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1. Metrics and norms

1.1. Metrics and metric spaces. A metric is a way to define the notion of ‘distance’ on a
space. This will be useful because, in applied math, we often need to approximate things that are
complicated: e.g., how far away from the function f(x) = 0 for all x is the function

Nt(x) =
1√
4πt

e−
x2

4t where t > 0?

(This function Nt is related to the heat distribution on an ‘infinite’ domain at time t.)

In order to begin, let us formalize a notion of ‘distance’
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Definition 1.1.1 (Metric space). A metric space (X, d) is a set X and endowed with a metric d;
that is, d : X ×X → R that satisfies, for all x, y, z ∈ X:

1. (Positive definiteness) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;

2. (Symmetry) d(x, y) = d(y, x);

3. (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

x

z

y

d(x, z)

d(x, y)
d(y, z)

Figure 1: A cartoon showing the triangle inequality: notice that ‘going’ from x to z has to
always be shorter than going from x to y and then from y to z.

Example 1.1.2. (I) (R, d), where d is defined by d(x, y) = |x− y| =

{
x− y if x ≥ y,

y − x if x < y.

It is straightforward to check that (1) and (2) hold. Let us check (3):

|x− z|2 = (x− z)2 = (x− y + y − z)2 = (x− y)2 + 2(x− y)(y − z) + (y − z)2

≤ |x− y|2 + 2|x− y||y − z|+ |y − z|2 (because (x− y)(y − z) ≤ |x− y||y − z|)
= (|x− y|+ |y − z|)2.

By taking square roots, we get

|x− z| ≤ |x− y|+ |y − z|.

(II) (Rn, d2) where d2 is defined by

d2(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

Exercise 1.1.1. Show that this satisfies (1) - (3).

(III) (Rn, dp) where p ≥ 1 and dp is defined by

dp(x, y) = (|x1 − y1|p + · · ·+ |xn − yn|p)
1/p .

Note: (1) and (2) are still obvious. However, the triangle inequality is not as easy to prove.
We will do it later in the class.

Exercise 1.1.2. Show that this does not work for p < 1!
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(IV) (Rn, d∞) where d∞ is defined by

d∞(x, y) = max
1≤i≤n

|xi − yi|.

Note: (1) and (2) are still obvious.

Exercise 1.1.3. Show that the triangle inequality holds. Also, show that dp(x, y) → d∞(x, y)
as p→ ∞.

(V) (X, ddisc) where X is any set and the discrete metric is

ddisc(x, y) =

{
1 if x ̸= y,

0 if x = y.

There are many, many other examples of metric spaces. We will get into some other very important
ones soon. But the above give us a nice basis to start our discussion.

Before we go on, let us dwell on the dp metrics for a brief moment longer. First, we point out that,
for any x, y ∈ Rn, we have{

dp1(x, y) ≤ dp2(x, y) and
dp2(x, y) ≤ ndp1(x, y)

}
whenever p2 < p1.

We will prove this later, but it shows us that all of the metrics are, roughly, equivalent; that is, two
points are close in one of these metrics only if they are close in all of these metrics. Formally, this
is:

Definition 1.1.3. Let (X, d) and (X, ρ) be metric spaces. We say that d and ρ are equivalent if
there exists C,C ≥ 1 such that, for all x, y ∈ X,

1

C
d(x, y) ≤ ρ(x, y) ≤ Cd(x, y).

Exercise 1.1.4. Is the same true of the discrete metric? If two points are ‘close’ in one of the dp
metrics, are they also close in the discrete metric? More concretely: for each p ∈ [1,∞]:

(i) Is it true that there is C such that

dp(x, y) ≤ Cddisc(x, y) for all x, y ∈ Rn?

(ii) Is it true that there is C such that

ddisc(x, y) ≤ Cdp(x, y) for all x, y ∈ Rn?

To better illustrate what these metrics look like, let us draw the unit ball

B1(0) = {x ∈ Rn : dp(0, x) < 1}

in each metric. We do it in two dimensions (n = 2) for simplicity. We end up with:
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Figure 2: The unit ball corresponding to d1, the unit ball corresponding to d2, and the unit
ball corresponding to d∞.

1.2. Norms and normed spaces. Some1 metric spaces are also vector spaces (that is, there
is a notion of addition and scalar multiplication that satisfies the usual properties) and the notion
of distance comes from the notion of the length of a vector. We call the ‘length’ of a vector its norm.

Definition 1.2.1. If X is a vector space, then ∥ · ∥ : X → R is a norm if: for all x, y ∈ X and
α ∈ R:

1. (Positive definiteness) ∥x∥ ≥ 0 and ∥x∥ = 0 if and only if x = 0;

2. (Homogeneity) ∥αx∥ = |α|∥x∥;

3. (Triangle inequality) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

To make the above comment more explicit, we see pretty quickly that, defining

d(x, y) = ∥x− y∥ for all x, y ∈ X,

(X, d) is also a metric space. Hence, all vector spaces with a norm are metric spaces. Note that,
not all metric spaces come from a vector space with a norm. A metric space will fail to be a normed
vector space if it is either (i) not a vector space, or (ii) if homogeneity fails.

Let us revisit our examples from above.

Example 1.2.2. (III) (Rn, dp) where p ≥ 1 and dp is defined by

dp(x, y) = (|x1 − y1|p + · · ·+ |xn − yn|p)
1
p .

1Note that there are two conditions here: (1) metric space is also a vector space, and (2) metric is related to the
norm.
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This is clearly a vector space. And its metric comes from the norm

∥x∥p = dp(x, y) = (|x1|p + · · ·+ |xn|p)
1
p , (1.2.1)

It inherits positive definiteness from the positive definiteness of dp since

∥x∥p = dp(0, x).

It inherits the triangle inequality from that of dp:

∥x+ y∥p = dp(x,−y) ≤ dp(x, 0) + dp(0,−y) = ∥x∥p + ∥y∥p.

On the other hand, homogeneity is obvious from (1.2.1):

∥αx∥p = (|αx1|p + · · ·+ |αxn|p)
1
p =

(
|α|p

(
|x1|p + · · ·+ |xn|p

)) 1
p

= |α| (|x1|p + · · ·+ |xn|p)
1
p = |α|∥x∥p.

(IV) (Rn, d∞) where d∞ is defined by

d∞(x, y) = max
1≤i≤n

|xi − yi|.

As above, this is (cleary) a vector space and its metric comes from the norm

∥x∥∞ = d∞(x, 0) = max
1≤i≤n

|xi|.

Exercise 1.2.1. Check that this is a norm.

(V) (X, ddisc) where X is any set and the discrete metric is

ddisc(x, y) =

{
1 if x ̸= y,

0 if x = y.

This is certainly not related to a normed vector space. First, X might not be a vector space
(e.g., what if X = {dog, cat, donkey}? What is the notion of addition of vectors or scaling?
Thus X is not a vector space). Even if X is a vector space, ddisc will not come from a norm.
Indeed, suppose that X = Rn and ddisc came from a norm:

∥x∥disc = ddisc(x, 0).

However, if x ̸= 0 then 2x ̸= 0, so that

∥2x∥disc = 1 ̸= 2 = 2∥x∥disc.

Hence, homogeneity does not hold.
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1.2.1. Aside: how to generate non-norm metrics from norms.

Proposition 1.2.3. Suppose that (X, d) is a metric space and f : [0,∞) → [0,∞) is a C2 function2

such that

(i) f is nondecreasing (that is, f ′ ≥ 0);

(ii) f(0) = 0 and f(x) > 0 if x > 0;

(iii) f is concave (that is, f ′′ ≤ 0).

Then
df (x, y) := f(d(x, y))

is a norm as well. Further, if d is given by a norm d(x, y) = ∥x− y∥, then df is given by a norm if
and only if there is c > 0 such that f(x) = cx for all x ∈ [0,∞).

Exercise 1.2.2. Show that last claim; that is, that df is only given by a norm if and only if there
is c > 0 such that f(x) = cx for all x ∈ [0,∞).

Proof. Given the exercise above, all that remains is to show that df is a metric.

First we show that df is positive definite. It is nonnegative since f ≥ 0, by assumption. Second,
df (x, y) = 0 if and only if f(d(x, y)) = 0, which occurs if and only if d(x, y) = 0 (see point (ii)
above). Since d is a metric, d(x, y) = 0 if and only if x = y. In summary, df (x, y) = 0 if and only
if x = y.

Second, we note that df is clearly symmetric – this is inherited directly from the symmetry of d.

Third, we check the triangle inequality. This is the hardest part. We begin by stating a claim that
we prove later:

Claim: df (x, y) + df (y, z)− f(d(x, y) + d(y, z)) ≥ 0 for all x, y ∈ X.

Assuming this claim, momentarily, notice that it is equivalent to

f(d(x, y) + d(y, z)) ≤ df (x, y) + df (y, z). (1.2.2)

Note that, since d is a metric:
d(x, z) ≤ d(x, y) + d(y, z).

As f is nondecreasing, we deduce that

f(d(x, z)) ≤ f(d(x, y) + d(y, z)). (1.2.3)

Thus,

df (x, z) = f(d(x, z))
(1.2.3)
≤ f(d(x, y) + d(y, z))

(1.2.2)
≤ df (x, y) + df (y, z).

We now prove the claim. Notice that it is obvious if either d(x, y) = 0 or d(y, z) = 0. Hence, we
need only consider the case

d(x, y), d(y, z) > 0.

2f ∈ C2 means that f , f ′, and f ′′ all exist and are continuous.
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Next, fix any β ≥ 0 and let g : [0,∞) → R be defined by

g(θ) = f(θ) + f(β)− f(θ + β)− f(θ + β).

