ∈ OY (f−1(U)). Shrinking if necessary,
we may suppose U = D(f) is basic, so f−1(U) = D(ϕ(f)) as above. Thus, s̃ ∈ Bϕ(f). Since A → B is
surjective, so is Af → Bϕf , so there exists t ∈ OX(U) mapping to s̃. It follows that the induced maps on
stalks are all surjective, so the sheaf map is surjective.
d) Let X ′ = SpecA/ kerϕ. Then we have Y

ψ−→ X ′ φ−→ X, where φ is a homeomorphism onto a closed subset
by c) and ψ(Y ) is dense in X ′ by b). Since the composite is f (this is just the fact that the ring map A→ B
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factors through A/ kerϕ) and f(Y ) is homeomorphic to a closed subset of X, we conclude that ψ(Y ) ⊆ X ′ is
dense and closed, so that ψ(Y ) = X ′. Moreover, since f, φ are homeomorphisms, so is ψ. We claim that ψ#

is an isomorphism. It is injective by b) and surjective since f# is surjective and the map f# : OX → f∗(OY )

factors as OX
φ#

−−→ φ∗OX′
φ∗(ψ

#)−−−−−→ φ∗ψ ∗ OY = f∗OY as f = φ ◦ ψ. Hence it is an isomorphism by 1.5. It
follows that SpecB ' SpecA/ kerϕ from which we conclude that ϕ : A/ kerϕ → B is an isomorphism, i.e.
that ϕ is surjective.

2.19 ((i) =⇒ (ii)) Suppose SpecA = V (I) ∪ V (J) is disconnected. Pick a non-nilpotent, nonunit e1 ∈ I (if I
consists only of nilpotents then the disconnect is trivial). Then e2 = 1− e1 ∈ J , and hence e1e2 is in every
prime ideal and so nilpotent. That is, e1, e2 as elements of Ared are orthogonal idempotents. We claim that
such idempotents can be lifted to A. Indeed, let N denote the nilradical of A. Let e′1 be any lift of e1 to
A and put e′2 = (1 − e′1). Then e′1e

′
2 = n is nilpotent, so for some j we have e′1

j
e′2
j = 0. Set ẽ1 = e′1

j and
ẽ2 = e′2

j . Observe that ẽ1 ≡ e′1 mod N and ẽ2 ≡ e′2 mod N since e′1 ≡ e′1
2
, e′2 ≡ e′2

2 mod N . Moreover,
we have ẽ1 + ẽ2 ≡ 1 mod N since e′1 + e′2 ≡ 1 mod N . It follows that ẽ1 + ẽ2 is a unit, say with inverse
a ∈ A. Clearly a ≡ 1 mod N . We now put e∗1 = aẽ1 and e∗2 = aẽ2. Then e∗1 + e∗2 = a(ẽ1 + ẽ2) = 1 and
e∗1e

∗
2 = a2ẽ1ẽ2 = 0. Since a ≡ 1 mod N we have e∗1 ≡ ẽ1 ≡ e′1 mod N so that e∗1 lifts e1 and similarly e∗2

lifts e2.
((ii) =⇒ (i)) Since e1e2 = 0 we see that SpecR = V (e1) ∪ V (e2). Moreover, V (e1) ∩ V (e2) = ∅ since no
prime can contain 1 = e1 + e2.
((ii) =⇒ (iii)) Suppose that A has orthogonal idempotents e1, e2. Define ϕ : Ae1 × Ae2 by (u, v) 7→ u + v.
One checks this is a homomorphism. It is injective since if re1 = se2 then re21 = re1 = se1e2 = 0. It is
surjective since r = r(e1 + e2) = re1 + re2.
((iii) =⇒ (ii)) If A ' A1 ×A2 then e1 = (1, 0) and e2 = (0, 1) are orthogonal idempotents.

2.3

Nike’s trick: We will use the following “trick” repeatedly. Let SpecR,SpecR′ ⊆ X be affine opens with
x ∈ SpecR ∩ SpecR′. Then there is an affine neighborhood U of x that is basic open in both SpecR and
SpecR′.

3.1 The “if” direction is obvious. Conversely, let SpecBi be an open affine cover of Y with f−1(SpecBi)
covered by SpecAij with Aij a finitely generated Bi-algebra for all j. Observe that f−1(Spec(Bi)b) is
covered by Spec(Aij)b (if f(x) ∈ Spec(Bi)b then f(x) is a prime of Bi not containing b so x is a prime of
some SpecAij not containing the image of b under the algebra map Bi → Aij) and that (Aij)b is a finitely
generated (Bi)b-algebra. Thus, the hypotheses are inherited by basic opens of Ui.

Now let SpecB ⊆ Y be arbitrary. By “Nike’s trick,” there exists a cover of SpecB by affines that are
basic open in both SpecB and SpecBi (for varying i). This allows us to reduce to the case that Y = SpecB
is affine, with the same hypotheses as above, and we need only show that any affine in the f−1(Y ) = X is a
finitely generated B-algebra.

Thus, let SpecBbi be our cover of SpecB (constructed above) by basic opens with f−1(SpecBbi) covered
by SpecAij and Aij a finitely generated Bbi = B[1/bi]-algebra, and hence a finitely generated B-algebra.
Let SpecA ⊆ X be arbitrary. By the Nike trick again, there is a cover SpecAak

of SpecA with each SpecAak

basic open in both SpecA and SpecAij (for varying i, j). Each Aak
is isomorphic to a localization of some

Aij and is therefore a finitely generated Aij-algebra, and hence also a finitely generated B-algebra.
Thus, we are reduced to the following problem: A is a ring with (ak) generating the unit ideal, and

each Aak
is a finitely generated B-algebra, and we must show that A is a f.g. B-algebra. We may clearly

assume that there are only finitely many ak and that we have x1, . . . , xn ∈ A with
∑
xkak = 1. Let

Aak
= B[yk1/αNk , yk2/α

N
k , . . . , ykmk

/αNk ] with ykl ∈ A for all k, l. Put A′ = B[xk, ak, ykl] with k, l running
over all possible indices (a finite set!). Then A′ is obviously a B-subalgebra of A. Moreover, we have
Aak

= A′ak
for all k. For any p ∈ SpecA choose ak 6∈ p (since (ak) is the unit ideal this is possible). Then
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A′p is a further localization of A′ak
= Aak

, from which we conclude that A′p = Ap for all p ∈ SpecA. Thus
A = A′ is a finitely generated B-algebra.

3.2 As in 3.1, one direction is trivial. For the converse, let SpecB ⊆ Y be arbitrary and suppose we have
a cover SpecBi of Y with f−1(SpecBi) quasi-compact. Suppose f−1(SpecBi) is covered by {SpecAij}j∈Ji

with #Ji < ∞ for each i. Then we can cover SpecB by finitely many opens of the form Spec(Bi)bi , say
for i ∈ I, and we have f−1(Spec(Bi)bi) = ∪j∈Ji Spec(Aij)bi so f−1(Spec(Bi)bi) is quasicompact. It follows
that f−1(SpecB) = ∪i∈I, j∈Ji

(Aij)bi
, and since #I < ∞ and #Ji < ∞ for all i ∈ I, we conclude that

f−1(SpecB) is quasicompact.

3.3 a) If f is of finite type then it is clearly of locally finite type and quasi-compact. Conversely, if f is q-
compact and locally of finite type, then we have a covering of Y by affines SpecBi with f−1(SpecBi) covered
by SpecAij with Aij finitely generated Bi-algebras. By 3.2, f−1(SpecBi) is quasi-compact, so finitely many
of the SpecAij will do; i.e. f is of finite type.
b) By a) f is f.t. iff. it is locally f.t. and q-compact. Now apply 3.1 and 3.2.
c) This was done in 3.1.

3.4 The “if” direction is obvious. Conversely, let SpecBi be an open affine cover of Y with f−1(SpecBi) =
SpecAi with Ai a finitely Bi-module. for all i. Observe that f−1(Spec(Bi)b) = Spec(Ai)b and that (Ai)b is
a finite (Bi)b-module so the hypotheses are inherited by basic opens of SpecBi.

Now let SpecB ⊆ Y be arbitrary. By “Nike’s trick,” there exists a finite cover of SpecB by affines
that are basic open in both SpecB and SpecBi (for varying i). This allows us to reduce to the case that
Y = SpecB is affine with a covering SpecBbi , by finitely many basic opens and f−1(SpecBbi) = SpecCi
affine with Ci a finite Bbi-module. We need only show that f−1(Y ) = X is affine, equal to SpecA, with A
a finite B-module.

By 2.4, we have a ring homomorphism B → Γ(X,OX) = A corresponding to the map f : X →
Y = SpecB. Moreover, we see that the bi generate the unit ideal in A because they do in B, and that
f−1(SpecBbi

) = Xbi
= SpecCi is affine and gives a finite cover of X. By 2.17, X = SpecA is affine.

It remains to show that A is a finite B-module. We now know that Xbi = SpecAbi = SpecCi, so
Abi ' Ci. That is, we are reduced to the following problem: A is a B-algebra and bi ∈ B is a finite collection
generating the unit ideal such that Abi

is a finite Bbi
-module, and we wish to conclude that A is a finite

B-module. Let {zij} for 1 ≤ j ≤ mi generate Abi
as a Bbi

-module, where by clearing denominators we may
suppose that zij ∈ A. Any a ∈ A can be written a =

∑
βijzij , where βij ∈ Bbi

. Since there are only finitely
many βij , we can find some N so that bNi βij = γij ∈ B for all i, j. Then bNi a =

∑
γijzij for all i. Since bi

generate the unit ideal, so do bNi , so we have
∑
xib

N
i = 1 for xi ∈ B. Thus, putting µij = xiγij we have

µij ∈ B and a =
∑
i,j µijzij . Thus A is a finite B-module.

3.5 a) One reduces immediately to the affine case, SpecB → SpecA with B integral over A. The fact that
there are only finitely many primes of B lying over any given prime of A is standard Commutative Algebra.
b) This is the “going up” theorem from Commutative Algebra.
c) Take k[x]→ k[x, y]/(xy − 1)× k with the map p(x) 7→ (p(x), p(0)). The corresponding map of spectra is
surjective, finite type, and quasi-finite. However, k[x, y]/(xy − 1)× k is not a finite k[x]-module.

3.6 Let U = SpecA be any affine open. Since X is irreducible, xi = X so ξ ∈ U . We claim that ξ is a
minimal prime of A. Indeed, is ζ ∈ SpecA is contained in ξ, then X ⊇ ζ ⊇ ξ = X, so we have equality,
and the uniqueness of generic point (2.9) gives ζ = ξ. But OX(U) = A is an integral domain as X is
integral, and there is a unique minimal prime (0) of any domain. It follows that Oξ = limU3ξ OX(U) =
limf∈A−{0} OX(D(f)) = limf 6∈AAf = A(0) = FracA.

