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1 Introduction

In these notes we prove that if f : A→ B is an isogeny of abelian varieties whose degree is relatively prime
to the characteristic of the field of definition, then the BSD formula holds for A if and only if it holds for B.
We closely follow Milne’s notes [3], especially I,§7.

2 Notation

We fix our notation for the remainder of these notes.
X 7→ X∗ is the Pontryagin duality functor (from locally compact Hausdorff abelian groups to abelian

groups) X 7→ Homcont(X,S1).
A,B will be used for abelian varieties, and Â, B̂ their dual abelian varieties.
K will be a global field.
S is any set (usually finite) of places (=equivalence classes of valuations) of K including all archimedean

places.
KS is the maximal subfield of a fixed separable closure Ksep unramified outside S.
GS is the galois group Gal(KS/K)
RK,S = ∩v 6∈SOv is the ring of S-integers.
v will denote a place of K, with Kv the completion of K at v and k(v) the residue field at v.
Gv = Gal(Ksep

v /Kv) and for v 6∈ S, Dv, Iv ⊆ GS the decomposition and inertia groups at v respectively.
Observe we have the identification Gv ' Dv.

gv = Gal(k(v)sep/k(v)) ' Dv/Iv is generated by Frobv
M will be a finite GS-module and MD = Hom(M,Gm).
A GS-module M is also a Gv-module via Gv ↪→ GK → GS (identification with the decomposition

subgroup induced by the inclusion Ksep ↪→ Ksep
v ). We say M is unramified at v if M Iv = M , so M becomes

a gv-module.
If v is archimedean and M is unramified at v, the map Gv → Gv/Iv ' gv defines a map Hr(gv,M) →

Hr(Gv,M); We denote the image of this map by Hr
nr(Kv,M).

We define

Hr(Kv,M) =

{
Hr(Kv,M) v nonarchimedean
Hr
T (Kv,M) v archimedean

. (1)

That is, Hr(Kv,M) is the r th cohomology group Hr(Gv,M) if v is nonarchimedean, and the r th Tate
cohomology group Hr

T (Gv,M) if v is archimedean. In particular, H0(R,M) = MGal(C/R)/NC/RM and
H0(C,M) = 0.

P rS(K,M) is the restricted topological product
∏
v∈S Hr(Kv,M) relative to the subgroups Hr

nr(Kv,M)
for v ∈ S nonarchimedean.

µv is the unique Haar measure on Kv such that Ov has measure 1 when v is nonarchimedean, and is the
usual Lebesgue measure on Kv when v is archimedean.
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3 L-series and the BSD formula

Let A be an abelian variety of dimension d over K and S a set of primes containing all archimedean primes
and the primes at which A has bad reduction. For any prime v of good reduction, the reduction of A at v,
denoted A(v) is again an abelian variety. If ` ∈ Z is any prime distinct from char k(v) then the criterion of
Neron-Ogg-Shafaravich ensures that V`A := Q` ⊗Z` T`A is unramified at v, i.e. that Iv acts trivially (with
the Galois action on the second factor). The characteristic polynomial

Pv(A, t) := det(1− t · Frobv
∣∣
V`A

)

therefore makes sense.
Now let ω ∈ Γ(A,ΩdA) be any global differential d-form (the space of such forms is 1-dimensional) and

define
µv(A,ω) =

∫
A(Kv)

|ω|vµdv.

Let µ = {µv}v be the unique Haar measure on the adeles AK induced by the µv. We set

|µ| :=
∫

AK/K

µ.

Definition 3.1 (The L-Series). Choose ω ∈ Γ(A,ΩdA) and let S be any set of primes containing all
archimedean primes and all those nonarchimedean primes for which A has bad reduction or for which ω does
not generate Γ(Av,Ω1

Av
) as a 1-dimensional OK,v-module (Av is the Neron model of A at v). Define

LS(s,A) =
|µ|d∏

v∈S µv(A,ω)

∏
v 6∈S

Pv(A,Nv−s)−1.

It is known that this defines a holomorphic function of s in the half-plane <s > 3/2 and that the definition
does not depend on the choice ω. It does depend on the choice of the set S, but it can be shown that the
asymptotic behavior of LS near s = 1 is independent of S. For proofs of these facts, see [3, §7].