Notice that the claim is equivalent to showing that

g(d(x, y)) ≥ 0 for β = d(y, z).

Actually, we show something stronger,

g(θ) ≥ 0 and for all θ, β > 0. (1.2.4)

We now prove (1.2.4). Clearly

g(0) = 0 and g′(θ) = f ′(θ)− f ′(θ + β) ≥ 0.

The inequality above follows from the fact that θ + β > θ and the fact that f ′ is nonincreasing
(recall that f is concave). Hence, g is nondecreasing. It follows that

g(θ) ≥ g(0) = 0.

Since this is true for all θ, β > 0, we obtain exactly (1.2.4). This concludes the proof.

Example 1.2.4. 1. We then have that, for any p ∈ [1,+∞] (allowing for p = ∞),

d(x, y) = log(1 + ∥x− y∥p)

is a metric on Rn does not define a norm. This arises from Proposition 1.2.3 with the choice
f(x) = log(1 + x).

2. Another metric on Rn not arising from a norm is: for any p ∈ [1,+∞] (allowing for p = ∞),

d(x, y) =
∥x− y∥p

1 + ∥x− y∥p
.

This arises from Proposition 1.2.3 with the choice f(x) = x/(1 + x).

1.3. Cartesian products. Given metric spaces (X, dX) and (Y, dY ) (respectively, normed
spaces (X, ∥ · ∥X) and (Y, ∥ · ∥Y )), one obtains a new metric space (resp. normed space) as follows:

(X × Y, dX×Y ) where

{
X × Y = {(x, y) : x ∈ X, y ∈ Y } and
d((x1, y1), (x2, y2)) = dX(x1, x2) + dX(y1, y2).

}
(resp. ∥(x, y)∥X×Y = ∥x∥X + ∥y∥Y ).

Example 1.3.1. Let deuc be the Euclidean metric on {0, 1, 3}: deuc(x, y) = |x− y| and let ddisc be
the discrete metric on the set X = {a,dog}. Then

R×X = {(0, a), (0,dog), (1, a), (1, dog), (3, a), (3,dog)}.

Then, we have, e.g.,

dR×X((0, a), (0, dog)) = deuc(0, 0) + ddisc(a, dog) = 0 + 1 = 1,

dR×X((1,dog), (3, dog)) = deuc(1, 3) + ddisc(dog,dog) = 2 + 0 = 2.

and
dR×X((1, a), (3, dog)) = deuc(1, 3) + ddisc(a, dog) = 2 + 1 = 3.
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By convention, we can take many copies of the same space X. Then we write:

X2 = X ×X, X3 = X ×X ×X and, more generally Xn = X ×X × · · · ×X︸ ︷︷ ︸
n times

.

Can one take infinitely many Cartesian products? We have to be a bit more careful...

To do this, let us change perspective. One can also think of Xn as being equivalent to X{1,2,...,n},
where we use the notation

XY = {f : Y → X} (that is, XY is the set of all functions from Y to X).

Why are Xn and X{1,2,...,n} the same? Notice that if f ∈ X{1,2,...,n} then we can define a point

(f(1), f(2), . . . , f(n)) ∈ Xn.

Likewise, if x̄ ∈ Xn, then x = (x1, x2, . . . , xn) with each xi ∈ X. Hence, we define

f ∈ X{1,2,...,n} by f(i) = xi.

Now it is easy to define an infinite Cartesian product:

XN = {(x1, x2, x3, . . . ) : xi ∈ X for each i ∈ N} = {f : N → X}.

(Note that one can also take XZ or XR, which might be very different sets a priori).

What is not clear is what the metric on this set should be?! Indeed, using our construction above

dXN(f, g) = d(f(1), g(1)) + d(f(2), g(2)) + · · · ,

which will usually be infinite and, therefore, lose some of its ‘meaning’ as a distance function. Let
us introduce some important examples:

1.4. Sequence spaces. For any p ≥ 1, let

ℓp(N) = RN = {x̄ = (x1, x2, . . . ) : xi ∈ R and ∥x̄∥ℓp <∞} ,

where we use the norm

∥x̄∥ℓp =

( ∞∑
i=1

|xi|p
)1/p

.

Recall that any norm defines, also, a metric. Notice that this the infinite dimensional version of the
dp metric introduced in Example 1.1.2.

We can also define this for p = ∞:
∥x̄∥ℓ∞ = sup

i∈N
|xi|.

There are two slightly smaller spaces that are useful in the future (especially for finding counterex-
amples to false statements):

c0 = {(x1, x2, . . . ) ∈ ℓ∞(N) : lim
i→∞

xi = 0}

11



and
c = {(x1, x2, . . . ) ∈ ℓ∞(N) : lim

i→∞
xi exists}.

Let us briefly clarify the definition of limit: we say that

lim
i→∞

xi = L

if, for every ε > 0, there exists N such that

|L− xn| < ε whenever n ≥ N.

One can also write ℓp(R,N) to emphasize that the sequences are real-valued (as opposed to, e.g.,
ℓp(C,N), where the entries take complex values). Often we simply write ℓp instead of ℓp(N) out of
laziness.

The space ℓ2(Z) = RZ is extremely important in the theory of Fourier series, but all ℓp spaces will
be useful for developing our understanding of norms, linear spaces, and etc.

Example 1.4.1. (i) (1,−1, 1,−1, 1,−1, . . . ) ∈ ℓp for p = ∞ only. It is not an element of c or
c0;

(ii) (1, 2, 3, . . . ) /∈ ℓp for any p;

(iii) (1, 1/2, 1/3, 1/4, . . . ) ∈ ℓp for p > 1 only (Exercise!);

(iv) Any element of ℓp for p <∞ is in c0 and c (Exercise!).

1.4.1. Some brief reminders about series.

Definition 1.4.2. A series
∞∑
n=1

an is (conditionally) convergent if there exists L ∈ R such that

lim
n→∞

∞∑
n=1

an = L.

Recall that this means: for every ε > 0 there is Nε such that∣∣∣∣∣L−
N∑

n=1

an

∣∣∣∣∣ < ε for all N ≥ Nε.

Exercise 1.4.1. Show that if
∞∑
n=1

an is conditionally convergent then lim
n→∞

an = 0.

Definition 1.4.3. A series
∞∑
n=1

an is absolutely summable if there exists C ≥ 0 such that

N∑
n=1

|an| ≤ C for all N.

Exercise 1.4.2. Suppose that
∞∑
n=1

an is absolutely summable. Show that
∞∑
n=1

|an| is convergent.
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Exercise 1.4.3. Show that every absolutely summable series is convergent. Is the converse true?

Proposition 1.4.4 (Comparison test). Suppose that (an) and (bn) are sequences and that

|an| ≤ bn for all n.

If bn is summable then an is summable.

Proof. Let C be such that
∞∑
n=1

bn =
∞∑
n=1

|bn| ≤ C for all N.

Then, for any N ∈ N, we have
N∑

n=1

|an| ≤
N∑

n=1

bn ≤ C.

Thus an is summable.

1.4.2. ∥ · ∥ℓ∞ is a norm.

Proof. Positive definiteness: Clearly ∥x̄∥ ≥ 0. On the other hand,

∥x̄∥ℓ∞ = 0 ⇐⇒ sup
i

|xi| = 0 ⇐⇒ |xi| = 0 for all i ⇐⇒ x̄ = 0.

Hence, ∥ · ∥ℓ∞ is postive definite.

Triangle inequality: Fix x̄, ȳ ∈ ℓ∞. For any i = 1, 2, 3, . . . , we have

|(x̄+ ȳ)i| = |xi + yi| ≤ |xi|+ |yi| ≤ ∥x̄∥ℓ∞ + ∥ȳ∥ℓ∞ .

Since this is true for all i, we deduce

∥(x̄+ ȳ)i∥ℓ∞ ≤ ∥x̄∥ℓ∞ + ∥ȳ∥ℓ∞ .

Homogeneity: Take any α ∈ R and any x̄ ∈ ℓ∞. Fix any ε > 0. Then, by definition of supremum,
there is iε such that

(1− ε)∥x̄∥ℓ∞ ≤ |xiε |

It follows that
|α|(1− ε)∥x̄∥ℓ∞ ≤ |α||xiε | = |αxiε |,

which implies that
|α|(1− ε)∥x̄∥ℓ∞ ≤ ∥αx̄∥ℓ∞ . (1.4.1)

On the other hand, for all i,
|xi| ≤ ∥x̄∥ℓ∞ .

Thus, for all i,
|αxi| = |α||xi| ≤ |α|∥x̄∥ℓ∞ ,

which implies that
∥αx̄∥ = sup

i
|αxi| ≤ |α|∥x̄∥ℓ∞ . (1.4.2)
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The combination of (1.4.1) and (1.4.2) yields

|α|(1− ε)∥x̄∥ℓ∞ ≤ ∥αx̄∥ ≤ |α|∥x̄∥ℓ∞ .

Since this is true for all ε, it follows that

∥αx̄∥ = |α|∥x∥ℓ∞ ,

that is, ∥ · ∥ℓ∞ is homogeneous.

1.4.3. ∥ · ∥ℓp is a norm when 1 ≤ p < ∞. Before starting, we need the following elementary
inequality

Lemma 1.4.5 (Young’s inequality). For any a, b ≥ 0 and p, q > 1 satisfying 1 = 1
p + 1

q , we have

ab ≤ ap

p
+
bq

q
.

The is equality if and only if b = sign(a)|a|p−1.