3.7 Let ξX , ξY be the generic points of X,Y resp. If U is an open set of Y not containing y = f(ξX) then
f−1(U) is an open set of X not containing ξX , and so must be empty. But then U ∩ f(X) = ∅ and f is not
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dominant. We conclude that every open set of Y contains f(ξX), and hence that f(ξX) = ξY . We thus have
a local map of local rings f#

ξY
: OξY

→ OξX
which is injective as OξY

= K(Y ) is a field, i.e. K(X) is a field
extension of K(Y ). We claim that it is an algebraic field extension. Indeed, If SpecB is any affine open in Y
and SpecA is any affine open in f−1(SpecB), then we have a ring homomorphism ϕ : B → A corresponding
to f : SpecA→ SpecB, and since f is generically finite, there are only finitely many primes of A lying over
(0) ∈ B. If FracA = K(X) is transcendental over FracB = K(Y ) then A is transcendental over B, and
there are infinitely many primes of A lying over (0) ∈ SpecB, contradicting the generic finiteness assumption.
Hence K(X) is an algebraic, finitely generated (since f is of finite type) K(Y )-algebra, and is therefore a
finite extension of fields. It follows that there exists some b ∈ B with A finitely generated as a Bb-module.
Thus, we may shrink SpecB (if necessary) to obtain a cover of f−1(SpecB) by affines SpecAi for 1 ≤ i ≤ n
with each Ai a finite B-module. Now for each i < n there exists ai ∈ Ai such that Spec(Ai)ai ⊆ SpecAn,
and since Ai is an integral B-extension, ai satisfies a monic polynomial

∑
k βika

k
i = 0 with βik ∈ B and

βi0 6= 0. Let b =
∏

1≤i<n βi0, so b 6= 0, and every prime of Ai containing ai contains b for all i < n, that is,
Spec(Ai)b ⊆ Spec(Ai)ai

for all i < n. It follows that f−1(Bb) = ∪i<n Spec(Ai)b ∪ Spec(An)b = Spec(An)b is
affine, and since An is a finite B-module, (An)b is a finite Bb-module. AsX,Y are integral (hence irreducible),
U = SpecBb and f−1(U) = Spec(An)b are dense in Y,X respectively, and f : f−1(U)→ U is finite.

3.8 This is a standard application of The Fourfold Way:
We wish to construct an X-scheme P (X) → X for every scheme X with P (X) having some universal

property P in some subcategory of the category of X-schemes.

1. Prove that if P (X)→ X exists for a single X, then the open subscheme in P (X) that lies over an open
subscheme U of X satisfies the universal property to be P (U); in particular, existence for X implies
existence for any open subscheme of X.

2. Suppose the problem can be solved locally on a single X. That is, assume there is an open cover {Ui} of
X such that P (Ui)→ Ui exists. Now consider Pij , the part of P (Ui) that lies over Uij = Ui∩Uj = Uji.
Notice that Pij and Pji both satisfy the same universal property in the category of Uij-schemes, by step
1 (applied to the scheme Uij), so they are uniquely Uij-isomorphic, and the uniqueness ensures triple-
overlap consistency when comparing the various triples of isomorphisms we get over triple overlaps.

3. Using step 2, we may (for X and {Ui} as in step 2) glue the P (Ui) to make an X-scheme. Now this
glued X-scheme restricts over Ui to give the universal thing P (Ui)→ Ui, and so one then can usually
exploit this to prove that the glued thing over X does in fact satisfy the universal property to serve as
the desired P (X)→ X.

4. By steps 1–3, the existence problem for P (X) for any particular X is ”local on the base” (i.e., suffices
to solve the problem for the constituents of an open covering of X), and of course the uniqueness aspect
is generally OK by whatever universal property is to be satisfied by the construction. Now we may
suppose X is affine and we perhaps make an explicit construction in this case, and thereby solve the
global problem in view of the preceding considerations.

Suppose that π : X̃ → X exists and let U ⊆ X be open. We wish to show that π−1(U) ' Ũ . The scheme
π−1(U) is normal because it is a subscheme of X̃ and normality is a local property. It is integral because it is
reduced (again a local property) and irreducible (because it is an open subscheme of an irreducible scheme).
Moreover, if Z → U is any normal integral U -scheme with dominant structure map, then Z becomes an
X-scheme with dominant structure map (since U is dense in X), and hence factors uniquely through X̃, and
it is clear that the image lies in p−1(U), so p−1(U) has the right universal property and is thus (isomorphic
to) Ũ .

Next we show that it suffices to solve the existence of normalization locally on X. Indeed, let {Xi} be an
open cover of X and let X̃i be the normalization of Xi. By 1), we get the normalization of Xij = Xi ∩Xj in
two different ways: one as a subscheme of X̃i and the other as a subscheme of X̃j . The uniqueness (which
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is an immediate consequence of the universal property) yields an isomorphism φij identifying these two
constructions. Moreover, uniqueness up to unique isomorphism ensures that φjk ◦ φij = φik (triple overlap
compatibility), so that we can glue the X̃i to obtain a scheme π : X̃ → X.

We wish to show that X̃ has the required universal property. Over each Xi, the scheme X̃ restricts to
X̃i so given an integral normal scheme φ : Z → X with dominant structure map, we obtain unique maps
φi : φ−1(Xi)→ Xi (which must be dominant by irreducibility considerations) and hence unique factorizations
ψi : φ−1(Xi) → X̃i. The uniqueness of these maps ensures compatibility on overlaps, so we may glue them
to show that Z → X factors uniquely through X̃. Moreover, X̃ is normal and reduced since X̃i is for each
i (and these are local properties) and is irreducible since the X̃i are irreducible and all intersect pairwise
(because X̃i = π−1(Xi) and the Xi all intersect as X is irreducible).

We have reduced the existence of normalization to the case of affine X = SpecA, with A a domain. Let B
be the integral closure of A in FracA. Then every localization of B is integrally closed, so SpecB is normal,
and since A → B is injective, the map SpecB → SpecA is dominant (2.18). If Z → SpecA is a dominant
map with Z an integral normal scheme, then we have an injective (converse to 2.18 a)) map A→ Γ(Z,OZ) by
2.4. Since Γ(Z,OZ) is normal (as all localizations at prime ideals are) the morphism A → Γ(Z,OZ) factors
through B so by 2.4 again, the morphism Z → SpecA factors through SpecB. This gives the normalization
for affines, and we are done.

Finally, if X is finite type over a field, then we have a cover Xi = SpecAi by affines with π−1(Xi) =
SpecBi with Bi integral over Ai, so by Theorem 3.9A of Chapter I, Bi is a finite Ai-module and π is finite.

3.9 The fiber product X = A1
k×A1

k has the following universal property: to give a k-morphism Y → X (with
Y a scheme over k) is to give k-morphisms φ1, φ2 : Y → A1

k, that is, to give two k-algebra homomorphisms
k[x]→ Γ(Y,OY ). Thus, Hom(Y,X) ' Γ(Y,OY )2 is a bijection. Since this is the universal property of A2

k, we
conclude that X ' A2

k. We could also observe that X = Spec(k[x] ⊗k k[y]) ' Spec k[x, y]. The underlying
point-set of the product has points that correspond to irreducible curves in A2

k (even if k is algebraically
closed). For example, we might take xy − 1. If such a point p were to correspond to an element of the
product set sp(A1

k)×sp(k) sp(A1
k) it would have to be the point (i−1

1 (p), i−1
2 (p)) where i1 : k[x]→ k[x, y] and

i2 : k[y]→ k[x, y] are the natural inclusions. But for such p, the contraction of p via ij is (0) for j = 1, 2, so
the sets are not equal (Really I should give a cardinality argument).

b) Since k(s) = S−1k[s] and k(t) = T−1k[t] where S, T are the multiplicative subsets of k[s], k[t] consisting
of all nonzero elements, we have k(s)⊗kk(t) = S−1k[s]⊗kT−1k[t] = (ST )−1k[s]⊗kk[t] = U−1k[s, t], where U
is the multiplicative subset of k[s, t] consisting of all nonzero polynomials P (s)Q(t). Since k[s, t] and k[s] are
finitely generated k-algebras, they are Jacobson rings, so maximal ideals contract to maximal ideals under
the inclusion k[s] ↪→ k[s, t] (see Eisenbud’s Commutative Algebra, Theorem 4.19). Thus, every maximal
ideal m of k[s, t] contains some nonzero P (s). It follows that the expansion of m under k[s, t] → U−1k[s, t]
is the unit ideal. We conclude that the prime ideals of U−1k[s, t] correspond to the height-1 prime ideals
of k[s, t] not of the form P (s)Q(t). That is, the prime ideals of U−1k[s, t] are principal, generated by
some irreducible g ∈ k[s, t] \ (k[s] ∪ k[t]). There are infinitely many such irreducibles, and it follows that
Spec(U−1k[s, t]) ' Spec k(s) ×k Spec k(t) has infinitely many points. Moreover, Spec k(s) ×k Spec k(t) is
1-dimensional as it is the spectrum of a ring in which every prime is principal.

3.10 a) We claim that the first projection p : X ×Y Spec k(y)→ X induces a homeomorphism Xy → f−1(y).
Letting SpecA be any affine nbd. of y ∈ Y , we see from the universal properties of fiber product that
Xy = (X ×Y SpecA)×SpecA Spec k(y) = (f−1(SpecA))y, so we may suppose Y = SpecA is affine. For any
open subset U ⊆ X we have p−1(U) = U ×Y Spec k(y) (by universal properties). Moreover, if we can show
that p : p−1(U) → U induces a homeomorphism Uy → f−1(y) ∩ U then we can use universal properties to
glue and obtain the desired result (sketchy). Thus, we reduce to the case that X = SpecB is affine. Let
p ∈ SpecA = Y be the point y and let g = f#

Y : A→ B be the ring map corresponding to f : X → Y making

B into an A-algebra. We have ring maps B
φ−→ B ⊗A Ap

ψ−→ B ⊗A k(p), and the projection p is the map
Spec(B ⊗A k(p)) → SpecB corresponding to ψ ◦ φ. We already know that Specφ, Specψ are continuous.