Let
〈 , 〉 : Â(K)×A(K)→ R

be the canonical height piring.

Conjecture 1 (BSD). The function LS(A, s) admits an analytic continuation to a neighborhood of 1 and
X(K,A) is finite. Moreover, let A have rank r and choose generators ai ∈ A(K) and a′i ∈ Â(K) for
1 ≤ i ≤ r of A(K)/A(K)tors and Â(K)/Â(K)tors. Then

lim
s→1

L∗S(s,A)
(s− 1)r

=
#X(K,A) · |det〈a′i, aj〉|

[Â(K) :
∑

Za′i] · [A(K) :
∑

Zai]
.

4 Preliminary results

In this section, we accumulate (without proof) some fundamental results that will be indispensable in the
sequel. We sketch the main ideas of proofs or give precise references.

Theorem 4.1 (Local Tate duality). Suppose that charK - #M . For any place v of K, and any 0 ≤ i ≤ 2,
the cup-product pairing gives a duality

Hi(Kv,M)×H2−i(Kv,M
D)→ Q/Z

in which, for archimedean v, the subgroups Hi
nr(Kv,M) and H2−i

nr (Kv,M
D) are orthogonal complements.
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Proof. [3, I,2.3,2.6,2.13] or [5, II,§5]. �

Theorem 4.2 (Local Tate duality for abelian varieties). For a place v of K, let A be an abelian
variety over Kv. There is a canonical pairing

Hr(Kv, Â)×H1−r(Kv, A)→ Q/Z

which induces isomorphisms Â(Kv)
∼−→ H1(Kv, A)∗ and H1(Kv, Â) ∼−→ A(Kv)∗.

Proof. See [3, I,Corollary 3.4] for nonarchimedean v and [3, I,Remark 3.7] for archimedean v. The pairing
can be formulated as an augmented cup-product pairing. �

Theorem 4.3 (Poitou-Tate exact sequence). Suppose that charK - #M There is an exact sequence of
locally compact groups and continuous homomorphisms

0 // H0(GS ,M)
β0

// P 0
S(K,M)

γ0
// H2(GS ,MD)∗

��
H1(GS ,MD)∗

��

P 1
S(K,M)

γ1
oo H1(GS ,M)

β1
oo

H2(GS ,M)
β2

// P 2
S(K,M)

γ2
// H0(GS ,MD)∗ // 0,

(2)

where the groups in this sequence have the following topological descriptions:

finite compact compact
compact loc. compact discrete
discrete discrete finite

Proof. We will describe the maps βr, γr. For a proof, see [3, I, Theorem 4.10]. There is a natural map
Hr(GS ,M)→

∏
v∈S Hr(Kv,M) induced by the maps Gv ↪→ GK � GS with image contained in P rS(K,M)

[5, II,§6 Prop. 21]; this is the map βr. Theorem 4.1 shows that P rS(K,M) is the algebraic and topological
(Pontryagin) dual of P 2−r

S (K,MD), and the maps γr are the duals of βr.
�

Definition 4.4. Let M be a finite GS-module with charK - #M . Then the groups Hr(GS ,M) are finite
for all r [3, I,Corollary 4.15] and we define

χ(GS ,M) =
#H0(GS ,M) ·#H2(GS ,M)

#H1(GS ,M)
.

Theorem 4.5 (Euler characteristic formula). With the notation as above, suppose that #M is a unit
in RK,S . Then the formula

χ(GS ,MD) =
∏
v arch

#H0
T (Gv,M)

#H0(Gv,M)

holds, where the product is over all archimedean places v of K.

Proof. See [3, I,Remark 5.2]. �
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5 Isogeny invariance of BSD

In this section we will prove the following theorem:

Theorem 5.1. Let f : A → B be an isogeny of abelian varieties over K. If the degree of f is relatively
prime to charK then Conjecture 1 holds for A if and only if it holds for B.

We begin with a definition and a trivial but useful lemma.