Some notes:

• There are many “Young’s inequalities.”

• We call p and q satisfying 1 = 1
p + 1

q conjugate exponents.

• When p = q = 2, this is just the AM-GM inequality in the special case when n = 2.

Exercise 1.4.4. Prove Young’s inequality. Hint: fix a and use calculus to check that f(x) =
ap/p + xq/q − ax is nonnegative. In particular, show that min[0,∞) f = 0.

The proof of positive definiteness and homogeneity are simple and so we omit them. The main
step is in proving the triangle inequality, which, in this case, goes by the special name Minkowski’s
inequality. We prove this and another important inequality in the following:

Theorem 1.4.6. (I) (Hölder’s inequality) For any x̄ ∈ ℓp and ȳ ∈ ℓq, where

1 =
1

p
+

1

q
where 1 ≤ p, q ≤ +∞.

we have
∞∑
i=1

xiyi ≤ ∥x̄∥ℓp∥ȳ∥ℓq . (1.4.3)

The inequality (1.4.3) is an equality if and only if there is c > 0 such that

yi = c sign(xi)|xi|p−1.

Note that when p = q = 2, this also goes by the “Cauchy-Schwarz inequality.”

(II) (Minkowski’s Inequality) For any x̄, ȳ ∈ ℓp, we have

∥x+ y∥ℓp ≤ ∥x∥ℓp + ∥y∥ℓp .
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Proof of Hölder’s inequality. Without loss of generality we assume that p ≤ q (otherwise simply
swap them!). The case p = 1 and q = +∞ is obvious (convince yourself of this!). Hence, we
consider only the case when 1 < p ≤ q < +∞.

To begin, we note that the inequality is clearly true if either x̄ or ȳ = 0. Hence, we may assume
that

∥x̄∥ℓp , ∥ȳ∥ℓq > 0.

The main tool is Young’s inequality with a little trick. Fix ε > 0 to be chosen. Then

∞∑
i=1

xiyi ≤
∞∑
i=1

|xi||yi| =
∞∑
i=1

|xi|
ε

(ε|yi|) ≤
∞∑
i=1

(
|xi|p

pεp
+
εq|yi|q

q

)

=
1

pεp

∞∑
i=1

|xi|p +
εq

q

∞∑
i=1

|yi|q =
1

pεp
∥x̄∥pℓp +

εq

q
∥ȳ∥qℓq .

(1.4.4)

We now choose

ε =
∥x̄∥

1− 1
p

ℓp

∥ȳ∥
1− 1

q

ℓq

.

Notice that, because p and q are conjugate exponents,

εp =
∥x̄∥p−1

ℓp

∥ȳ∥ℓq
and εq =

∥ȳ∥q−1
ℓq

∥x̄∥ℓp
.

Thus (1.4.4) becomes

∞∑
i=1

xiyi ≤
1

p
∥x̄∥ℓp∥ȳ∥ℓq +

1

q
∥x̄∥ℓp∥ȳ∥ℓq =

(
1

p
+

1

q

)
∥x̄∥ℓp∥ȳ∥ℓq = ∥x̄∥ℓp∥ȳ∥ℓq ,

which concludes the proof.

Note that the only inequalities used above were (1) xiyi ≤ |xi||yi| and (2) Young’s inequality. These
are both equality if and only if the stated condition holds.

Proof of Minkowski’s inequality. The cases when p = ∞ was already proven above (Section 1.4.2).
Hence, we consider only 1 ≤ p < ∞. Also, notice that there is nothing to prove if ∥x̄ + ȳ∥ℓp = 0.
Hence, we assume that ∥x̄+ ȳ∥ℓp > 0.

Let us first prove the claim assuming that xi, yi ≥ 0 for all i. Let z̄ = (z1, z2, . . . ) with

zi = (xi + yi)
p−1

and notice that, letting q be the conjugate exponent to p,

∥z̄∥qℓq = ∥x̄+ ȳ∥pℓp ,

so that, noting p/q = p− 1

∥z̄∥ℓq = ∥x̄+ ȳ∥p/q
ℓp = ∥x̄+ ȳ∥p−1

ℓp .
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Then, using Hölder’s inequality, we find

∥x+ y∥pℓp =

∞∑
i=1

(xi + yi)
p =

∞∑
i=1

(xi + yi)(xi + yi)
p−1 =

∞∑
i=1

(xi + yi)zi =

∞∑
i=1

xizi +

∞∑
i=1

yizi

≤ ∥x̄∥ℓp∥z̄∥ℓq + ∥ȳ∥ℓp∥z̄∥ℓq =
(
∥x̄∥ℓp + ∥ȳ∥ℓp

)
∥z̄∥ℓq =

(
∥x̄∥ℓp + ∥ȳ∥ℓp

)
∥x̄+ ȳ∥p−1

ℓp .

The proof is then finished after dividing both sides by ∥x̄+ ȳ∥p−1
ℓp .

Now we consider the general case. One can easily check that

|xi + yi| ≤
∣∣|xi|+ |yi|

∣∣.
Letting x̃ = (|x1|, |x2|, . . . ) and ỹ = (|y1|, |y2|, . . . ), we have

∥x̄+ ȳ∥pℓp =
∞∑
i=1

|xi + yi|p ≤
∞∑
i=1

∣∣|xi|+ |yi|
∣∣p = ∥x̃+ ỹ∥pℓp .

The proof is finished after applying Minkowski’s inequality to x̃ and ỹ and using that ∥x̄∥ℓp = ∥x̃∥ℓp
and ∥ȳ∥ℓp = ∥ỹ∥ℓp .

Hölder’s inequality is extremely important in analysis because it tells us that ℓp and ℓq are dual to
each other (when p and q are conjugate exponents). We will dig into this more later. But for now,
we note that we can compute the ℓp norm ‘by duality’; that is:

Proposition 1.4.7. Suppose that x ∈ ℓp, with p ∈ [1,∞]. Then

∥x∥ℓp = sup
y∈ℓq ,

∥y∥ℓq≤1

⟨x, y⟩ = sup
y∈ℓq ,

∥y∥ℓq=1

⟨x, y⟩, (1.4.5)

where we define

⟨x, y⟩ =
∞∑
i=1

xiyi.

When p ∈ (1,∞), the sup above can be replaced by a max.

Exercise 1.4.5. Understand why the following proof gives the second equality in (1.4.5).

Exercise 1.4.6. Prove the proposition in the cases where p = 1 and p = +∞.

Proof. We show the case p, q ∈ (1,∞). Also, notice that we do not need to consider the case
x = (0, 0, . . . ) as this case is obvious. Hence, we assume that ∥x∥ℓp > 0.

By Hölder’s inequality, we clearly have that

max
y∈ℓq ,

∥y∥ℓq≤1

⟨x, y⟩ ≤ max
y∈ℓq ,

∥y∥ℓq≤1

∥x∥ℓp∥y∥ℓq ≤ ∥x∥ℓp .

Thus, we need only show the reverse inequality.

Define ȳ = (y1, y2, . . . ) where, for all i,

yi =
sign(xi)|xi|p−1

∥x∥p−1
ℓp

,
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where, for any r ∈ R,

sign(r) =

{
r
|r| if r ̸= 0,

0 if r = 0.

First note that q(p− 1) = p since p and q are conjugate exponents. Hence,

∞∑
i=1

|yi|q =
1

∥x∥q(p−1)
ℓp

∞∑
i=1

|xi|q(p−1) =
1

∥x∥pℓp

∞∑
i=1

|xi|p =
1

∥x∥pℓp
∥x∥pℓp = 1.

Thus, ȳ ∈ ℓq and y is an admissible test sequence since ∥ȳ∥ℓq ≤ 1. It follows that

max
y∈ℓq ,

∥y∥ℓq≤1

⟨x, y⟩ ≥ ⟨x, ȳ⟩ =
∞∑
i=1

xiyi =
∞∑
i=1

|xi|p

∥x∥p−1
ℓp

=
∥x∥pℓp
∥x∥p−1

ℓp

= ∥x∥ℓp .

1.5. Function spaces. In this section, we will define a family of norms on functions that is
analogous to the family of ℓp-norms. This will give us a number of different ways to measure the
“size” of a function.

1.5.1. A silly example. Take any p ∈ [1,∞) and any element x̄ ∈ ℓp(N). Recall that x̄ is
“equivalent” to a function fx̄ : N → R defined by

fx̄(n) = xn.

By an abuse of notation, we can consider this a function on all of R:

fx̄(x) =

{
xn if x ∈ [n, n+ 1),

0 if x < 1.

With this definition, we find that

∥x̄∥pℓp =
∞∑
n=1

|xn|p =
∞∑
n=1

|fx̄(n)|p =
∫
R
|fx̄(x)|pdx.

This suggests a natural norm on “suitable” functions

∥f∥Lp(R) =

(∫
R
|f(x)|pdx

) 1
p

.

The meaning of suitable is something that requires some work that we will ignore for now and
address later.

To get functions that are not zero for x < 1, one could go even crazier with this and consider
sequences x̄ ∈ ℓp(Z) and construct functions fx̄ : R → R from them. Recall that

ℓp(Z) = ℓp(R,Z) =

{
f ∈ RZ :

∞∑
n=−∞

|f(n)|p <∞

}

=

{
(. . . , x−2, x−1, x0, x1, x2, . . . ) : xi ∈ R for all i ∈ Z,

∞∑
n=−∞

|xn|p <∞

}
.
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x0

f(x0)

f(x0) + ε

f(x0) − ε

x0 − δ x0 − δ

Figure 3: An illustration of continuity. All inputs x within δ of x0 yield outputs f(x) within
at least ε of f(x0).

and that ℓp(Z) has the norm:

∥xpn∥ =

( ∞∑
n=−∞

|xn|p
) 1

p

=

( ∞∑
n=0

|x−n|p +
∞∑
n=1

|xn|p
) 1

p

.