12



Now ψ is surjective, so by 2.18 c), Specψ : Xy → Spec(B ⊗A Ap) is a homeomorphism onto the closed
subset V (kerψ). We claim that Specφ is a homeomorphism onto the set {q ∈ SpecB : q ∩ S = ∅}, where
S = g(A − p). (Specφ is closed since Specφ(V (I)) = V (φ−1(I)) ∩ (Specφ)(SpecB) is a closed subset of
the image of Specφ, which are those primes of B not meeting S). Therefore, p is the composition of two
homeomorphisms and hence a homeomorphism. Since kerψ = pB, we see that p is a homeomorphism onto
the set of primes q ∈ SpecB such that q ⊇ pB = g(p)B and q ∩ S = q ∩ g(A − p) = 0, that is, g−1(q) ⊇ p
and g−1(q) ⊆ p, i.e. g−1(q) = p.

b) Assuming k to be algebraically closed, the fiber over y = (s− a) ∈ Spec k[s] consists (by part a) ) of
those primes in k[s, t]/(s− t2) contracting to (s− a), that is (s− a, t−

√
a) and (s− a, t+

√
a). The residue

field at each point is k (defined by mapping s → a and t → ±
√
a). If a = 0, the fiber over y = (s) is the

scheme Spec(k[s, t]/(s− t2)⊗k[s] k[s](s)/(s)) = Spec(k[s, t]/(s− t2)⊗k[s] k) where the map k[s]→ k sends s
to 0, so s acts on the left of the tensor product as 0. Thus, k[s, t]/(s− t2)⊗k[s] k ' k[t]/t2 and the fiber is the
one-point non-reduced scheme Spec(k[t]/t2). The prime ideals of k[s, t]/(s − t2) that contract to (0) ⊆ k[s]
are those prime ideals of k[s, t] containing (s− t2) that contain no polynomials in s. The only such ideal is
(s − t2) (see 3.9 b) ). In other words, k[s, t]/(s − t2) ⊗k[s] k(s) ' k(s)[t]/(s − t2) (a field) so the fiber is a
one-point scheme with residue field a degree-2 extension of k(s).

3.12 a) Since ϕ is surjective and degree-preserving, we have ϕ(S+) = T+ so U = ProjT . As ϕ is surjective, we
have S/ kerϕ ' T so since there is a 1-1 inclusion-preserving correspondence between homogeneous prime
ideals of S that contain kerϕ and homogeneous prime ideals of S/ kerϕ, we conclude that f : ProjT →
ProjS is a homeomorphism onto V (kerϕ) (kerϕ is a homogeneous ideal). We need only remark that
f# : OProjS → f∗OProjT is surjective. But this follows from the fact that OProjS(D+(f)) = S(f) → Tϕ(f) =
OProjT (f−1(D+(f)) is surjective for any f ∈ S since S → T is surjective (equivalently Sϕ−1(p) → Tp is
surjective for any prime p ∈ ProjT , so the sheaf map is surjective on stalks).

b) Observe that (S/I)d ' (S/I ′)d for all d ≥ d0. By 2.14 c), the morphism f : Proj(S/I) → Proj(S/I ′)
associated to S/I ′ → S/I is an isomorphism that is evidently compatible with the closed immersions
Proj(S/I)→ ProjS and Proj(S/I ′)→ ProjS since the ring maps are.

3.13 a) Let f : X → Y be a closed immersion. Observe that for U ⊆ Y open, the map f : f−1(U)→ U is a
closed immersion (indeed, it is a homeomorphism onto the closed subset f(X) ∩ U of U and the sheaf map
OY

∣∣
U
→ f∗OX

∣∣
f−1(U)

is surjective since it is on stalks). Thus, being a closed immersion is local on the base.
We have already seen that being a finity-type morphism is local on the base (3.1, 3.3), so we reduce to the
case Y = SpecA whence X ' SpecA/I. Since A/I is clearly a finitely generated A-algebra, we conclude
that f is finite-type.
b) By 3.3 a) it will suffice to show that f is locally of finite type. Let f : X → Y be an isomorphism onto
U ⊆ Y and let SpecA be any affine open of Y . Then f−1(SpecA) = f−1(U ∩ SpecA), and we may cover
U ∩ SpecA by open affines SpecAai

. Since f : X → U is an isomorphism, f−1(SpecA) is covered by open
affines isomorphic to SpecAai

, and each Aai
is a finitely generated A-algebra.

c) Let X
f−→ Y

g−→ Z with f, g finite type, and let {SpecAi} be a covering of Z with g−1(SpecAi) =
∪nj

j=1 SpecBij and Bij a finitely generated Ai-algebra. By 3.1, f−1(SpecBij) = ∪mij

k=1 SpecCijk with Cijk a
finite Bij-algebra, and hence a finite Ai-algebra. Thus, (g ◦ f)−1(SpecAi) = ∪j,k SpecCijk is a finite cover
with Cijk a finitely generated Ai-algebra for all i, j, k. Thus g ◦ f is of finite type.
d) Let f : X → S be an S-scheme and S′ → S a base change. Because finite type is local on the base, we
may assume S = SpecA and S′ = SpecB are affine. Let X = f−1(SpecA) be covered by SpecCi, with Ci a
finite A-algebra. Then (f ′)−1(S′) = X ×S S′ is covered by Spec(B ⊗A Ci), and since Ci is a f.g. A-algebra,
B ⊗A Ci is a f.g. B-algebra.
e) We may assume S = SpecA is affine. Let SpecBi and SpecB′j be finite covers of X,Y with Bi, B′j finite
A-algebras. Then Spec(Bi ⊗A B′j) is a finite cover of X ×S Y and Bi ⊗A Bj is a finite A-algebra.
f) Again, we need only check that f is locally finite type. Cover Z by open affines SpecCi with (g ◦
f)−1(SpecCi) covered by finitely many SpecAij ⊆ X. Now let SpecBik be a cover of g−1(SpecAi) and
observe that f−1(SpecBik) is covered by a collection of the SpecAij , so we have ring maps Ci → Bik → Aij
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such that Aij is finite type over Ci, from which we conclude that Aij is finite type over Bik and hence that
f is locally of finite type.
g) Let SpecAi be a finite cover of Y with Ai noetherian. By 3.1, f−1(Ai) can be covered by finitely many
SpecBij with Bij a finite Ai-algebra. Since each Ai is noetherian, so are all the Bij and SpecBij is a finite
cover of X with Bij noetherian.

3.14 Let U ⊆ X be open and let Ui = SpecAi be an affine cover of X. We claim that x closed in U implies
x closed in Ui for all Ui 3 x. Indeed, pick a basic open SpecB inside Ui ∩ U containing x so the inclusion
Ui ∩ U ↪→ Ui gives a ring homomorphism Ai → B. Both Ai and B are finitely generated k-algebras, hence
Jacobson rings, so maximal ideals contract to maximal ideals (c.f. 3.9). In particular, since x is closed in
Ui ∩ U , its image in Ui is closed. Since x is closed in each Ui and the Ui cover X, we conclude that x is
closed in X.

Thus it suffices to prove that every nonempty basic open subset of an affine SpecA contains a maximal
ideal of A. But if f ∈ A is in every maximal ideal then it is nilpotent (as A is Jacobson) hence D(f) is
empty.

As an example where this fails, let R be any local domain (for example, Z(3)). Then if f ∈ m \ {0}, the
set D(f) is nonempty and open, and contains no closed points.

3.15 a) We have (iii) =⇒ (i) =⇒ (ii), so we show (ii) =⇒ (i) =⇒ (iii). We claim that if K/k is
purely inseparable, then X irreducible implies XK irreducible. Indeed, if XK is not irreducible, then there
is an open affine subset UK ⊂ XK with Γ(UK ,OXK

) not a domain (take UK to be the union of two disjoint
open affines V1, V2 ⊆ XK). Since SpecA is homeomorphic to SpecAred, it will suffice to show that if A
is a domain so is A ⊗k K for any purely inseparable extension K/k. But A ⊗k K having a zero-divisor is
equivalent to a system of equations with coefficients in k having a solution over K. We may suppose that
K/k is finite since any element of A⊗k K is contained in A⊗k L with L a finite extension of k. Thus, there
exists q = (char k)r for some r such that Kq ⊆ k. Letting {fi} be our system of equations with a solution
in K, we see that {fqi } has s solution in k, and since x 7→ xq is injective, we obtain a zero-divisor in A,
contradicting our assumption.

We now prove that if k′/k is an extension of fields with k algebraically closed then {fj} with fj ∈
k[X1, . . . , Xn] has a solution over k iff it has one over k′. One direction is clear. For the opposite direction,
we prove the contrapositive. By the Nullstellensatz (crucially using that k is algebraically closed) if {fj}
has no solution over k then the fj generate the unit ideal of k[X1, . . . , Xn], and hence they also generate the
unit ideal of k′[X1, . . . , Xn] and therefore have no solution over k′.

Lastly, we show that (i) =⇒ (iii). We may suppose that K is an extension of k. Then having a zero
divisor in A⊗kK is equivalent to a system of equations with coefficients in k having a solution over K, and
by the above result, such a system also has a solution over k whence A⊗k k is not a domain.
b) Obviously (iii) =⇒ (i) =⇒ (ii), so it will suffice to prove (ii) =⇒ (i) =⇒ (iii). We claim that
if K/k is separable then X reduced implies XK reduced. Indeed, we may suppose that X = SpecA is
affine (for it suffices to show that UK is reduced for every affine U ⊆ X) and we must therefore show that
Γ(UK) = A ⊗k K is a reduced ring given that A is reduced. We may suppose that A is a domain: indeed,
A ↪→

∏
A/pi, so A ⊗k K ↪→

∏
A/pi ⊗ kK as K/k is flat, the product being over all minimal primes of A,

and a product of rings is reduced iff each factor is. (We have also tacitly used that tensor product commutes
with finite direct products= finite direct sums, which employs the finite type hypothesis, i.e. that A has
finitely many minimal primes.) Since A ↪→ Frac(A), it will suffice to show that F ⊗k K is reduced for every
extension field F/k. We may replace K by a finite extension L/k since every element of F ⊗kK is contained
in F ⊗k L for some finite L (depending on the element). But then L ' k[T ]/(f) with f ∈ k[T ] a separable
polynomial, so that F ⊗k L ' F [t]/(f) and f ∈ F [t] is still separable, so F [t]/(f) is reduced. Since k/kp is
a separable extension, we have shown (ii) =⇒ (i).

Now we show that if A ⊗k k is reduced, then A ⊗k K is reduced for any extension K/k of fields. We
reduce at once (by a further field extension if necessary) to the case that K is an extension of k. But then
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having a nilpotent element of A⊗kK is equivalent to giving a system of equations with coefficients in k that
have a solution over K, and by the result in part a), must therefore have a solution over k.
c) Let k = Fp(T ) and K = Fp(T 1/p). Then SpecK is reduced but not geometrically reduced as SpecK ×k
SpecK = Spec(K⊗kK) and K⊗kK has the nonzero nilpotent x = 1⊗T 1/p−T 1/p⊗1 with xp = 0. Similarly,
X = SpecR[x]/(x2 + 1) ' SpecC is irreducible (it is a single point) but not geometrically irreducible as
XC = SpecC[x]/(x2 + 1) = Spec(C⊕C) = SpecC

∐
SpecC.