Definition 5.2. Let f : X → Y be a homomorphism of abelian groups with finite kernel and cokernel. We
set

z(f) =
# ker f

# coker f
.

Lemma 5.3 (A Trivial Lemma). 1. If X• = 0 → X0 → · · · → Xn → 0 is a complex of finite groups
then ∏

(#Xr)(−1)r =
∏

(#Hr(X•))(−1)r .

2. If f• : X• → Y • is a map of exact sequences of finite length with z(fr) defined for all r, then∏
z(fr)(−1)r = 1.

Proof. We prove (1) in the case that X• is the complex X0 f0

−→ X1; the general case follows from this. We
obviously have

#X0

# ker f0
= # im f0

# coker f0 =
#X1

# im f0
,

and multiplying these equalities together gives the desired result.
We prove (2) in the case that X• and Y • are short exact sequences, as the general case follows from this.

In this case, the snake lemma gives a long exact sequence

0 // ker f0 // ker f1 // ker f2 // coker f0 // coker f1 // coker f2 // 0

from which the proposed formlua follows. �

For the remainder of this section, we fix any nonzero ωB ∈ Γ(B,ΩdB) and put ωA := f∗ωB . SInce
charK - deg(f), we have ωA 6= 0. We take S to be any finite set of places of K including all archimedean
places and all nonarchimedean places where A and B have bad reduction (The criterion of Neron-Ogg-
Shafarevich shows that the places of bad reduction for A are the same as those for B), or ωA or ωB fails to
reduce to a nonzero global differential d-form. We fix ai ∈ A(K) and b′i ∈ B̂(K) for 1 ≤ i ≤ r generating
A(K)/A(K)tors and B̂(K)/B̂(K)tors respectively, and put a′i = f̂(b′i) and bi = f(ai). Since f is an isogeny,
it is clear that the bi and a′i are Z-linearly independent families.

The following lemma allows us to make sense of the discussion and calculations that follow.

Lemma 5.4. If one of LS(A, s), LS(B, s) admits an analytic continuation to a neighborhood of s = 1, so
does the other. Moreover, is one of X(A,K), X(B,K) is finite, so is the other.

Proof. Because A,B are isogenous, V`A = V`B. Since the polynomials

Pv(A, t) := det(1− t · Frobv
∣∣
V`A

)
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depend only the galois action on V`A = V`B, the first statement is clear since LS(A, s) and LS(B, s) differ
from eachother by constant (independent of s) multiples.

Let M be the kernel of f : A→ B. Then we have an exact commutative diagram

0

��

0

��

0

��
0 // kerX(f) //

��

X(A,K)
X(f) //

��

X(B,K)

��
H1(GS ,M) // H1(GS , A)

��

f // H1(GS , B)

��
⊕v∈SH1(Kv, A)

f
// ⊕v∈SH1(Kv, B)

Since H1(GS ,M) is finite, the diagram shows that kerX(f) is finite. Thus, if X(B,K) is finite, so is
X(A,K). For the reverse implication, we use the fact that there is an isogeny g : B → A with g ◦ f =
deg f . �

We now proceed with some calculations that will enable us to compare the terms involved in the formula
of Conjecture 1 for A, B.

Lemma 5.5. We have
det〈a′j , ai〉 = det〈b′j , bi〉. (3)

Proof. The height-pairing is functorial in the sense that we have a commutative diagram

Â(K)×A(K)

f

��

// R

B̂(K)×B(K)

f̂

OO

// R

(4)

[1, Chap. 5], so we have
〈a′j , ai〉 = 〈f̂(b′j), ai〉 = 〈b′j , f(ai)〉 = 〈b′j , bi〉

as claimed. �

Lemma 5.6. The equalities

z(f(K)) =
[A(K) :

∑
Zai]

[B(K) :
∑

Zbi]
z(f̂(K)) =

[B̂(K) :
∑

Zb′i]

[Â(K) :
∑

Za′i]

hold.