Exercise 1.5.1. Think about how the above works when p = ∞.

But all of this is just a silly example to motivate the Lp-norms and illustrate their connection to
the ℓp-norms. So let us start to introduce those in a more serious way.

1.5.2. Defining the Lp-norms. For any “nice” set Ω ⊂ Rn, define the spaces

C(Ω,R) = {f : Ω → R : f is continuous} and
Cpw(Ω,R) = {f : Ω → R : f is piecewise continuous}

We almost always just write these as C(Ω) and Cpw(Ω). The most often used sets will be Ω = Rn

or Ω = [a1, b1] × · · · × [an, bn]. From here, though, for simplicity, we focus on the case n = 1 and
Ω = [a, b] for some a < b. Let us quick recall the definition of continuity:

Definition 1.5.1. Let Ω ⊂ R. A function f : Ω → R is continuous at x0 if, for every ε > 0, there
is δε,x0 > 0 such that

|f(x)− f(x0)| < ε

whenever |x− x0| < δε,x0. See Figure 3.

We call f : Ω → R piecewise continuous if there is n ∈ N ∪ {0} and points x1, . . . , xn ∈ Ω such that
f is continuous except at x1, . . . , xn.

Exercise 1.5.2. To get your bearings with continuity, try the following two exercises:

(i) Show that 1[0,1] : R → R is not continuous. This is the function such that 1[0,1](x) = 1 when
x ∈ [0, 1] and 1[0,1](x) = 0 when x /∈ [0, 1].

(ii) Show that f(x) = πx is continuous.

18



We can put a norm on Cpw([a, b]) along the lines of the above: for p ∈ [1,∞) and any f ∈ Cpw([a, b]),
let

∥f∥Lp([a,b]) =

(∫ b

a
|f(x)|pdx

) 1
p

, (1.5.1)

and for p = ∞, let
∥f∥L∞([a,b]) = sup

[a,b]
|f(x)|. (1.5.2)

We make two important notes:

• We usually simply denote the norm by ∥ · ∥p when no confusion will arise.

• The L∞-norm actually involves a maximum of |f | due to the extreme value theorem. There
are two reasons that we use sup in its definition. First, if we change the domain to (a, b), a
maximum is no longer guaranteed. Second, in the future, we will allow L∞([a, b]) to define a
normed linear space that includes “all” bounded functions, including some discontinuous ones,
which may not have a maximum (but will have a supremum).

In the future, it will be useful to discuss the “Lp-spaces.” We do not, however, have the theory to
properly define these. Roughly, one would like to just say

Lp(Ω) = {f : Ω → R : ∥f∥p <∞}. (1.5.3)

This definition will not work.

To illustrate the issue with (1.5.3), consider the following function:

1Q∩[0,1](x) =

{
1 if x ∈ Q ∩ [0, 1],

0 if x /∈ Q ∩ [0, 1],

where Q is the set of all rational numbers. Since every interval (a, b) contains a rational number3,
one can show that the upper Riemann sum for∫

R
1Q(x)dx

is always 1, but the lower Riemann sum is always 0. Hence, it is not clear what value to assign
∥1Q∥1. Is 1Q ∈ L1(R) or not!?!?

While in the future we will be able to resolve this mini-paradox, for the moment we will work with
two different definitions, depending on what is most convenient for us. One, straightforward way to
resolve it, is to take

Lp
prel(Ω) = {f ∈ Cpw(Ω) : ∥f∥Lp(Ω) <∞}.

Here “prel” is short for “preliminary.”

Sometimes this is too restrictive to include interesting and important examples; for example, piece-
wise continuous functions. Another, somewhat vague approach is to use function f such that4

f is the Lp limit of some sequence fn ∈ C(Ω) such that sup
n

∥fn∥p <∞.

3We will show this in Section 3.1 but you probably do not find it surprising!
4This requires that p < ∞, unfortunately. However, the above “definition” for Lp spaces is good enough to then
obtain L∞ as the “limit” of the Lp spaces: if a < b, then f ∈ L∞([a, b]) if f ∈ Lp([a, b]) for all p ∈ [1,∞) and
∥f∥∞ := limp→∞ ∥f∥Lp([a,b]) < ∞. This is, of course, an insane way to go about things. So simply ignore this
footnote unless you find it compelling.
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The “vagueness” referred to above is related to what we mean by “is the limit of,” but let us ignore
that for the moment.

In this way, we feel comfortable saying that x−1/2 ∈ L1([0, 1]). Indeed, even though this function is
not continuous, it is clearly approximated in L1 by the sequence

fn(x) =

{
1√
x

if x > 1
n ,

x
√
n if x ∈ [0, 1/n].

Notice that for any ε > 0, for n,m > ε−2/3, fn and fm agree everywhere except on [0,max{1/n, 1/m}].
Hence,

∥fn − fm∥1 ≤
∫ 1/n

0
fn(x)dx+

∫ 1/m

0
fm(x)dx =

1

2n3/2
+

1

2m3/2
≤ ε.

1.5.3. The Lp-norms are norms. The L∞ case is the easiest, so we leave it as an exercise.

Exercise 1.5.3. The L∞-norm is a norm.

We now check the three conditions of being a norm. Throughout the arguments, fix p ∈ [1,∞).
Note the similarities to how the

Positive definiteness: As usual, it is obvious that ∥f∥p ≥ 0. Next we check that ∥f∥p = 0 if and
only if f is the zero function. Clearly if f is the zero function then ∥f∥p = 0. Hence, we need only
check the other direction.

Suppose that f is not the zero function. Then there is some x0 ∈ [a, b] such that |f(x0)| > 0. Since
f is continuous, then there is δ > 0 such that

|f(x0)− f(x)| ≤ |f(x0)|
2

for all |x− x0| < δ.

Hence, there is an interval I ⊂ [a, b] of width at least

δ̄ = min{b− a, δ}

such that, for x ∈ I,

|f(x)| = |f(x0) + (f(x)− f(x0))| ≥ |f(x0)| − |f(x)− f(x0)| ≥ |f(x0)| −
|f(x0)|

2
=

|f(x0)|
2

.

It follows that

∥f∥pp =
∫ b

a
|f(x)|pdx ≥

∫
I
|f(x)|pdx ≥

∫
I

|f(x0)|p

2p
dx ≥ |f(x0)|p

2p
δ̄ > 0.

This concludes the proof of positive definiteness.

Homogeneity: This is obvious and, thus, omitted.

Triangle inequality: As for ℓp, this goes by the name Minkowski’s inequality, which we state
here.

Theorem 1.5.2 (Minkowski’s inequality). Let f, g ∈ Cpw(Ω) and p ∈ [1,∞]. Then

∥f + g∥p ≤ ∥f∥p + ∥g∥p.
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Again, as for the ℓp-norms, this follows from Hölder’s inequality:

Theorem 1.5.3 (Hölder’s inequality). Let f, g ∈ Cpw(Ω), p ∈ [1,∞], and q be the conjugate
exponent of p. Then ∫

Ω
f(x)g(x)dx ≤ ∥f∥p∥g∥q.

Equality holds if and only if there is c > 0 such that f(x) = c sign(g(x))|g(x)|q−1 when p > 1 or
g(x) = c sign(f(x)) when p = 1.

As we will see in future lectures, the assumption of continuity is not needed to show Minkowski’s
and Hölder’s inequalities. Really all that is needed is that the functions f and g are integrable,
which ends up being a thorny issue (and so is postponed). The convenience of the assumption of
continuity is that we are guaranteed that f and g are (locally) integrable.

Proof of Hölder’s inequality.

Exercise 1.5.4. Prove this in the case p = 1 or p = ∞.

The proof is exactly as in the ℓp case. By the exercise above, we can assume that p, q ∈ (1,∞). If
either ∥f∥p or ∥g∥p is infinite, there is nothing to prove. Similarly if either is zero, there is nothing
to prove. Thus, assume they are both finite and positive.

Fix ε > 0 to be chosen. Then, by Young’s inequality (Lemma 1.4.5):∫
Ω
f(x)g(x)dx ≤

∫
Ω

|f(x)|
ε

(ε|g(x)|)dx ≤
∫
Ω

(
|f(x)|p

pεp
+
εq|g(x)|q

q

)
dx

=
∥f∥pp
pεp

+
εq∥g∥qq
q

.

(1.5.4)

Let

ε =
∥f∥

p−1
p

p

∥g∥
1
p
q

=
∥f∥

1
q
p

∥g∥
q−1
q

q

.

Hence, (1.5.4) becomes∫
Ω
f(x)g(x)dx ≤ ∥f∥p∥g∥q

p
+

∥f∥p∥g∥q
q

= ∥f∥p∥g∥q.

Proof of Minkowski’s inequality.

Exercise 1.5.5. Prove this in the case p = 1 or p = ∞.

Again, the proof is exactly as in the ℓp case. By the exercise above, we need only consider the case
p ∈ (1,∞). Additionally, if ∥f∥p or ∥g∥p is infinte, then the proof is obvious. We may, thus, assume
that both norms are finite. Finally, if ∥f + g∥p = 0, then the proof is obvious, so we may assume
that ∥f + g∥p > 0.