2.4

4.1 Let f : X → Y be finite. Since properness is local on the base (cor 4.8), we may assume Y = SpecA
and f−1(Y ) = X = SpecB with B a finite A-module (since f is finite; c.f. 3.4). By Prop. 4.1, f : X → Y
is separated and it is of finite type since it is finite. We need to check that f ′ : X ×Y Y ′ → Y ′ is closed for
all Y ′ → Y . Since this is local on Y , we may suppose that Y ′ = SpecC is affine. We are reduced to showing
that SpecB⊗AC → SpecC induced by the map C → B⊗AC to the second factor is closed. But B⊗AC is
integral over C as B is integral over A (generated as a C module by gi ⊗ 1 with gi a finite set of A-module
generators of B), so by 3.5 b), f ′ is closed and f is universally closed. Thus, f is proper.

4.2 Let h = (f, g) : X → Y ×S Y . Observe that (f, f) = ∆◦f : X → Y ×S Y agrees with h on the open dense
subset U Since Y is separated, ∆ : Y → Y ×S Y is a closed immersion, so ∆Y is closed. Thus, h−1(∆(Y ))
is a closed subset of X containing U (since h

∣∣
U

= ∆ ◦ f
∣∣
U

), and since U is dense, h−1(∆(Y )) = X, so
h(X) ⊆ ∆(Y ) so f = g on X.

To check the sheaf maps are equal, we may suppose X = SpecB and Y = SpecA are affine (since
equality of sheaf maps can be checked locally) and we have maps f#, g# : A → B. For a ∈ A consider
b = f#(a) − g#(a). Observe that b

∣∣
U

= 0 so V (b) ⊆ X contains the dense open U and hence V (b) = X.
Thus, b is nilpotent. Since X is reduced, b = 0 and we are done.

If X is nonreduced, this can fail. For example, take X = SpecZ[x]/(x2, xp) for a prime p. We define
φi : X → X for i = 1, 2 by x 7→ x, x 7→ 0 respectively. The open set U = X(p) = SpecZ[1/p] is dense in X
since X is irreducible (the unique minimal prime is (x)) and φ1 = φ2 on U . However, φ1 6= φ2 as they are
not induced by the same ring map.

Similarly, the result can fail for Y not separated. Take Y to be the affine line with doubled origin and
let φ1 : Y → Y be the identity map and φ2 : Y → Y the map that switches the two copies of A1. Then
φ1 = φ2 on the dense open U consisting of Y minus the two origins, but not on all of Y .

4.3 Let f : X → S = SpecA be separated, and U = SpecB, V = SpecB′ affine opens in X. Then
∆ : X → X ×S X is a closed immersion, and by universal properties of the fiber product, we have U ∩ V =
∆−1(U ×S V ). Since being a closed immersion is local, ∆ : U ∩ V → U ×S V = Spec(B ⊗A B′) is a closed
immersion, so in particular by 3.11 b), ∆(U ∩ V ) is affine, which implies that U ∩ V is affine as ∆ is a
homeomorphism.

As an example when this fails if X is nonseparated, let X be the affine plane with the origin doubled
(over an algebraically closed field k) and U, V the two copies of A2

k. Then U, V are open affines, but their
intersection is isomorphic to A2

k with the origin deleted, which is not affine.

4.4 Let πX : X → S and πY : Y → S be the structure maps, and πZ : Z → S = πZ
∣∣
Z
. Since πY ◦ f |Z = πZ

and πZ is proper by hypothesis and πY is separated, Prop. 4.8 tells us that f
∣∣
Z

: Z → f(Z) is proper.
Replace X by Z and Y by f(Z) so that we have f : X → Y a surjective S-morphism and πX proper; we
wish to show πY is proper. Since X ×Y Y ×S T = X ×S T for any S-scheme T , we see that the morphism
f × id : X ×S T → Y ×S T is the base change of f : X → Y and X ×S T → T is the base change of X → S.
Thus, since properness and surjectivity are stable under base change (see below), we may replace X by
X×S T , Y by Y ×S T , S by T , and f by f × id to reduce showing that f is universally closed to just showing
that it is closed. But if W ⊆ Y is closed, then since f : X → Y is surjective, we have W = f(f−1(W )) and
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hence πY (W ) = πY ◦ f(f−1(W )) = πX(f−1(W )) and this is closed since πX is proper (hence closed) and f
is continuous so f−1(W ) is closed.

To prove that surjectivity is stable under base change, observe that if f : X → S is a surjective map and
π : S′ → S any base change, then (f×1)−1(s′) is homeomorphic toX×SS′×S′Spec k(s′) = X×SSpec k(s′) =
X ×S π(s′), which is homeomorphic to f−1(π(s′)) and must therefore be nonempty as a set, since f is
surjective (we have used 3.10).

4.6 Let f : SpecB = X → Y = SpecA be proper, and let ϕ : A→ B be the associated ring map. Since X,
Y are varieties, A and B are domains of finite type over an algebraically closed field k. Let K = FracB and
R be any valuation ring of K containing ϕ(A). The valuative criterion of properness ensures the existence
of a unique map SpecR→ SpecB making the diagram

SpecK //

��

SpecB

��
SpecR

99s
s

s
s

s
// SpecA

commute. In other words, there is a unique map of rings B → R making

A //

��

R� _

��
B

>>~
~

~
~
� � // K

commute, and we easily see this map is injective. Thus, B is contained in every valuation ring ofK containing
A, so by 4.11 A, it is contained in the integral closure of A in K and is hence integral over A. By 3.4, we
conclude that f : X → Y is finite.

4.8 d) If πX : X → Z and πY : Y → Z have P then since X ×Z Y → Y is the base change Y → Z of
X → Z, we see that X ×Z Y → Y has P. SInce X ×Z Y → Z is the composition X ×Z Y → Y

πY−−→ Z of
two morphisms having P, it also has P.
e) The morphism Γf : X → X ×Z Y is the base change of ∆ : Y → Y ×Z Y by f × id : X ×Z Y → Y ×Z Y ,
and since Y is separated, ∆ is a closed immersion. Since closed immersions are stable under base change,
Γf is also a closed immersion, hence has P. Now g ◦ f : X → Z has P so the base change X ×Z Y → Y

by Y → Z also has P. But f factors as X
Γf−−→ X ×Z Y → Y and so is the composition of two morphisms

having P and therefore has P.
f) The morphism Xred → X is a closed immersion, hence has P. Then the composite Xred → X → Y has
P and factors as Xred → Yred → Y by 2.3 c). Since Yred → Y is separated (use the valuative criterion:
T = SpecR is reduced for any valuation ring R as valuation rings are domains, so the map SpecR → Y
factors uniquely as SpecR→ Yred → Y by 2.3) we conclude by e) that Xred → Yred has P.

2.5

5.1 a) Define a map ϕU : E(U) → ˇ̌
E(U) = Hom(H om(E,OX)

∣∣
U
,OX

∣∣
U

) by sending e ∈ E(U) to the
collection of maps {eV }V : Hom(E,OX)(U ∩ V ) → OX(U ∩ V ), with eV (σ) = σU∩V (e

∣∣
U∩V ), where σ :

E
∣∣
U∩V → OX

∣∣
U∩V . One checks that the stalk H om(E,OX)P is Hom(EP ,OX,P ) (because E is coherent;

see, for example, Serre, “Faisceux Algébraiques Cohérents.” In general, the canonical map Hom(E,OX)P →
Hom(EP ,OX,P ) is not an isomorphism.), and that the morphism we have defined induces the stalk morphism
EP → Hom(Hom(EP ,OX,P ),OX,P ) given by eP 7→ (σP 7→ σP (eP )). Since E is locally free of finite rank, the
stalk EP is free of finite rank, and the stalk map is the canonical isomorphism of a free module of finite rank
with its double dual. Since all of the induced stalk maps are isomorphisms, we have ˇ̌

E ' E.

16



b) Define ϕU : Hom(E
∣∣
U
,OX

∣∣
U

) ⊗ F(U) → Hom(E
∣∣
U
,F

∣∣
U

) by (ϕU (ψ ⊗ f))V (e) = ψV (e) · f
∣∣
V
∈ F(U ∩ V ),

where ψ = {ψV } and e ∈ E(U ∩ V ). We extend this definition linearly. Observe that the restriction maps
are compatible and that the ϕU glue to give ϕ, since they are all canonically defined. On stalks, ϕP is the
map Hom(EP ,OX,P ) ⊗ FP → Hom(EP ,FP ) given by ψ ⊗ f 7→ (e 7→ ψ(e) · n), which is an isomorphism of
OX,P -modules since EP is free (this is standard commutative algebra). Thus the map ϕ is an isomorphism.
c) Let ϕ : E ⊗ F → G and define F (ϕ) : F → H om(E,G) by F (ϕ)V (f) = {σW } where σW : E

∣∣
V

(W ) →
G
∣∣
V

(W ) is e 7→ ϕV ∩W (θ+(e⊗f
∣∣
W∩V )), with θ+ : E(U)⊗F(U)→ (E⊗F)(U) the sheafification map. It is easily

checked that F (ϕ) is a map of sheaves of modules, so F gives a map Hom(E⊗F,G)→ Hom(F,H om(E,G)).
We claim that F is injective. Indeed, if F (ϕ) = 0 then ϕV ∩W (θ+(e ⊗ f)) = 0 for all open V,W and
e ⊗ f ∈ E(V ∩W ) ⊗ F(V ∩W ), which implies that ϕ is the zero map. Moreover, F is surjective as given
ψ : F → H om(E,G) we define ϕU : E(U) ⊗ F(U) → G(U) by ϕU (e ⊗ f) = (ψU (f))U (e) ∈ G(U). It is
clear this defines morphism of sheaves (using the universal property of sheafification) E ⊗ F → G such that
F (ϕ) = ψ. Surjectivity follows.
d) Let’s try to be slick about this: We have the identification f∗F ⊗OY

E ' f∗F ⊗OY

ˇ̌
E by part a) and

f∗F ⊗OY

ˇ̌
E 'H omOY

(Ě, f∗F) by part b). Using the canonical isomorphism

HomOX
(f∗G,F) ' HomOY

(G, f∗F),

by patching together over opens we obtain an isomorphism of sheaves of OY -modules

H omOY
(G, f∗F) ' f∗H omOX

(f∗G,F).

Now let G = Ě and combine with the above to obtain

f∗F ⊗OY
E 'H omOY

(Ě, f∗F) ' f∗H omOX
(f∗(Ě),F) ' f∗(F ⊗OX

ˇf∗Ě),

where we have used b) again. Now we need only realize the isomorphism ˇf∗Ě ' f∗ ˇ̌E of sheaves on X and
use part a). Observe that the two duals on the LHS are different: the inner one is H om(•,OY ) while the
outer one is H om(•,OX).