Proof. Apply Lemma 5.3 (2) and (1) to the morphisms of short exact sequences given by the commutative
diagrams

0 // ∑Zai

'
��

// A(K)

f(K)

��

// A(K)/
∑

Zai //

��

0

0 // ∑Zbi // B(K) // B(K)/
∑

Zbi // 0
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and
0 // ∑Zb′i

'
��

// B̂(K)

f̂(K)

��

// B̂(K)/
∑

Zb′i
//

��

0

0 // ∑Za′i // Â(K) // Â(K)/
∑

Za′i
// 0

�

Lemma 5.7. The equality
#X(A,K)
#X(B,K)

=
# kerX(f)

# kerX(f̂)

holds.

Proof. We first claim that X(Â,K) and X(B̂,K) are both finite. By Lemma 5.4, it suffices to show that
X(A,K) is finite. However, there are maps φ : A→ Â and ψ : Â→ A such that φ◦ψ = ψ ◦φ = m for some

integer m, so the map X(m) : X(A,K)→X(A,K) factors through X(A,K)
X(φ)−−−−→X(Â,K) and

kerX(φ) ⊆X(A,K)m = kerX(m).

It is well known [3, Remark 6.14 (c)] that X(A,K)m is finite when charK - m, so the finiteness of X(Â,K)
implies that of X(A,K). The reverse implication follows upon interchanging the roles of A, Â and replacing
φ with ψ. In the somewhat more subtle case of charK = p > 0, one needs a separate argument as in [4].

Applying Lemma 5.3 (1) to the complex X(A,K)
X(f)−−−−→X(B,K) shows that

#X(A,K)
#X(B,K)

= z(X(f)) =
# kerX(f)

# cokerX(f)
.

The nondegeneracy of the pairings in the commutative diagram [3, Theorem 6.13 (a)]

X(A,K)×X(Â,K)

X(f)

��

// Q/Z

X(B,K)×X(B̂,K)

X(f̂)

OO

// Q/Z

implies that # cokerX(f) = # kerX(f̂) and this completes the proof. �

Proposition 5.8. We have
LS(A, s)
LS(B, s)

=
∏
v∈S

z(f(Kv))−1.

Proof. From Definition 3.1 and our remarks about the polynomials Pv in the proof of Lemma 5.4, we at once
see that

LS(A, s)
LS(B, s)

=
∏
v∈S

µv(B(Kv), ωB)
µv(A(Kv), ωA)

,

so it will suffice to prove that z(f(Kv)) = µv(A(Kv), ωA)/µv(B(Kv), ωB). Let U be any subset of A(Kv)
mapping isomorphically onto f(A(Kv)). Then f(Kv)

∣∣
U

is injective, so since ωA = f∗ωB , we have µv(U,ωA) =
µv(f(A(Kv)), ωB). Since the translates of U by the elements of ker f give a cover of A(Kv) (with trivial
pairwise intersections) and since µv is translation invariant, we conclude that

µv(A(Kv), ωA) = # ker f(Kv) · µv(f(A(Kv)), ωB). (5)
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On the other hand, the translates of f(A(Kv)) by elements of coker f(Kv) give a cover (again with
pairwise trivial intersections) of B(Kv), so as above,

# coker f(Kv) · µv(f(A(Kv)), ωB) = µv(B(Kv), ωB) (6)

Combining (5) and (6) gives the desired equality. �

Theorem 5.9 (The big commutative diagram). Let M be the kernel of f : A → B; it is a finite
Galois module. Suppose that charK - #M , and enlarge S if necessary so #M is a unit in RK,S . There is a
commutative diagram

0 // H0(GS ,M) // ⊕v∈SH0(Kv,M)

��
H2(GS ,MD)∗

��
0 // coker f(K)

ϕ′

��

// H1(GS ,M) //

ϕ

��

H1(GS , A)f //

ϕ′′

��

0

0 // ⊕v∈S coker f(Kv)

ψ′

��

// ⊕v∈SH1(Kv,M) //

ψ

��

⊕v∈SH1(Kv, A)f //

ψ′′

��

0

0 // H1(GS , B̂)∗
f̂

// H1(GS ,MD)∗ // (coker f̂(K))∗ // 0

(7)

in which the rows and center column are exact.