Let
h(x) = sign(f(x) + g(x))|f(x) + g(x)|p−1.
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Then, applying Hölder’s inequality,∫
Ω
|f(x) + g(x)|pdx =

∫
Ω
(f(x) + g(x))h(x)dx =

∫
Ω
f(x)h(x)dx+

∫
Ω
g(x)h(x)dx

≤ ∥f∥p∥h∥q + ∥g∥p∥h∥q = (∥f∥p + ∥g∥p) ∥h∥q.
(1.5.5)

where q ∈ (1,∞) is the conjugate exponent of p.

On the other hand, a direct computation yields

∥h∥qq =
∫

|f(x) + g(x)|q(p−1)dx =

∫
|f(x) + g(x)|pdx = ∥f + g∥pp, (1.5.6)

The second equality above holds because, due to being conjugate exponents, p and q satisfy

p(q − 1) = p.

Since, also, p/q = p− 1, then (1.5.6) implies that

∥h∥q = ∥f + g∥p−1
p .

Plugging this into (1.5.5), implies that

∥f + g∥pp =
∫
Ω
|f(x) + g(x)|pdx ≤ (∥f∥p + ∥g∥p) ∥h∥q = (∥f∥p + ∥g∥p) ∥f + g∥p−1

p .

Since ∥f+g∥p > 0, by assumption, we may divide both sides by ∥f+g∥p−1
p to conclude the proof.

Just as before, we can also show that using “duality,” we can characterize the Lp-norm in an alternate
way:

Exercise 1.5.6. Fix p ∈ [1,∞] and let q be its conjugate exponent. Fix any a, b ∈ [−∞,+∞] with
a < b, and let f ∈ Cpw([a, b]). Show that the the Lp-norm of f can be obtained by “testing” with all
function of Lq-norm bounded by one:

∥f∥p = sup
g∈Cpw([a,b]),

∥g∥q≤1

∫ b

a
f(x)g(x)dx = sup

g∈Cpw([a,b]),
∥g∥q=1

∫ b

a
f(x)g(x)dx.

(Sometimes we simply use ⟨f, g⟩ to denote the “dot product”
∫ b
a f(x)g(x)dx.)

Let us use these inequalities to obtain a few simple bounds.

Example 1.5.4. (i) Using Hölder’s inequality with p = q = 2, we find∫ 1

0

√
x(1− x)dx ≤

(∫ 1

0
xdx

)1/2(∫ 1

0
(1− x)dx

)1/2

=
1

2
. (1.5.7)

Another estimate you can get is∫ 1

0

√
x(1− x)dx ≤

(∫ 1

0
x(1− x)dx

)1/2(∫ 1

0
1 dx

)1/2

=

(
1

2
− 1

3

)1/2

· 1 =
1√
6
≈ .4082...

(1.5.8)
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Figure 4: The functions used in Example 1.5.4.(i).

(The actual value is π/8 ≈ .39276...). Why is the second estimate better than the first? Recall
that Hölder’s inequality (for p = q = 2) is sharp when f and g are the same up to a constant.
In (1.5.7), the f and g are

√
x and

√
1− x, respectively, which are not particularly similar

functions. On the other hand, in (1.5.8), the f and g are
√
x(1− x) and 1, respectively, which

are both mostly flat functions. Hence, we are closer to the “sharp” (equality) case.

To put a finer point on this, we want to think of ⟨f, g⟩ as an inner product (dot product),
which will be maximized up to ∥f∥Lp∥g∥L2 when f and g are most aligned; that is, they are
the same up to multiplication by a constant. Roughly, for functions this means they have the
same wiggles in the same places (even if one is much larger than the other). In Figure 4 it is
heuristically clear that f and g are more “similar” in the second case than the first.

(ii) Let us find a lower bound of
∫ π
0 (sin(x)/x)

3dx. Notice that the conjugate exponent of p = 3 is
q = 3/2. Then:

2 =

∫ π

0
sinxdx =

∫ π

0

(
sinx

x

)
xdx ≤

(∫ π

0

(
sinx

x

)3

dx

) 1
3 (∫ π

0
x3/2dx

) 2
3

=

(∫ π

0

(
sinx

x

)3

dx

) 1
3 (2

5
π

5
2

) 2
3

=

(∫ π

0

(
sinx

x

)3

dx

) 1
3 (2

5

) 2
3

π
5
3 .

Hence,

50

π5
=

(
2π

−5
3

(
2

5

)−2
3

)3

≤
∫ π

0

(
sinx

x

)3

dx.

(iii) Let us see “how continuous” a function f can be if we know something about the Lp-norm of
its derivative f ′. Let p > 1 and q be its conjugate exponent. Then:

|f(x)− f(y)| =
∣∣∣ ∫ y

x
f ′(z)dz

∣∣∣ ≤ (∫ y

x
1qdz

) 1
q
(∫ y

x
|f ′(z)|pdz

) 1
p

≤
(∫ y

x
1qdz

) 1
q
(∫ b

a
|f ′(z)|pdz

) 1
p

≤
(∫ y

x
1qdz

) 1
q

∥f ′∥p = |x− y|1/q∥f ′∥p
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We point out that, as p → +∞, 1/q → 1, so that this gets “more continuous” (that is, the
modulus of continuity5 gets smaller).

Note: This is a basic version of an extremely useful class of inequalities called “Sobolev in-
equalities.” What we have deduced from the statement above is that, if f, f ′ ∈ Lp([a, b]) then
f ∈ C1/q([a, b]) and that

[f ]C1/q([a,b]) ≤ ∥f ′∥p,
where, for any α ∈ (0, 1), the α-Hölder semi-norm is defined by

[f ]Cα([a,b]) := sup
x ̸=y

|f(x)− f(y)|
|x− y|α

and α-Hölder space is defined by

Cα([a, b]) = {f ∈ C([a, b]) : [f ]Cα < +∞}.

These Hölder spaces are also extremely important to the theory of partial differential equations
(PDE), but let us not discuss them further.

Exercise 1.5.7. Show that, if f ′ ∈ L2(R) then f ∈ C1/2(R).

Exercise 1.5.8. Suppose that u, u′ ∈ C(R) satisfies

lim
x→−∞

u(x) = 1, lim
x→+∞

u(x) = 0, and ∥u∥∞ = 1.

Suppose that f ∈ C([0, 1]) is nonnegative function with the property that there is α > 0 and z1, z2 ∈
(0, 1) with z1 < z2 such that f(z) ≥ α for all z ∈ [z1, z2]. Find an explicit lower bound on∫

R
f(u(x))dx.

This lower bound plays an important role in understanding PDE models for flame propagation.

When we are working on a finite interval [a, b] with −∞ < a < b < ∞, we have a nice inclu-
sion amongst Lp spaces. To get a handle on why this should be true, think about the inclusion
L∞([a, b]) ⊂ L1([a, b]). Indeed,

∥f∥L1([a,b]) =

∫ b

a
|f(x)|dx ≤

∫ b

a
max
x∈[a,b]

|f(x)|dx =

∫ b

a
∥f∥L∞([a,b])dx = |a− b|∥f∥L∞([a,b]).

On finite domains, the larger the p, the more the Lp-norm is about boundedness. In general we get
the following inequality directly from Hölder’s inequality:

Corollary 1.5.5. Given a, b ∈ R with a < b and f ∈ Lr([a, b]) with r > s ≥ 1, then f ∈ Ls([a, b])
and

∥f∥s ≤ |b− a|
1
s
− 1

r ∥f∥r. (1.5.9)

Proof. Let p = r/s and q = r
r−s . It is easy to check that p and q are conjugate exponents. An

application of Hölder’s inequality yields

∥f∥ss =
∫ b

a
|f(x)|s · 1 dx ≤

(∫ b

a
(|f(x)|s)

r
s dx

) s
r
(∫ b

a
1

r
r−s dx

) r−s
r

≤ ∥f∥sr|b− a|1−
s
r .

The proof is then finished by taking the 1/s power of each side.
5The modulus of continuity is, roughly, the largest δ that can be taken for each ε in the definition of continuity.
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Before continuing, we make a few notes about Corollary 1.5.5:

• The quantitative statement (1.5.9) encodes the qualitative statement Lr([a, b]) ⊂ Ls([a, b]).
This is an example of an “embedding” theorem. We say Lr is embedded in Ls.

• This is the opposite embedding from the ℓp spaces, which gives ℓs ⊂ ℓr when s < r. One can
ask if Ls([a, b]) ⊂ Ls([a, b]), but this is, unfortunately, not true. Indeed: fix α > 0 such that
αr < 1 and αs > 1. Then, letting

f(x) = (x− a)−α,

it is easy to see that f ∈ Lr([a, b]) \ Ls([a, b]).

• This proof strategy will clearly not hold on an infinite domain (−∞, b), (a,∞), or (−∞,∞)
since this corresponds to the limit |b− a| → ∞. Actually, the inclusion is not even true!

Exercise 1.5.9. Under the conditions of Corollary 1.5.5 but with either a = −∞ or b = ∞,
find f ∈ Ls \ Lp.

Important aside: scaling.

There is an important “scaling” property in Theorem 1.5.3 and Corollary 1.5.5. Actually, this helps
inform the necessity of having conjugate exponents. Let us consider Theorem 1.5.3 on R at first.
Fix any f ∈ Lp(R) and g ∈ Lq(R) and let λ > 0. Define

fλ(x) = λ
1
p f(λx) and gλ(x) = λ

1
q g(λx).

An easy computation (u-substitution!) shows that

∥fλ∥p = ∥f∥p and ∥gλ∥q = ∥g∥q.