5.2 a) As R is a dvr, there are two open sets: X and {0} = D(m) for any m ∈ P where P is the unique
nonzero prime ideal of R. As such, to give a sheaf of modules on X is to give a R-module M and a Rm = K-
module (vector space) L such that the restriction map M → L is compatible with the module structures
R→ EndM and K → EndL, i.e. such that we have a homomorphism of K-vector spaces M ⊗R K → L.

b) The sheaf given above is quasi-coherent iff, by 5.4, it is of the form M̃ , in which case we must have
Mm = M ⊗R K = L, with the map given above (coming from restriction) providing an isomorphism.

5.3 Let ϕ : M → Γ(X,F) be an A-module homomorphism and for any f ∈ A define ψD(f) : Mf → F(D(f))
by ψD(f)(m/fn) = (1/fn) ·ϕ(m)

∣∣
D(f)

. Observe this is well defined since F(D(f)) is an Af -module, and that

the ψD(f) patch together to give a morphism ψ : M̃ → F (as is easily checked by looking at the double-
overlap condition). Given ψ ∈ Hom(M̃,F) we define ϕ : M → Γ(X,F) by ϕ = ψX . It is clear that these two
constructions provide inverses to eachother, so provide the desired isomorphism.

5.4 If F is quasi-coherent, then every point x ∈ X has an affine nbd. SpecA = U with F
∣∣
U
' M̃ for some

A-module M . Then M has presentation AI → AJ → M ; applying ˜ and recalling that this is an exact
functor that commutes with arbitrary direct sum and that Ã = OX

∣∣
U

, we obtain the exact sequence of
sheaves of modules

(OX
∣∣
U

)I → (OX
∣∣
U

)J → F
∣∣
U
→ 0.

Observe that if F is coherent and X is noetherian, then A is a noetherian ring and M is a finitely generated—
hence finitely presented—module. We may therefore take the index sets I and J to be finite in this case.
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Conversely, suppose that F
∣∣
U

is the cokernel of the morphism

Ãn = (OX
∣∣
U

)I
ϕ−→ (OX

∣∣
U

)J .

Applying 5.3 to this morphism, we obtain an A module homomorphism ψ : AI → AJ with ψ̃ = ϕ. Thus,
letting M = cokerψ and applying ˜ to the exact sequence AI

ψ−→ AJ → M → 0, we obtain an exact
sequence of sheaves

(OX
∣∣
U

)I
ϕ−→ (OX

∣∣
U

)J → M̃ → 0.

Now use the snake lemma to obtain M̃ ' F
∣∣
U

. If I, J are finite index sets and A is noetherian, then M is
finitely generated and hence F

∣∣
U

is coherent.

5.5 a) Let X = Spec k[x, y] and Y = Spec k[x] with f : X → Y induced by the inclusion k[x] ↪→ k[x, y].
Then f∗OX is not a coherent OY -module. Indeed, k[x, y] is not a finitely generated k[x]-module; now use
Prop. 5.4.
b) Let f : X → Y be a closed immersion, and U = SpecA an affine subset of Y , and V = f−1(U).
Then f(V ) = U ∩ f(X) is a closed subset of U since f(X) is closed in Y , so by Corollary 5.10 we have
f(V ) ' SpecA/I for some ideal I of A. Since f : V → f(V ) is a homeomorphism, we conclude that
V = SpecB is affine and since f# is surjective, that A/I → B is surjective. Hence A→ B is surjective and
B is a finite A-module (generated by 1); thus f is finite.
c) Let f : X → Y be finite and F a coherent sheaf on X. By Prop. 5.4, f∗F is coherent on Y iff for any affine
U = SpecA, the restricted sheaf f∗F

∣∣
U

is M̃ for some finite A-module M . Since f is finite, f−1(U) = SpecB
with B a finite A-module, and since F is coherent, we have F

∣∣
f−1(U)

' M̃ for some finite B-module M . Prop

5.2 (d) says that f∗F
∣∣
U
' (̃AM). Since B is a finite A-module and M is a finite B-module, M is a finite

A-module and hence f∗F is coherent.

5.6 a) By definition, Suppm = {x ∈ SpecA : mx 6= 0} = {p ⊆ A : mp 6= 0}. But mp = 0 iff there exists
f 6∈ p with fm = 0, that is, iff Annm ( p. Hence Suppm = V (Annm).
b) Recall SuppF = {x ∈ X : Fx 6= 0} = ∪m∈MV (Annm) by part a). Since M is finitely generated, say by
m1, . . . ,mn, we have ∪m∈MV (Annm) = ∪ni=1V (Annmi) = V (∩ni=1 Annmi) = V (AnnM). (where did I use
the hypothesis that A is noetherian?
c) Let U = SpecA be any open affine subset of X. By Prop. 5.4, we have F

∣∣
U

= M̃ with M a finitely
generated A-module. By part b), SuppF∩U = SuppF

∣∣
U

= V (AnnM) is closed in U . It follows that SuppF

is closed (take Ui a finite affine cover of X since X is noetherian; then SuppF = ∪SuppF ∩ Ui is closed).
Perhaps this only shows locally closed?
d) By 1.20, we have the exact sequence of sheaves on X

0→H 0
Z (F)→ F → j∗(F

∣∣
U

),

where j∗ : U = X − Z → X is the inclusion. By Prop. 5.8, j∗(F
∣∣
U

) is quasi-coherent since X is noetherian.
By Prop. 5.7, H 0

Z is quasi-coherent since it is the kernel of a morphism of quasi-coherent sheaves. Now

ΓZ(F) = {m ∈M : Suppm ⊆ V (a)} = {m ∈M : V (Annm) ⊆ V (a)}
= {m ∈M : a ⊆ Rad(Annm)} = {m ∈M : anm = 0 for some n}

since A is noetherian, and hence a is finitely generated. Thus, ΓZ(F) = Γa(M). But since H 0
Z (F) is

quasi-coherent and ΓZ(F) ' Γa(M), Cor. 5.5 allows us to conclude that H 0
Z (F) ' Γ̃a(M).

e) Let U = SpecA be any affine. Then Z ∩ U is closed in U so is isomorphic to SpecA/a for some ideal a

(by Cor. 5.10), i.e. Z ∩ U = V (a). If F is quasi-coherent, we have F
∣∣
U
' M̃ by Prop. 5.4, and by part d)

we have H 0
Z (F)

∣∣
U
' Γ̃a(M). It follows that H 0

Z (F) is quasi-coherent. If F is coherent, then M is a finitely
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generated A module, so Γa(M) is a finitely generated A-module since A is noetherian so it is a submodule
of a noetherian module.

5.7 a) Let U = SpecA be a nbd. of x with F|U ' M̃ , with M a finite A-module, generated by m1, . . . ,mn.
Then the images of mi in Fx generate Fx 'Mx as an Ax-module. Renumbering if necessary, we may assume
that (the images of) m1, . . . ,mv generate Fx freely, and we replace M by the submodule generated by the
mi. Because X is noetherian, A is noetherian and M is finitely presented, so let nj for 1 ≤ j ≤ m be a basis
for the module of relations. Since the images of mi in Fx generate freely, the image of each ni in Fx is zero,
so there is an open set Vi such that ni

∣∣
Vi

= 0 for each i. Let V = ∩Vi; since there are finitely many ni, V
is a nbd of x which we may take to be a basic affine open contained inside U . Then F

∣∣
V

is generated freely
by the global sections mi.
b) One direction is obvious, and the converse is part a).
c) Suppose first that F is locally free of rank 1. Then by 5.1 b) we have F ⊗OX

F̌ ' H omOX
(F,F). We

define an isomorphism H omOX
(F,F) ' OX as follows: cover X by open affines Ui with F

∣∣
Ui
' OX so

H omOX
(F,F)(Ui) = HomOX

(OX
∣∣
Ui
,OX

∣∣
Ui

), and we let ϕUi(ψ) = ψUi(1) with ψ : OX
∣∣
Ui
→ OX

∣∣
Ui

. This
gives a map H omOX

(F,F) → OX that is an isomorphism on each Ui, hence an isomorphism and F is
invertible. One easily checks that F̌ is coherent by looking locally and translating it into a question about
modules.

Conversely, suppose there exists G such that F⊗OX
G ' OX . Then (F⊗OX

G)x = Fx⊗OX,x
Gx ' OX,x for

all x ∈ X, so by part b) it is enough to show that if M,N are A-modules with (A,m, k) a local ring (here I am
using that F,G are coherent) and M ⊗A N ' A then M ' A and N ' A. Indeed, we have an isomorphism
(this is tricky commutative algebra) M/mM ⊗k N/nM ' (M ⊗A ⊗N)⊗A k ' k, so M/mM (and N/mN)
has rank 1; by Nakayama’s lemma, M is a rank 1 A-module. Let a ∈ AnnM . Then a annihilates A since
M ⊗A N ' A, and in particular, a · 1 = 0 so a = 0 and M is free of rank 1.

5.8 a) We show the complement is open. Let x ∈ X satisfy ϕ(x) = k < n and choose a nbd. U = SpecA of
x with F

∣∣
U
' M̃ with M a finitely generated A-module, generated by m1, . . . ,mr. Since Fx ⊗OX,x

k(x) '
Mp/pMp where p ∈ SpecA corresponds to x ∈ X, we may take ui ∈ M for 1 ≤ i ≤ k with images a
generating set of Mp/pMp as a k(x) vector-space. NAK implies that the images of the ui generate MP as
an Ap-module. Writing mj =

∑
aij/fijui for each j (inside Mp) and f =

∏
i,j fij , we see that p ∈ D(f) and

if q ∈ D(f) then mj ∈ Mq can be written as an Aq-linear combination of the (images of) ui. Since the mj

generate M as an A-module, their images generate Mq as an Aq-module, so the images of ui for 1 ≤ i ≤ k
generate Mq as an Aq module whence ϕ(q) ≤ k < n. Observe that by taking n = k we have shown that the
sets {x : ϕ(x) < n} and {x : ϕ(x) ≤ n} are open (which follows anyway from the fact that Z is discrete).
b) If F is locally free, then U = ϕ−1(n) = {x : ϕ(x) = n} is open. Indeed, let x ∈ U . By 5.7 a), there is a
nbd V of X with F

∣∣
V

free, necessarily of rank n, so for every y ∈ V we have ϕ(y) = n so U is open. Since
ϕ(x) ≥ 0, we may find x ∈ X with ϕ(x) = n ≥ 0 minimal. Then {x : ϕ(x) > n} = ∪k>nϕ−1(k) is open
by the above and closed by part a). and since X is connected it is either empty or all of X. The latter
possibility is ruled out since we have one point x with ϕ(x) = n. Thus ϕ(y) ≤ n for all y ∈ X, and since n
was chosen minimally, we conclude that ϕ(y) = n for all y ∈ X.
c) Let U = SpecA be a nbd. of x ∈ X with ϕ(x) = n and F

∣∣
U

= M̃ . By 5.7 b) it will suffice to show
that Mp is a free Ap-module for all p. Pick m1, . . . ,mn ∈ M whose images are a basis of Mp/pMp as an
Ap/p-vector space. By NAK, m1, . . . ,mn generate Mp as an Ap-module, and thus also generate Mq as an
Aq-module for any q ⊆ p; since ϕ(q) = ϕ(p), we must have that the images of m1, . . . ,mn in Mq/qMq are
linearly independent over Aq/q for all q ⊆ p. Thus, if

∑
aimi = 0 is any relation with ai ∈ Ap, then we have

ai = 0 in Aq/q for all q ⊆ p, or what is the same thing, that ai ∈ ∩q⊆pq. But as X is reduced, Ap is reduced,
so ∩q⊆pq = 0 so ai = 0 and the mi are linearly independent over Ap so Mp is a free Ap-module.