Proof. The center column is a portion of the Poitou-Tate exact sequence of Theorem 4.3, and the rows come
from the long exact cohomology sequences associated to

0→M(KS)→ A(KS)
f−→ B(KS)→ 0

0→M(Ksep
v )→ A(Ksep

v )
f−→ B(Ksep

v )→ 0

0→MD(KS)→ B̂(KS)
f̂−→ Â(KS)→ 0

Observe that requiring charK - deg(f) ensures that f̂ is separable and that the map B̂(KS)
f̂−→ Â(KS)

is surjective. The first two exact sequences follow from the definition of M . The third is the “dual exact
sequence;” see, for example, [2, §11]. Surjectivity on KS-points is a consequence of the fact that A,B have
good reduction outside S and is well-known cf. [3, Lemma 6.1].

It therefore remains to check that the four squares commute. The two top squares obviously commute,
and the bottom two are seen to commute as follows: Theorem 4.2 shows that B(Kv) and H1(Kv, B̂) are
dual, so by dualizing the exact sequence

A(Kv)
f−→ B(Kv)→ coker f(Kv)→ 0,

we obtain
0→ (coker f(Kv))∗ → H1(Kv, B̂)→ H1(Kv, Â),
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which shows that coker f(Kv) is dual to H1(Kv, B̂)f̂ . It follows using the duality of H1(Kv,M) and
H1(Kv,M

D) in Theorem 4.1 that the diagram

⊕v∈S coker f(Kv) //

ψ′

��

⊕v∈SH1(Kv,M)

ψ

��
H1(GS , B̂)∗

f̂
// H1(GS ,MD)∗

is simply the dual of

⊕v∈SH1(Kv, B̂)f̂ ⊕v∈SH1(Kv,M
D)oo

H1(GS , B̂)f̂

OO

H1(GS ,MD)

OO

oo

where the horizontal arrows come from the obviously compatible cohomology sequences

0→MD(K)→ B̂(K)→ Â(K)→ H1(GS ,MD)→ H1(GS , B̂)→ H1(GS , Â)→ . . .

0→MD(Kv)→ B̂(Kv)→ Â(Kv)→ H1(Kv,M
D)→ H1(Kv, B̂)→ H1(Kv, Â)→ . . .

Similarly, the squares

⊕v∈SH1(Kv,M) //

ψ

��

⊕v∈SH1(Kv, A)f

ψ′′

��
H1(GS ,MD)∗ // (coker f̂(K))∗

⊕v∈SH1(Kv,M
D) ⊕v∈S coker f̂(Kv)oo

H1(GS ,MD)

OO

coker f̂(K)

OO

oo

(8)

are duals of each other, so the left square commutes because the right obviously does. �

Corollary 5.10 (The five formulae). We have:

# kerϕ′

# kerϕ
# kerX(f)

#(kerψ′/ imϕ′)
= 1 (9)

# coker f(K)∏
v∈S # coker f(Kv)

#H1(GS , B̂)f̂ =
# kerϕ′

#(kerψ′/ imϕ′)
# kerX(f̂) (10)

1 =
#H1(GS , B̂)f̂
#H1(GS ,MD)

# coker f̂(K) (11)

1 =
# ker f(K)∏

v∈S # ker f(Kv)
#H2(GS ,MD)

# kerϕ

∏
v arch

#H0(Kv,M)
#H0

T (Kv,M)
(12)

# ker f̂(K) = #H0(GS ,MD). (13)

Proof. We view the bottom of the diagram (7) as a short exact sequence of complexes

0→ A• → B• → C• → 0,

where A• is the complex consisting of the first column, B• is the complex formed by the second column etc.
The long exact sequence on cohomology is then

0→ kerϕ′ → kerϕ→ kerϕ′′ → H1(A•)→ H1(B•).
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Since the complex B• is exact (recall it is a piece of the Poitou-Tate exact sequence) we have H1(B•) = 0.
Obviously, H1(A•) = kerψ′/ imϕ′. We conclude that

0→ kerϕ′ → kerϕ→ kerϕ′′ → kerψ′/ imϕ′ → 0

is exact. Therefore,
# kerϕ′

# kerϕ
# kerϕ′′

#(kerψ′/ kerϕ′)
= 1. (14)