Suppose that p and q were not conjugate exponents, so that

1

p
+

1

q
̸= 1,

but that, for whatever reason, we happened to know that Theorem 1.5.3 held regardless for this
choice of p and q. Then:

λ
1
p
+ 1

q
−1
∫
f(x)g(x)dx =

∫
fλ(x)gλ(x)dx ≤ ∥fλ∥p∥gλ∥q = ∥f∥p∥g∥q.

As long as ⟨f, g⟩ =
∫
f(x)g(x)dx > 0 (which is certainly true for some choice of f and g), we can

derive a contradiction. Indeed,

• if 1
p + 1

q > 1, then we can take λ→ ∞;

• if 1
p + 1

q < 1, then we can take λ→ 0.

In both cases, the left hand side tends to infinite, but the right hand side stays constant. This is
a contradiction. Hence, the conjugate exponent condition is “forced” on us by scaling. This is an
important way to test if an inequality that you are trying to prove has any hope of
working!
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Exercise 1.5.10. Perform a scaling analysis to understand the |a−b|
1
s
− 1

r factor in Corollary 1.5.5.

Back to Lp spaces...

Sometimes it is useful to take intersections of normed linear spaces. There is a general process to
doing this that we define here. Below we specialize to the Lp-spaces and explore some examples.

Definition 1.5.6. Given two normed linear spaces (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) such that X,Y ⊂ Z
for some linear space Z, we define new space:

(X ∩ Y, ∥ · ∥X∩Y ) where ∥v∥X∩Y = ∥v∥X + ∥v∥Y .

It is straightforward to check that ∥v∥X∩Y is a norm. Let us think

Exercise 1.5.11. Does the definition ∥v∥X∩Y = min{∥v∥X , ∥v∥Y } work as well (i.e., is this a
norm)?

Example 1.5.7. Consider the spaces L1([0,∞)) and L7([0,∞)). Call X = L1∩L7 and let us think
about X for a bit. Let p ∈ [1, 7] and we claim that:

(i) Lp ̸⊂ X and

(ii) X ⊂ Lp with the stronger claim that there is Cp > 0, depending only on p, such that if f ∈ X
then

∥f∥p ≤ Cp∥f∥X . (1.5.10)

Let us first look at (i). If p < 7, then

f(x) = x
− 2

p+7 e−x,

is clearly in Lp but is not in L7 and, hence, X. On the other hand, when p = 7,

f(x) =
1

1 + x
2
7

,

is an element of Lp = L7, but is not an element of L1 and, hence, X.

Now we investigate (ii). Our main tools will be Hölder’s and Young’s inequalities. We begin by
applying Hölder’s inequality with conjugate exponents r, s satisfying:

1

r
+

1

s
= 1 and

1

r
+

7

s
= p.

In fact, we have r = 6
7−p and s = 6

p−1 . Then:

∥f∥pp =
∫ ∞

0
|f(x)|pdx =

∫ ∞

0
|f(x)|

1
r |f(x)|

7
s dx ≤ ∥|f |1/r∥r∥|f |

7/s∥s

=

(∫ ∞

0
|f(x)|dx

)1/r
((∫ ∞

0
|f(x)|7dx

) 1
7

) 7
s

= ∥f∥
1
r
1 ∥f∥

7
s
7 = ∥f∥

7−p
6

1 ∥f∥
7(p−1)

6
7 .

We used the explicit forms of r and s in the last inequality. Rearranging this, we find

∥f∥p ≤ ∥f∥
7−p
6p

1 ∥f∥
7(p−1)

6p

7 ,
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which is close to what we want. In fact, it implies the inclusion X ⊂ Lp, but it is not precisely of the
form (1.5.10). As usual, when we have a product and we want a sum (or vice versa), we appeal to
Young’s inequality. Notice that miraculously6 6p/(7− p) and 6p/7(p− 1) are conjugate exponents. Let
ε > 0 be a constant to be chosen and then Young’s inequality gives

∥f∥p ≤
ε

6p
7−p ∥f∥1

6p
7−p

+
∥f∥7

6p
7(p−1)ε

6p
7(p−1)

. (1.5.11)

At this point we are finished by taking ε = 1 and letting

Cp = 2max

{
7− p

6p
,
7(p− 1)

6p

}
.

Exercise 1.5.12. Choose the best ε to find the smallest Cp that follows from (1.5.11). Is this
estimate sharp? That is, for each p, can you find f such that (1.5.11), with the Cp you computed,
is actually and equality?

Exercise 1.5.13. Suppose we fix p ∈ [1, 7] and any f that is an element of Lp and X. Will it be
true that the converse of (1.5.10) holds? That is, is there a constant Cp > 0 such that

∥f∥X ≤ Cp∥f∥p?

If the answer is yes, prove it. If the answer is no, establish this by finding a sequence fn ∈ X such
that ∥fn∥X ≥ n∥fn∥p for each n.

2. Continuity and dual spaces

2.1. The ε-δ definition of continuity and sequential continuity. We begin by
giving the definition of continuity in a metric space (X, d).

Definition 2.1.1. Let (X, dX) and (Y, dY ) be metric spaces. Fix x0 ∈ X. We say that a function
f : X → Y is continuous at x0 if, for every ε > 0 there is δ > 0 such that

dY (f(x), f(x0)) < ε whenever dX(x, x0) < δ.

We say that f is continuous if it is continuous at every point x0 ∈ X.

Exercise 2.1.1. Take the metric spaces X and Y above to be R with the metric induced by the
absolute value (i.e., the usual Euclidean metric) and think about how this definition matches up with
the ε− δ definition for continuity that you previously learned.

Example 2.1.2. Let us illustrate this definition by considering the very simple example of f : R →
R, where f(x) = 1(−∞,0].

x−2 −1 1 2

y

1

2

f(x) = 1(−∞,0]

6There are no miracles in math, this is simple due to the importance of the conjugate exponents in the computations
above.
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While we can all agree that this is not continuous at x = 0, we need to prove it with our new
definition. Since the jump at x = 0 has size 1, we choose ε = 1/2, which is smaller than 1. Then,
for any δ > 0, we have that

|δ/2 − 0| < δ but |f (δ/2)− f(0)| = |0− 1| = 1 > 1/2 = ε.

Hence, f is not continuous.

There is, actually, another “version” of continuity using sequences that we define now.

Definition 2.1.3. Suppose that (xn)n is a sequence of points in X and x∞ ∈ X. We say that

lim
n→∞

xn = x∞,

or, equivalently, that xn converges to x∞ as n→ ∞ if, for every ε > 0, there is Nε such that

d(xn, x∞) < ε whenever n ≥ Nε.

Example 2.1.4. Let us see this definition in action. Consider the sequence of functions f1, f2, f3,
. . . defined by

fn(x) = n1/41[0,1/n].

In a “normal” sense, fn does not converge to any function f since fn(0) = n1/4 → ∞ as n → ∞.
But what about in Lp spaces? First let us check L2:

∥fn − 0∥2 =
(∫

(fn(x)− 0)2dx

)1/2

=

(∫
fn(x)

2dx

)1/2

=

(∫ 1/n

0
n1/2dx

)1/2

=
1

n1/4
. (2.1.1)

For any ε > 0, let Nε be the smallest integer that is greater than 1/ε4. Then, N−1/4
ε < ε. If n ≥ Nε,

we have, from (2.1.1),
∥fn − 0∥2 ≤ n−1/4 ≤ N−1/4

ε < ε.

Thus, fn → 0 as n→ ∞ in L2.

Exercise 2.1.2. Show that fn → 0 as n→ ∞ in Lp for any p ∈ [1, 4).

Exercise 2.1.3. Show that if xn → x∞ and y is another point in the metric space (X, d) then
d(xn, y) → d(x∞, y). Use this to show that, in the previous example, fn ̸→ f for any f ∈ Lp when
p ≥ 4.

Note that the previous examples and exercises show that the metric you work with matters a lot in
determining the convergence of the sequence.

Definition 2.1.5. Let (X, dX) and (Y, dY ) be metric spaces. Fix x0 ∈ X. We say that a function
f : X → Y is sequentially continuous at x0 if, for every sequence (xn)n,

lim
n→∞

f(xn) = f(x∞) whenever lim
n→∞

xn = x∞.

We say that f is sequentially continuous if it is continuous at every point x∞ ∈ X.

We see below that this is equivalent to continuity as defined above because we are in a metric space.
Note that there is a weaker notion of spaces that allow “convergence” called topological spaces in
which sequential continuity is not equivalent to continuity.
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Theorem 2.1.6. Suppose that (X, d) and (Y, ρ) are two metric spaces, f : X → Y , and x∞ ∈ X.
Then f is continuous at x∞ if and only if f is sequentially continuous at x∞.

Before beginning the proof we note the importance of this theorem. Often, it is easier or more
natural to work with sequences instead of shuffling around epsilons and delta. This theorem tells
us that that is OK.

Proof that continuity implies sequential continuity. Fix any sequence (xn)n such that

lim
n→∞

xn = x∞. (2.1.2)

Fix any ε > 0. Since f is continuous at x∞, there is δ > 0 such that

d(f(x∞), f(x)) < ε whenever d(x∞, x) < δ. (2.1.3)

Due to (2.1.2), there is Nδ such that, whenever n ≥ Nδ, we have

d(x∞, xn) < δ.

Putting this together with (2.1.3), we see that, whenever n ≥ Nδ,

d(f(x∞), d(f(x))) < ε.

This is precisely what we need to show in order to conclude that

lim
n→∞

f(xn) = f(x∞).

Hence, the proof is complete.