5.10 a) Let s =
∑
fj be in I with fj ∈ Sj . Then xni s =

∑
xni fj ∈ I so since I is homogeneous, xni fj ∈ I

for all i, j and hence I is homogeneous.
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b) Two ideals I, J define the same closed subscheme iff Ĩ = J̃ , as subsheaves of OX . That is, iff I(xi) =
Ĩ(D+(xi)) = J̃(D+(xi)) = J(xi). Now I(xi) = J(xi) for all i iff for any s ∈ I, there exists an integer m (which
we can take to be positive) such that xmi s ∈ J , that is, s ∈ J . Indeed, s ∈ I iff. xni s ∈ I for some n and all
i iff s ∈ Ixi for all i. This is the case iff there exists m ∈ Z such that xmi s ∈ I(xi). Thus, I(xi) = J(xi) iff
xki s ∈ J for some k > 0, i.e. iff s ∈ J . Interchanging the roles of I, J gives the desired result.
c) Observe that

Γ(X,IY (n)) = {s ∈ Γ(X,OX(n)) = Sn : sp = 0 for all p ∈ Y }.

Thus, if s ∈ Γ∗(IY ) then there exists m > 0 with (xmi s)p = 0 in Sp for all p ∈ Y , or ehat is the same thing,
there exists fi ∈ S − p with fixmi s = 0 in S. Since xi generate S+, given any p ∈ Y , we can find i such that
xi 6∈ p and hence fixmi ∈ S − p, whence sp = 0 so s ∈ Γ∗(IY ).
d) This follows immediately from a)–c).

5.11 We assume S, T are generated by S1, T1 over A. Let S1 be generated by s1, . . . , sa over A and T1 by
t1, . . . , tb over A. We claim there is an isomorphism of rings (not a graded isomorphism)

S(si) ⊗A T(tj) ' (⊕d≥0Sd ⊗ Td)si⊗tj .

Indeed, S(si) ⊗A T(tj) = ⊕m,n(Sm)(si) ⊗ (Tn)(tj) and (⊕d≥0Sd ⊗ Td)si⊗tj = ⊕d≥0(Sd)(si) ⊗ (Td)(tj), and the
map (Sm)(si) ⊗ (Tn)(tj) → (Sn)(si) ⊗ (Tn)(tj) is defined (say for n ≥ m) by

s

smi
⊗ t

tnj
7→ s · sn−mi

sni
⊗ t

tnj

on simple tensors and extended by A-linearity. This gives the claimed isomorphism since the two sides of
the map are already equal inside S(si) ⊗ T(tj). We thus have an isomorphism of affine schemes

D+(si)×A D+(tj) ' Spec(S(si) ⊗ T(tj))
∼←− Spec((S ×A T )si⊗tj ) ' D+(si ⊗ tj),

and these glue in the evident manner to give an isomorphism Proj(S ×A T )→ ProjS ×A ProjT .

5.15 a) By Prop 5.4, any quasi-coherent F has the form F = M̃ for some A-module M (with SpecA = X
and A noetherian). Then the natural map lim−→α

Mα → M is an isomorphism, where {Mα}α are the finitely

generated submodules of M . Since the ˜ operation commutes with direct limit (because tensor product
does) and is exact, we see that the natural map lim−→ M̃α → M̃ is an isomorphism.
b) The sheaf i∗F is q-coh. by 5.8 c) since X is noetherian, so part a) applies. We claim that there is a
coherent subsheaf Fα of i∗F with Fa

∣∣
U

= F. Indeed, the sheaves Fα
∣∣
U

are all subsheaves of the coherent sheaf
F, so any chain of these sheaves is bounded above (by a coherent sheaf!). Zorn’s lemma yields a maximal
subsheaf Fa

∣∣
U
⊆ F and we claim equality holds. If not, there is some point P with (Fa)P 6= FP and hence

an open set V contained in U with Fa(V ) ( F(V ), and we can take V small enough so that F
∣∣ = M̃ and

Fa
∣∣
V

= Ñ with N ( M and N,M f.g. O(V )-modules. Pick m ∈ M \ N and let N ′ be the O(V )-module
generated by m,N . Then Ñ ′ is a coherent subsheaf of F strictly containing Fa as a subsheaf, contradicting
the maximality of Fa.
c)

2.7

7.1 Passing to stalks, we are reduced to the following: if ϕ : M → N is a surjective map of free A-modules
of rank 1 (with (A,m, k) local) then it is an isomorphism. By tensoring M → N → 0 with k, we see that
ϕ⊗1 is a surjective map of k vector spaces of the same dimension, hence an isomorphism. Thus, if x ∈ kerϕ
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then x ⊗ 1 = 0, or what is the same, x ∈ Mtors. But since M is free, we conclude that kerϕ = 0 so ϕ is
an isomorphism. By identifying M,N with A (thought of as an A-module) One could also use a different
result (cf. Matsumura, Th. 2.4) which states that for any ring A and any finite A-module M , any surjective
f : M →M is an isomorphism.

7.2
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Chapter 3

3.2

2.3 a) Let 0 → F′ → F → F′′ → 0 be exact. We know that 0 → Γ(X,F′) → Γ(X,F) → Γ(X,F′′) is
exact, so it follows that ΓY (X,F′) ↪→ Γ(X,F). The image is contained in the subgroup ΓY (X,F) because
the sequence on stalks 0 → F′P → FP → F′′P is exact for all P , so s ∈ ΓY (X,F′) has nonzero stalk at
P iff its image in Γ(X,F) has nonzero stalk at P . For this reason, the map Γ(X,F) → Γ(X,F′′) induces
ΓY (X,F)→ ΓY (X,F′′). Now it is clear that the map ΓY (X,F′)→ ΓY (X,F)→ ΓY (X,F′′) is the zero map
as it is induced by the map of usual global sections. It therefore remains to show that is s ∈ ΓY (X,F) maps
to 0 in ΓY (X,F′′) then it is in ΓY (X,F′). We know that it is in the image of Γ(X,F′), and checking the
sequence on stalks shows that it is in ΓY (X,F′) as required.
b)

3.3

3.1 If X = SpecA then Xred = SpecA/N is affine, where N is the nilradical. Conversely, suppose that Xred

is affine, and let N be the sheaf of nilpotents on X and F any quasi-coherent sheaf on X. Then for any j
we have an exact sequence

0→ N j+1 · F → N j · F → N j · F/N j+1 · F → 0.

Observe that N j · F/N j+1 · F is a q-coh. sheaf of OX/N -modules, i.e. a q-coh sheaf of modules on Xred.
Using Serre’s criterion, we may suppose that Hi(X,N j · F/N j+1 · F) = 0 for all i ≥ 1, and the long exact
sequence of cohomology associated to the short exact sequence above yields an isomorphism Hi(X,N j ·F) '
Hi(X,N j+1 ·F) for all j ≥ 0 and all i ≥ 2, and a surjection H1(X,N j+1 ·F)→ H1(X,N j ·F). Since X is

noetherian, we may cover it by finitely many affines SpecAi with Ai noetherian and N j
∣∣
SpecAi

= Ñ j
i with

Ni the module of nilpotents on Ai. By the Noetherian hypothesis, we can find ji such that N ji
i = 0 for each

i and choosing j = maxi ji, we find that N j is the zero sheaf on X and hence all the cohomology vanishes.
Thus, using the isomorphisms above and our surjection on H1’s, we conclude that Hi(X,F) = 0 for all i > 0
and any q-coh. F, and hence that X is affine,

3.2 Since X is noetherian, there are finitely many irreducible components, say Yi for q ≤ i ≤ n. Let Ii be
the ideal sheaf definining Yi and filter a q-coh sheaf F on X as

F ⊃ I1 · F ⊃ I1I2 · F ⊃ · · · ⊃ I1I2 · · ·In · F.

Breaking into short exact sequences

0→ I1 · · ·Ik · F → I1 · · ·Ik−1 · F → I1 · · ·Ik−1 · F/I1 · · ·Ik · F → 0,

22



and the quotient sheaf I1 · · ·Ik−1 · F/I1 · · ·Ik · F is a q-coh. sheaf of OX/Ik-modules, i.e. a q-coh sheaf
on Yk. The long exact cohomology sequences and the assumption that all the irreducible components are
affine yields isomorphisms

Hi(X,F) ' Hi(X,I1 · · ·In · F)

for all i > 1 and a surjection H1(X,I1 · · ·In · F) � H1(X,F). However, I1 · · ·In is the zero sheaf on X
because its support consists of those points P ∈ X not contained in any irreducible component. We conclude
by Serre’s criterion that X is affine. The converse follows from the fact that a closed subscheme of an affine
scheme is affine.

3.3 a) Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of A-modules. Since Γa(M ′) is a submodule of
M ′, we have Γa(M ′) ↪→ Γa(M). Moreover, since φ : M ′ → M is a homomorphism of A-modules, we have
φ(anm′) = anφ(m′) so if m′ ∈ Γa(M ′) then φ(m′) ∈ Γa(M). For the same reason, the image of Γa(M)
under M → M ′′ is contained in Γa(M ′′), and since M ′ → M → M ′′ is the zero map, its restriction to
Γa(M ′)→ Γa(M ′′) is zero. It remains to show that if m ∈ Γa(M) maps to zero in Γa(M ′′) then it is in the
image of Γa(M ′) → Γa(M). But if m 7→ 0 then there is m′ ∈ M ′ with φ(m′) = m. But then for some n,
φ(anm′) = anm = 0 and since φ is injective, we conclude that m′ ∈ Γa(M ′).
b) Let 0 → M → I · be an injective resolution of M . Then 0 → M̃ → Ĩ · is a flasque resolution of M̃ , so it
will suffice to show that Γa(M) ' ΓY (SpecA, M̃) for any A-module M . Let f1, . . . , fs generate a so X − Y
is covered by D(fi). Then an element m ∈ ΓY (SpecA, M̃) is just an element m ∈M such that mP = 0 for
all P 6∈ Y . Equivalently, we must have m 7→ 0 in Mfi for all i since the D(fi) cover X − Y . Thus, there
is some n such that fni m = 0 for all i and hence m ∈ Γa(M). In the reverse direction, if m ∈ Γa(M) then
m ∈ Γ(SpecA, M̃) and m 7→ 0 in Mfi so m ∈ ΓY (SpecA, M̃).
c) It suffices to show that c ∈ Hi

a(M) is killed by an for some n. But Hi
a(M) is a quotient of a submodule of

Γa(I) for some I, so pick m ∈ Γa(I) lifting c. Then by definition, there exists n with anm = 0 so the same
is true of c.