The commutative diagram

0

��

0

��
0 // kerX(f) //

��

X(K,A)
X(f) //

��

X(K,B)

��
0 // H1(GS , A)f //

ϕ′′

��

H1(GS , A)
f //

��

H1(GS , B)

��
0 // ⊕v∈SH1(Kv, A)f // ⊕v∈SH1(Kv, A)

f
// ⊕v∈SH1(Kv, B)

shows that kerX(f) = kerϕ′′. Employing this in (14) yields (9).
Applying Lemma 5.3 (1) to the first column of (7) gives

# coker f(K)∏
v∈S # coker f(Kv)

#H1(GS , B̂)f̂ =
# kerϕ′

#(kerψ′/ imϕ′)
# cokerψ′. (15)

The commutative diagram

0 ⊕v∈S coker f(Kv)oo

ψ′

��

⊕v∈SH1(Kv, B̂)∗oo

��

⊕v∈SH1(Kv, Â)∗
f̂

oo

��
0 H1(GS , B̂)∗

f̂
oo

��

H1(GS , B̂)∗oo

��

H1(GS , Â)∗
f̂

oo

��
0 (kerX(f̂))∗oo X(K, B̂)∗oo

��

X(K, Â)∗
X(f̂)

oo

��
0 0

shows that cokerψ′ = (kerX(f̂))∗. Using this in (15) gives (10).
The third row of (7) at once gives (11).
Now the long exact sequence of unmodified cohomology shows that MGv = H0(Kv,M) = ker f(Kv), so

by (1) we have

#H0(Kv,M) =

{
# ker f(Kv) v nonarchimedean

# ker f(Kv)
#H0

T (Kv,M)
#H0(Kv,M) v archimedean

. (16)

Similarly, it is clear that # ker f(K) = #H0(GS ,M). Using this and (16) together with the middle column
of (7) gives (12).
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Finally, the cohomology sequence of the dual exact sequence [2, §11]

0→MD(KS)→ B̂(KS)
f̂(KS)−−−−→ Â(KS)→ 0

shows that H0(GS ,MD) = ker f̂(K), which is (13). �

Corollary 5.11 (The Final Formula). In the notation of Definition 5.2, we have

∏
v∈S

z(f(Kv)) =
# kerX(f̂)
# kerX(f)

z(f(K))

z(f̂(K))
. (17)

Proof. Multiplying the equalities (9)–(13) of Corollary 5.10 and cancelling like terms from either side, we
find ∏

v∈S
z(f(Kv)) =

# kerX(f̂)
# kerX(f)

z(f(K))

z(f̂(K))
· χ(GS ,MD) ·

∏
v arch

#H0(Kv,M)
#H0

T (Kv,M)
,

where χ(GS ,MD) is as defined in Definition 4.4. The corollary now follows from Theorem 4.5. �

Corollary 5.12. We have

LS(B, s)
LS(A, s)

=
#X(B,K) · |det〈b′j , bi〉|

[B(K) :
∑

Zbi][B̂(K) :
∑

Zb′i]
·

(
#X(A,K) · |det〈a′j , ai〉|

[A(K) :
∑

Zai][Â(K) :
∑

Za′i]

)−1

.

Proof. Proposition 5.8 and Corollary 5.11 show that

LS(B, s)
LS(A, s)

=
# kerX(f̂)
# kerX(f)

z(f(K))

z(f̂(K))
,

which by Lemmas 5.6 and 5.7 is equal to

#X(B,K)
#X(A,K)

· [A(K) :
∑

Zai]
[B(K) :

∑
Zbi]

· [Â(K) :
∑

Za′i]

[B̂(K) :
∑

Zb′i]
.

Since det〈a′j , ai〉 = det〈b′j , bi〉 by Lemma 5.5, the proposed formula follows. �

Proof of Theorem 5.1. Assume that Conjecture 1 holds for A. By Lemma 5.4, the function LS(B, s) admits
an analytic continuation to a neighborhood of s = 1 and the quantity #X(B,K) makes sense (i.e. is
finite). Corollary 5.12 then shows that Conjecture 1 holds for B. The reverse implication follows at once
upon interchanging the roles of A and B. �
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