Proof that sequential continuity implies continuity. Before beginning, we note that this proof is dif-
ficult (impossible?) to do directly, and it is much easier to give a proof of the contrapositive. In
other words, we show that if f is not continuous at x∞ then f is not sequentially continuous at x∞.
This is logically equivalent to what we are trying to prove.

Suppose that f is not continuous at x∞. Then, for every n, there is ε > 0 and xn such that

d(f(x∞), f(xn)) > ε and d(x∞, xn) <
1

n
.

Here we are just taking δ = 1/n for each n and taking the negation of the definition of continuity.

It is clearly true that
lim
n→∞

xn = x∞.

On the other hand, it is also clearly true that

lim
n→∞

f(xn) ̸= f(x∞).

Hence, f is not sequentially continuous at x∞.

Example 2.1.7. 1. Fix a constant c ∈ R and take the function g : R → R defined by g(x) = cx
for all x. We know from our Calculus that, for any convergent sequence,

lim
n→∞

cxn = c lim
n→∞

xn.

Hence, g is sequentially continuous. It follows from Theorem 2.1.6 that g is continuous as
well.
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2. Let f : R → R be defined by f(x) = ex. Fix any θ ∈ R and we will show that f is continuous
at θ. Notice that

f(θ)− f(x) = eθ − ey = eθ
(
1− ey−θ

)
.

Fix any ε > 0 and let

δ = min

{
log(1 + εe−θ), log

(
1

1− εe−θ

)}
. (2.1.4)

Consider any y ∈ R such that
|y − θ| < δ.

If y ≥ θ, then
0 ≤ y − θ < δ ≤ log(1 + εe−θ).

Hence
|f(θ)− f(x)| = eθ

(
ey−θ − 1

)
< eθ

(
elog(1+εe−θ) − 1

)
= ε,

which is exactly what we want to show.

Exercise 2.1.4. Check the case y < θ on your own! This is where the other alternative
in (2.1.4) comes from.

Notice here that δ depends on θ, the point at which we wish to show continuity.

3. Define a function7 L : L1(R+) → R+ by

L(f) =
∫ ∞

0
sin(x)f(x)dx.

Is this continuous at f(x) = e−x? Fix any ε > 0 and let

δ = ε.

Notice that, due to Hölder’s inequality and the fact that ∥ sin ∥L∞ = 1, we have, for any h ∈ L1,

|L(h)| ≤ ∥h∥L1 . (2.1.5)

Fix any g ∈ L1 such that ∥g − f∥1 < δ. Notice that

L(f)−L(g) =
∫ ∞

0
sin(x)f(x)dx−

∫ ∞

0
sin(x)g(x)dx =

∫ ∞

0
sin(x)(f(x)−g(x))dx = L(f −g).

In view of (2.1.5), we have

|L(f)− L(g)| ≤ ∥f − g∥L1 < δ = ε,

as desired. Thus L is continuous. Notice that δ does not depend on f , the point at which we
want to show continuity.

7Recall that R+ = [0,∞)

30



4. Define a function8 N : L1(R+) → R+ by

N (f) =

(∫ ∞

0
sin(x)f(x)dx

)2

= (L(f))2.

Is this continuous at f(x) = πe−x? Notice that ∥f∥1 = 2π. Fix any ε > 0 and let

δ = min {1, ε/2∥f∥L1 + 1}

Fix any g ∈ L1 such that ∥g − f∥1 < δ. Notice that

N (f)−N (g) =

(∫ ∞

0
sin(x)(f(x) + g(x))dx

)(∫ ∞

0
sin(x)(f(x)− g(x))dx

)
= L(f+g)L(f−g),

and that

L(f + g) ≤ ∥f + g∥L1 = ∥2f + (g − f)∥L1

≤ 2∥f∥L1 + ∥g − f∥L1 < 2∥f∥L1 + δ ≤ 2∥f∥L1 + 1.
(2.1.6)

The first inequality is due to (2.1.5), the second inequality is due to the triangle inequality,
and the third inequality is due to the fact that δ ≤ 1. Note that this is why I have the 1 in the
definition of δ (indeed, ε could be anything, so if I just used ε/100, then 4 + ε/100 could be
1010

1010
...

). Additionally, getting the optimal δ here does not help – no matter how small δ is,
∥f + g∥L1 will still, roughly, be 2∥f∥L1. Hence, all of the “smallness” should come from the
L(f − g) term, not the L(f + g) term.

Using (2.1.6) and also (2.1.5) again, we find

|N (f)−N (g)| ≤ (2∥f∥L1 + 1)∥f − g∥L1 < (2∥f∥L1 + 1)δ ≤ ε.

Hence, N is continuous.

A procedural comment: our δ worked out perfectly here. The reason is that, in practice, we
leave δ unchosen until the last step and then go back and figure out what the correct δ should
be.

Definition 2.1.8. A function f : (X, d) → (Y, ρ) is uniformly continuous if, for all ε > 0, there is
δ > 0 such that

ρ(f(x1), f(x2)) < ε

whenever d(x1, x2) < δ.

Notice that the same δ works for all x1 and x2. In the definition of continuity, the δ may depend on
the base point x0. Hence, uniform continuity is a stronger property than continuity: every uniformly
continuous function is continuous, but not every continuous function is uniformly continuous.

To understand this distinction further, let us return to our our examples from Example 2.1.7 and
see which are uniformly continuous as well.
8Recall that R+ = [0,∞)
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Example 2.1.9. 1. Fix a constant c ∈ R and take the function g : R → R defined by g(x) = cx
for all x. Fix any ε > 0 and let

δ =
ε

1 + |c|
> 0.

Notice that this depends only on f and ε. Suppose that

|x− y| < δ.

Then
|g(x)− g(y)| = |c||x− y| ≤ |c| ε

1 + |c|
< ε.

Hence g is uniformly continuous.

2. Let f : R → R be defined by f(x) = ex. In Example 2.1.7.(ii), our δ depended on the point
θ at which we were establishing continuity. This suggests that f is not uniformly continuous;
however, it is not a proof. Let us show this. Fix any ε > 0. Suppose that f were uniformly
continuous so that there is δ > 0 such that

|f(θ)− f(β)| < ε whenever |θ − β| < δ.

Then
ε > |f(n)− f(n+ δ/2)| = en

(
e
δ/2 − 1

)
.

Since exp{δ/2} − 1 > 0 and en → ∞ as n → ∞, this cannot possibly hold. Thus f is not
uniformly continuous.

3. Define a function N : L1(R+) → R+ by

N (f) =

(∫
sin(x)f(x)dx

)2

.

As in the previous example, we show that N is not uniformly continuous and we show this by
contradiction. Suppose that ε > 0 and δ > 0 is such that

|N (f)−N (g)| < ε whenever ∥f − g∥1 < δ. (2.1.7)

For any A > 0, let fA(x) = A1[0,π/4]. Notice that ∥fA∥1 = Aπ/4 and fA + fB = fA+B for any
A,B > 0. Then,

∥fA+δ/2 − fA∥1 = ∥fδ/2∥1 =
δπ

8
< δ,

but

N (fA+δ/2)−N (fA) =

(∫
sin(x)(fA+δ/2 + fA)dx

)(∫
sin(x)(fA+δ/2 − fA)dx

)
=

(∫
sin(x)f2A+δ/2dx

)(∫
sin(x)fδ/2dx

)
=

(∫ π/4

0
sin(x)

(
2A+

δ

2

)
dx

)(∫ π/4

0
sin(x)

δ

2
dx

)

≥
(
2A+

δ

2

)
δ

2

(∫ π/4

0
sin (π/4) dx

)(∫ π/4

0
sin (π/4) dx

)

=

(
2A+

δ

2

)
δ

2

(π
4

)2
sin (π/4)2 .
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Each step is a direct calculation until the first inequality, which uses that sin is decreasing
on [0, π/4]. The above can be made larger than ε by simply increasing A sufficiently. This
violates (2.1.7). Hence N is not uniformly continuous.

Exercise 2.1.5. Define f : [0,∞) → [0,∞) by f(x) =
√
x. Show that f is uniformly continuous.

Hint: you will need to choose δ to be ε2 (possibly divided by a large constant).

How does this work on the ℓp spaces?

Proposition 2.1.10. For any p, q ∈ [1,∞], define

id : ℓp → ℓq by id(x̄) = x̄.

If p ≤ q, this is well-defined and uniformly continuous.

Proof. We showed on Homework 1 that ℓp ⊂ ℓq. All of you showed, as a part of that exercise, that

∥x̄∥ℓq ≤ ∥x̄∥ℓp .

With this in hand, we show continuity. Suppose that ε > 0. Let δ = ε and suppose that

∥x̄− ȳ∥ℓp < δ = ε. (2.1.8)

Then, by (2.1.8), we have

∥ id(x̄)− id(ȳ)∥ℓq = ∥x̄− ȳ∥ℓq ≤ ∥x̄− ȳ∥ℓp < ε.

This concludes the proof.

Exercise 2.1.6. If p > q, the above map is not well-defined; however, if we look at

id : ℓp ∩ ℓq → ℓq by id(x̄) = x̄,

we can ask if this new map is continuous (it is clearly well-defined). Show that it is not.

Proposition 2.1.11. For any p, q ∈ [1,∞], define

f : ℓp → ℓq by f(x̄) =
(
|x1|

p/q, |x2|
p/q, |x3|

p/q, . . .
)
.

If p > q, this is well-defined and continuous.