3.7 a) Pick generators f1, . . . , fs of a and observe that U = ∪D(fi). Define

HomA(an,M)→ Γ(U, M̃) = {(αi) ∈
∏

Mfi
: αi = αj ∈Mfifj

}

by ϕ 7→
(ϕ(fn

i )
fn

i

)s
i=1

.

In the reverse direction, suppose that
(
mi

f
ni
i

)s
i=1
∈ Γ(U, M̃). Let m = maxni and define ϕ ∈ Hom(an,M)

for any n ≥ ms as follows: let f j11 · · · f jss ∈ an and let i0 be the index for which ji0 is maximal, so ji0 ≥ m.
Then define (to start off with)

ψ(f j11 · · · f jss ) = f j11 · · · f̂
ji0
i0
· · · f jss · f

ji0−ni0
i0

mi0 .

The problem is that this may not be well defined. However, observe that since mif
nj

j −mjf
ni
i is killed by a

power of fifj (cf. II,5.14), there is some large N such that φ := (f1 · · · fs)Nψ is well defined.
It is not hard to check that this is well defined (using the compatibility properties of the local sections

mi/f
n1
i ) and inverse to the map defined above, so we have the claimed isomorphism.

b) When M is injective, any section s ∈ Γ(U, M̃) gives a homomorphism an →M for some n, which extends
to a morphism A → M as M is injective and gives a section s̃ ∈ Γ(X, M̃) restricting to s. In other words,
Γ(X, M̃)→ Γ(U, M̃) is surjective and M̃ is flasque.

3.4

4.1 By II, 5.8, f∗F is a quasi-coherent sheaf on Y . Let U be an affine covering of Y . Then since f is affine,
f−1U is an affine covering of X, so by Theorem 4.5, we have natural isomorphisms Ĥp(f−1U,F) ' Hp(X,F)
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and Ĥp(U, f∗F) ' Hp(Y, f∗F) for all p ≥ 0. But the Cech complexes for Ĥp(f−1U,F) and Ĥp(U, f∗F) are,
respectively, ∏

i0<···<ip

F(f∗Ui0...ip),
∏

i0<···<ip

F(f−1Ui0...ip),

where

f∗Ui0...ip :=
p⋂
j=0

f−1Uij = f−1Ui0...ip ,

so the Cech complexes are isomorphic, whence the cohomology groups are isomorphic.

4.2 a) We show that M = OX fits the bill. Indeed, let SpecA 3 y be an open affine nbd of y ∈ Y , where y
is the generic point. Then SpecB = f−1(SpecA) is an open affine nbd of the generic point x ∈ X, since f is
finite, hence affine. Moreover, as f is finite, A→ B makes B a finite A-module. Since X is affine, the open
sets Xg for g ∈ Γ(X,OX) form a basis of opens of X, so let g ∈ Γ(X,OX) be such that x ∈ Xg ⊆ SpecB.
Put K = FracB and k = FracA (X,Y are assumed integral!). Then since B is A-finite, it follows that
K/k is finite, and we may pick a basis si, . . . , sm ∈ B for K/k. Now si

∣∣
Xg
∈ Γ(Xg,OX), so by II, Lemma

5.3 (b) there exists some n > 0 such that xi := gnsi
∣∣
Xg

is a global section of OX , and hence an element of
Γ(Y, f∗OX). The xi then give a morphism OmY → f∗OX defined by (ti) 7→

∑
xiti. This is an isomorphism at

the generic point of Y since the map km → K defined by (ti) 7→
∑
tisi is an isomorphism.

b) Now let F be any coherent sheaf on Y and apply H om(·,F) to OmY → f∗OX to get a map β :
H om(f∗OX ,F)→H om(OmY ,F). Observe that H om(f∗OX ,F) is both a OY -module, and a f∗OX -module
(via inner composition), so Ex. 5.17 (e) gives a coherent sheaf G on X with f∗G ' H om(f∗OX ,F). The
map β : f∗G→ Fm is an isomorphism at y since α is.
c) Since f is finite, f∗G is coherent by Ex. 5.5, so kerβ and cokerβ are coherent by Prop. 5.7. It follows
that Y1 := Supp kerβ and Y2 := Supp cokerβ are closed (let F be any coherent sheaf and suppose FP = 0.
Pick an affine nbd SpecA of P with F

∣∣
SpecA

= M̃ and let M be generated by m1, . . . ,mr over A. Then
(mi)P = 0 so we have opens Ui with mi

∣∣
Ui

= 0. Then V = U ∩ U1 ∩ · · · ∩ Ur is an open nbd of P with
F

∣∣
V

= 0). Moreover, since β is an isomorphism at y, we have y 6∈ Yi for i = 1, 2. As f−1(Yi) is closed and
X is affine, it is affine, and f : f−1(Yi) → Yi is then a finite morphism of integral noetherian schemes, so
we assume (using Noetherian induction) that this implies that Y1, Y2 are affine, and we must show that Y
is affine. Let ji : Yi → Y be the inclusion. Then since Supp kerβ = Y1 we have (j1)∗(j1)∗ kerβ = kerβ and
similarly for cokerβ; we may then apply Lemma 2.10 to conclude that

Hp(Y, kerβ) = Hp(Y1, (j1)∗ kerβ) = 0

since (ji)∗ kerβ is coherent (Prop. 5.8) and Y1 is affine by hypothesis (using Serre’s criterion Thm. 3.7).
Similarly, Hp(Y, cokerβ) = 0. But we have the exact sequence

0→ kerβ → f∗G→ Fm → cokerβ → 0

which gives two short exact sequences

0→ kerβ → f∗G→ imβ → 0

and
0→ imβ → Fm → cokerβ → 0.

Taking cohomology and using the fact that Hp(Y, kerβ) = Hp(Y, cokerβ) = 0 for all p > 0 (by Noetherian
induction hypothesis) yields an isomorphism

Hp(Y, f∗G) ' Hp(Y,Fm) = Hp(Y,F)m.
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By Ex. 4.1, using the fact that f is affine, we have Hp(X,G) = Hp(Y, f∗G). Finally, applying Serre’s criterion
and the hypothesis that X is affine yields Hp(Y,F) = 0. Since F was arbitrary, we again apply Serre’s crit.
to conclude that Y is affine. By Noetherian induction, we are done in the case that X, Y are integral. Ex.
3.1 and 3.2 allow us to immediately reduce to this case.

4.3 We cover U by the open affines D(x) = Spec k[x, 1/x, y] and D(y) = k[y, 1/y, x]. We have seen that
Γ(U,OX) = k[x, y, 1/x, 1/y]. Thus, we have the Cech complex

k[x, 1/x, y]⊕ k[y, 1/y, x] d:(f,g) 7→f−g−−−−−−−−→ k[x, y, 1/x, 1/y]→ 0,

so Ĥ1(U,OX) = k[x, y, 1/x, 1/y]/im d. But the image of d is just k[x, y], so Ĥ1 is the k-vector space spanned
by {xiyj : i, j < 0}, and in particular is infinite-dimensional, so by Serre’s criterion, we see that U is not
affine.

4.5 We prove that PicX ' lim−→U
Ĥ1(U,O×X). Indeed, let F be an invertible sheaf, and let U be any cover

consisting of affines Ui with φi : OUi

∼−→ F
∣∣
Ui

. Then φ−1
i ◦φj : OUi∩Uj

∼−→ OUi∩Uj
is an isomorphism, so gives

an element sij ∈ O(Ui ∩ Uj)×. Moreover, we have sjk · s−1
ik · sij = 1 since it comes from the isomorphism

φ−1
j φk ◦ φ−1

k φi ◦ φ−1
i φj = id, so we obtain an element of ker

(
O×X(Ui ∩ Uj)→ O×X(Ui ∩ Uj ∩ Uk)

)
, i.e. of

lim−→U
Ĥ1(U,O×X) (observe from that once the isomorphisms φi have been fixed, the element of Ĥ1 defined

behaves well under refinement of open covers). The map PicX → Ĥ1(U,O×X) thus defined is surjective, as
given any cocycle representing an element of Ĥ1, we obtain an invertible sheaf (by using the cocycle to glue
together the sheaves OUi

just as above) that maps to it. The map is injective because if the cohomology
class obtained is zero, then the isomorphisms φi : OUi

∼−→ F
∣∣
Ui

are multiplication by elements si ∈ O×Ui
, so

in fact F ' OX as an OX -module. Using the isomorphism Ĥ1(U,O×X) ' H1(X,O×X) of Ex. 4.4 completes
the proof.

4.7 We have
OX(V ) = k[x0/x2, x1/x2]/(f(x0/x2, x1/x2, 1)) = k[u, v]/(f(u, v, 1))

and
OX(U) = k[x0/x1, x2/x1]/(f(x0/x1, 1, x2/x1)) = k[u/v, 1/v]/(f(u/v, 1, 1/v))

and OX(U ∩ V ) = k[u, v, 1/v]/(f(u, v, 1)). Thus, the image OX(U) ⊕ OX(V ) → OX(U ∩ V ) consists of all
pairs (α, β) ∈ k[u, v]⊕k[u/v, 1/v] modulo f(u, v, 1) that are equal. Hence the image is spanned by uivj with
i ≥ 0, j ∈ Z and −j ≥ i if j < 0 (otherwise no restriction) , so H1 as a k-vector space is spanned by the
monomials uivj with 0 < −j < i. The relation f(u, v, 1) = 1 gives a linear dependence on ud in terms of
such monomials, so a basis for H1 is {ui/vj : 0 < j < i < d}. Thus, dimkH

1 = (d − 1)(d − 2)/2. Now H0

consists of those (α, β) ∈ k[u, v]⊕k[u/v, 1/v] that are equal modulo f(u, v, 1). By considering denominators,
we see that this consists of the constants k, so dimkH

0 = 1.

4.11 The proof is almost identical to that of 4.5. We have Ĥ0(U,F) = Γ(X,F) for any open covering F as
the proof of 4.1 clearly shows. In general, imbed F in a flasque, q-coh sheaf G and let R be the quotient.
Because the intersections Ui0...ip have no nontrivial cohomology (for the sheaf F), we have exact sequences

0→ F(Ui0...ip)→ G(Ui0...ip)→ R(Ui0...ip)→ 0.

The proof now follows that of 4.5 verbatim.
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3.5

5.1 Observe first that the definition of χ makes sense by Theorem 5.2. The short exact sequence 0→ F′ →
F → F′′ → 0 gives a long exact sequence of k-vector spaces:

0→ H0(X,F′)→ · · · → Hi(X,F)→ Hi(X,F′′)→ Hi+1(X,F′)→ · · · ,

and this leads to the formula required formula.

5.7 We use Prop. 5.3.
a) By II, Cor. 4.8, the closed immersion i is proper, so by Caution 5.8.1, for any coherent sheaf F on Y ,
the sheaf i∗F is coherent on X. Thus let L be ample on X. Then then for every coherent F on Y , i∗F is
coherent on X, so by 5.3 there exists n0 s.t. for all i > 0 and all n > n0 we have Hi(X, i∗F ⊗L n) = 0.
There is a natural surjective map i∗F ⊗ L n → i∗(F ⊗ i∗L ) by II, Ex. 1.19, and thus a surjective map
Hi(X, i∗F ⊗L n) → Hi(X, i∗(F ⊗ i∗L n)) = Hi(Y,F ⊗ i∗L n) by III, Lemma 2.10. We thus conclude that
Hi(Y,F ⊗ i∗L n) = 0 for all i > 0 and all n > n0, so by applying 5.3 again, we see that i∗L is ample on Y .
b) Let F be a coherent sheaf on X and consider the filtration from III, Ex. 3.1. We thus obtain exact
sequences

0→ N i+1F ⊗L n → N iF ⊗L n → N iF/N i+1F ⊗L n → .

Taking cohomology and using the isomorphism

N iF/N i+1F ⊗OX
L n ' N iF/N i+1F ⊗OXred

(OXred ⊗L )n,

we see by 5.3 that if L ⊗ OXred is ample on Xred then for any i > 1 and any coherent F on X there exists
n0 such that for all n > n0 and all j ≥ 1 we have isomorphisms Hi(X,F ⊗ L n) ' Hi(X,N jF ⊗ L n).
Taking j large enough so N j is the zero sheaf and considering the surjective maps H1(X,N jF ⊗L n) '
H1(X,F ⊗L n), we conclude (again by 5.3) that L is ample on X. For the converse, we observe that the
natural map i : Xred → X is a closed immersion, with i∗L = L ⊗OXred . Thus, part a) yields the converse.
c) As in b), part a) yields one direction (Xi → X is a closed immersion). For the other direction, we let F

be a coherent sheaf on X and filter F as in Ex. 3.2, so as to obtain exact sequences

0→ I1 · · ·Ik · F ⊗L n → I1 · · ·Ik−1 · F ⊗L n → I1 · · ·Ik−1 · F/I1 · · ·Ik · F ⊗L n → 0,

with Ii the ideal sheaf of Xi. Now

I1 · · ·Ik−1 · F/I1 · · ·Ik · F ⊗OX
L n ' I1 · · ·Ik−1 · F/I1 · · ·Ik · F ⊗OXk

(OXk
⊗OX

L )n

since I1 · · ·Ik−1 ·F/I1 · · ·Ik ·F is a sheaf of OX/Ik = OXk
-modules. The long exact cohomology sequences

and the hypothesis that L ⊗OX
OXi is ample on Xi yields, via 5.3, an n0 such that for all i > 0 and all

n > n0 there are isomorphisms

Hi(X,F ⊗L n) ' Hi(X,I1 · · ·In · F ⊗L n)

for all i > 1 and a surjection H1(X,I1 · · ·In · F ⊗L n) � H1(X,F ⊗L n). However, I1 · · ·In is the zero
sheaf on X as we saw in Ex. 3.2, so we conclude that Hi(X,F ⊗L n) = 0 for all i > 0 and all n > n0, so
that L is ample by 5.3.
d) Parts b) and c) allow us at once to reduce to the case of X and Y integral. Let F be any coherent sheaf
on Y . Then we have seen in the proof of Ex. 4.2 that there is a sheaf G on X and a morphism β : f∗G→ Fr

that is an isomorphism at the generic point of Y . Proceeding as in Ex. 4.2 by Noetherian induction and
using the long exact cohomology sequences associated to

0→ kerβ ⊗L nr → f∗G⊗L nr → imβ ⊗L nr → 0
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and
0→ imβ ⊗L nr → (F ⊗L n)r → cokerβ ⊗L nr → 0

we conclude that Hi(Y, (F ⊗L n)r) ' Hi(Y, f∗G⊗L nr). Now the natural map L → f∗f
∗L yields a map

Hi(Y, f∗G⊗L nr)→ Hi(Y, f∗(G⊗ (f∗L )nr)),

and by Ex. 4.1, we have
Hi(Y, f∗(G⊗ (f∗L )nr)) = Hi(X,G⊗ (f∗L )nr).

HMMMMMMMMMMM????

5.10 Let OX(1) be a very ample invertible sheaf on X. Then we have short exact sequences

0→ Fi/ kerαi ⊗ OX(n) αi−→ Fi+1(n)
αi+1−−−→ imαi+1 ⊗ OX(n)→ 0

and
0→ imαi ⊗ OX(n)→ Fi+1(n)→ cokerαi ⊗ OX(n)→ 0

for all i ≥ 1 and all n > 0. Exactness implies that cokerαi = Fi+1/imαi = Fi+1/ kerαi+1. Since the Fi are
coherent, all the sheaves in the exact sequences above are coherent. Now use 5.3 to find ni such that for all
n > ni and all j we have

Hi(imαi ⊗ OX(n)) = Fi/ kerαi ⊗ OX(n) = 0

and let N = maxi ni. Then for all n > N we have exact sequences (from the long exact sequences of
cohomology and the fact that we have forced all the H1’s to vanish)

0→ Γ(X,Fi/ kerαi ⊗ OX(n))→ Γ(X,Fi+1(n))→ Γ(X, imαi+1 ⊗ OX(n))→ 0

and
0→ Γ(X, imαi ⊗ OX(n))→ Γ(X,Fi+1(n))→ Γ(X, cokerαi ⊗ OX(n))→ 0.

Using the fact that cokerαi = Fi+1/imαi = Fi+1/ kerαi+1 as noted above and splicing these exact sequences
back together shows that for all n > N we have an exact sequence

Γ(X,F1(n))→ Γ(X,F2(n))→ . . .→ Γ(X,Fr(n)),

as desired.
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Chapter 4

4.1

1.1 Consider the divisor nP for a positive integer n. We have

l(nP )− l(K − nP ) = n+ 1− g,

so choosing n > g and observing that l(K − nP ) ≥ 0, we conclude that l(nP ) > 1, which is to say that
dimkH

0(X,L (nP )) = dimk Γ(X,L (nP )) > 1, so there is a nonconstant rational function f ∈ L (nP ).
Then f is regular everywhere but P , where it must have a pole.

1.2 We first claim that there is a function fi with a pole at Pi and nonvanishing at Pj for all j. Indeed,
choose n sufficiently large so

l(nPi −
∑
j 6=i

Pj) = n+ 1− g − (r − 1)

and
l(nPi −

∑
j 6=i,k

Pj) = n+ 1− g − (r − 1) + 1.

Since we have the obvious containment

H0(X,L (nPi −
∑
j 6=i

Pj)) ⊆ H0(X,L (nPi −
∑
j 6=i,k

Pj)),

dimension considerations show that there is a function gi,k with a pole at Pi and vanishing at Pj for j 6= k,
but nonvanishing for j = k. Then the function fi :=

∑
k gi,k has a pole at Pi and f(Pj) = gi,j(Pj) 6= 0. We

now let F =
∏
i fi. Then F has a pole at Pi for all i because there can be no cancellation by our construction.

1.3 The hypotheses allow us to embed X in a proper curve X̃ and we let S = X̃ \X = {P1, . . . , Pr} (as it
is a closed subset and nonempty since X is not proper). By 1.2, we have a function f with poles at Pi and
regular elsewhere, so f : X̃ → P1 satisfies f−1(A1) = X. By II 6.8, as f is nonconstant and X̃ is proper, we
conclude that f is a finite morphism, and in particular affine. Hence f−1(A1) = X is affine.

1.4 Let X be a separated one-dimensional scheme over k none of whose irreducible components are proper.
By III Ex. 3.1 we know that X is affine iff Xred is affine, so we may assume X reduced. Similarly, III Ex.
3.2 allows us to suppose that X is irreducible, hence integral. Now let f : X̃ → X be the normalization. It
is a finite surjective morphism with X̃ an integral, normal, separated, one-dimensional scheme over k, hence
by I 6.2A it is regular also. If X is not proper, neither is X̃, as the image of a proper scheme under a finite
morphism is again proper by II, Ex. 4.4. So assume X̃ is not proper. Then we may apply 1.3 to conclude
that if X̃ is affine. Finally, we apply III, Ex. 4.2 (as f is finite) and conclude that X is affine.
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1.5 Let D be effective, so we have the containment H0(X,L (K−D)) ⊆ H0(X,L (K)), with equality holding
iff degD = 0 or g = 0. Then l(D) − 1 = degD + l(K − D) − g ≤ degD, with equality iff degD = 0 (i.e.
D = 0 since D is effective) of g = 0.

1.6 It follows from II, 6.9 that deg f = deg(f)∞, the degree of the divisor of poles of f . Let P be any point
of X. Then l((g+1)P ) = 2+ l(K− (g+1)P ) > 1, so there exists a function f with (g+1)P − (f)∞ effective,
or what is the same, a morphism f : X → P1 of degree deg f ≤ g + 1.

1.7 The only non-obvious part is that |K| has no base points. If P is a base point of |K| then every effective
divisor linearly equivalent to K has support containing P , so every f ∈ H0(X,L (K)) has a zero at P . In
other words, the containment H0(X,L ((K − P )) ⊆ H0(X,L (K)) is an equality, so l(K − P ) = l(K) = 2.
Then l(P ) = l(K − P ) = 2 by Riemann-Roch. We conclude that there is a function f with a simple pole
at P , so this defines a morphism X → P1 of degree 1, (as in Ex. 1.6) which must be an isomorphism,
contradicting the assumption that g = 2. Thus |K| is base-point free, so we use II, 7.8.1 to get a morphism
f : X → P1 of degree degK = 2.

1.10 Following the proof of 1.3.7, it is enough to show that for any divisor D of degree 0 supported in Xreg

there exists a point P ∈ Xreg with D ∼ P − P0. Using Ex. 1.9 and the hypothesis that pa = 1, we have

l(D + P0)− l(K −D − P0) = 1,

and as K −D − P0 has degree −1, there exists a function f with (f) +D + P0 ≥ 0, and comparing degrees
shows that we must have(f) +D+ P0 = P for some point P , necessarily in Xreg as D is supported in Xreg.
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