Proof. To show that it is well-defined, we simply note that if x̄ ∈ ℓp, then

∥f(x̄)∥qℓq =
∞∑
i=1

∣∣∣|xi|p/q∣∣∣q = ∞∑
i=1

|xi|p = ∥x̄∥pℓp <∞,

so that f(x̄) is an element of ℓq.

We now look at continuity. Fix ε > 0 and x̄ ∈ ℓp. We observe that, for any a, b ≥ 0, there is a
constant C > 0 such that

|ap/q − b
p/q| ≤ C(|a|+ |b|)p/q−1|a− b|.

Exercise 2.1.7. Prove this!
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Define

δ = min

{
1,

ε

C
1
q (2∥x̄∥ℓq + 1)

p−q
q

}
.

Then if x̄, ȳ ∈ ℓp, ∥x̄− ȳ∥ℓp < δ, we have

∥ȳ∥ℓp ≤ ∥x̄∥ℓp + 1

and

∥f(x̄)− f(ȳ)∥qℓq =
∞∑
i=1

∣∣∣|xi|p/q − |yi|
p/q
∣∣∣q ≤ C

∞∑
i=1

∣∣∣(|xi|+ |yi|)
p−q
q (|xi − yi|)

∣∣∣q
≤ C

∞∑
i=1

(|xi|+ |yi|)p−q |xi − yi|q ≤ C∥(|xi|+ |yi|)i∥p−q
ℓp ∥x̄− ȳ∥qℓp ,

(2.1.9)

where we use Hölder’s inequality with conjugate exponents p/q and p/(p − q) in the last step and
we are using (|xi|+ |yi|)i to denote the sequence (|x1|+ |y1|, |x2|+ |y2|, . . . ). Notice that

∥(|xi|+ |yi|)i∥ℓp ≤ ∥(|xi|)i∥ℓp + ∥(|yi|)i∥ℓ[ = ∥x̄∥ℓp + ∥ȳ∥ℓp ≤ 2∥x̄∥ℓp + δ ≤ 2∥x̄∥ℓp + 1.

Hence, (2.1.9) becomes
∥f(x̄)− f(ȳ)∥ℓq < C

1
q (2∥x̄∥ℓq + 1)

p−q
q δ = ε.

Exercise 2.1.8. Is the above map uniformly continuous?

Let’s look at a few examples where continuity fails in order to get a sense of what can go wrong.

Example 2.1.12. Consider the space

X = {x̄ ∈ ℓ2 : lim
n→∞

n9xn = 0}

with the ℓ2-norm. Define the function:

T : (X, ℓ2) → (ℓ2, ℓ2) where T x̄ = (x1, 2x2, 3x3, . . . , nxn, . . . ).

At first glance this does not seem to be such a bad function – each coordinate function fi(x̄) = ixi
is clearly continuous. But they are getting steeper as i→ ∞. This is what will cause us problems.

Suppose that T is continuous is at 0. Then there is δ > 0 such that, if ∥x̄ − 0∥ℓ2 < δ, then
∥T x̄∥2 = ∥T x̄− T0∥2 < 1. Fix N > 10/δ. Then, define

x̄ =
δ

2
eN =

(
0, . . . , 0︸ ︷︷ ︸
first N
entries

, δ2 , 0, 0, . . .
)
.

It is clear that ∥x̄∥2 = δ/2 and
T x̄ =

(
0, . . . , 0︸ ︷︷ ︸
first N
entries

, Nδ
2 , 0, 0, . . .

)
.
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Hence,

∥T x̄∥2 =
Nδ

2
>

10

δ

δ

2
= 5 > 1.

Hence T is not continuous!

Notice that this lack of continuity boils down to the fact that there is no C such that

∥T x̄∥ℓ2 ≤ C∥x̄∥ℓ2 for all x̄. (2.1.10)

Indeed, we showed above that
∥Ten∥ℓ2 = n∥en∥ℓ2 .

We will see later that inequalities of the form (2.1.10) are very important for linear operators.

Note: the above example is secretly using differentiation in L2 with Fourier series. This is not
at all obvious. But, given this context, we should not be surprised that it is not continuous –
differentiation takes “smooth” objects and makes the “rougher.” There is no reason that a “small”
object has to have a “small” derivative. Indeed, one can check that ε sin(nx) has L2([0, 1]) norm
that is roughly ε/2, but its derivative εn cos(nx) has L2-norm that is roughly εn/2!

In a moment, we will see that, actually, T is continuous nowhere.

2.2. Linear operators. Throughout this section we use (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) to denote
arbitrary normed linear spaces.

Definition 2.2.1. A function T : X → Y is linear if, for every x1, x2 ∈ X and α, β ∈ R,

T (αx1 + βx2) = αT (x1) + βT (x2).

We often simply write Tx instead of T (x).

The case Y = R plays an extremely special role in the theory that we will develop. As such, we give
a special name to linear maps T : X → R. We call them linear functionals.

Let us point out how T acts on the zero vector. To make this discussion clear, we use some excessive
notation: let 0̄X and 0̄Y be the zero vectors in, respectively, X and Y and let 0 to denote the scalar
0 ∈ R. Then, we have, by linearity,

T (0̄X) = T (00̄X) = 0T (0̄X) = 0̄Y .

The last equality follows because 0y = 0̄Y for any y ∈ Y . OK, hopefully we never have to resort to
such overwrought notation ever again...

Example 2.2.2. When the domain and codomain are Rn and Rm, respectively, all linear maps are
given by m× n matrices. Why?

Let e1, . . . , en be the standard basis vectors9 in Rn and f1, . . . , fm be those for Rm. Since, for any
i, T (ei) ∈ Rm, then there are α1i, . . . , αmi such that

T (ei) = α1if1 + α2if2 + · · ·+ αmifm.

9The vector ei is the one with all zeros entries except for a 1 in the ith entry.
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One can readily check that

T (x̄) =


α11 α21 α13 · · · α1n

α21 α22
...

. . .
αm1 αm2 · · · αmn

 x̄.
It is clearly true when x̄ = ei, by construction. After that it is easy to check by simply decomposing
any x̄ as x̄ = β1e1 + · · ·+ βnen and using the linearity of T .

Exercise 2.2.1. Do this!

It is not too hard to convince yourself, at least heuristically, that T has to be continuous. We will
revisit this later more rigorously.

This way of thinking has its limits. An example is Example 2.1.12, where we could think of the
operator as the infinitely large matrix

1 0 0 · · ·
0 2 0 · · ·
0 0 3 · · ·

. . .
... 0 n 0 · · ·
...

. . .


However, this coordinate-based thinking might make you think that this matrix corresponds with
a continuous operator, which, as we showed above, it does not.

Let’s go over a few examples in “infinite dimensional” spaces to get used to this idea.

Example 2.2.3. (i) The shift operator
S : ℓp → ℓp

defined by
S(x1, x2, . . . ) = (0, x1, x2, . . . )

is linear. Indeed,

S(αx̄+ βȳ) = S((αx1, αx2, . . . ) + (βy1, βy2, . . . )) = S(αx1 + βy1, αx2 + βy2, . . . )

= (0, αx1 + βy1, αx2 + βy2, . . . ) = (0, αx1, αx2, . . . ) + (0, βy1, βy2, . . . )

= α(0, x1, x2, . . . ) + β(0, y1, y2, . . . ) = αS(x̄) + βS(ȳ).

We point out that
∥S(x̄)∥ℓp = ∥x̄∥ℓp .

(ii) Let ι : ℓ1 → ℓ2 be the inclusion map ι(x̄) = x̄. It is obvious that ι is linear.

Notice that
∥ι(x̄)∥ℓ2 ≤ ∥x̄∥ℓ1 . (2.2.1)

We showed this on a previous homework assignment. Moreover, we showed in Proposition 2.1.10
that ι is continuous.
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Of course ℓ2 ⊊ ℓ1 so that there is a space X = ι(ℓ1) in ℓ2. One can check that ι(ℓ1) is a linear
space and then we can look at:

ι−1 : (X, ∥ · ∥ℓ2) → (ℓ1, ∥ · ∥ℓ1),

which is given by ι−1(x̄) = x̄. (MOVE THIS) Is this function continuous and does an equation
of the form (2.2.1) hold? For the latter, we mean, is there a constant C > 0 such that, for
every x̄ ∈ X,

∥ι−1(x̄)∥ℓ2 ≤ C∥x̄∥ℓ1?

This is, of course, not true. Take, for example, the elements

x̄N =
( 1√

N
, . . . ,

1√
N︸ ︷︷ ︸

N terms

, 0, 0, . . .
)

It is easy to see that
∥x̄N∥ℓ2 = 1,

but
∥ι−1(x̄N )∥ℓ1 = ∥x̄N∥ℓ1 =

√
N.

(iii) Define the map
T : ℓ3 → ℓp

by
T (x1, x2, . . . ) =

(
x1,

x2√
2
,
x3√
3
, . . . ,

xn√
n
, . . .

)
.

This is a linear operator and is well-defined when p = 3. Indeed,

T (αx̄+ βȳ) =
(
αx1 + βy1,

αx2√
2
+
βy2√
2
, . . .

)
=
(
αx1,

αx2√
2
, . . .

)
+
(
βy1,

βy2√
2
, . . .

)
= α

(
x1,

x2√
2
, . . .

)
+ β

(
y1,

y2√
2
, . . .

)
= αT (x̄) + βT (ȳ),

and

∥T (x̄)∥3ℓ3 =

∞∑
i=1

|xi|3

i3/2
≤

∞∑
i=1

|xi|3 ≤ ∥x̄∥3ℓ3 .

Exercise 2.2.2. For which other p is T well-defined?

(iv) Define the map
D : (C∞([0, 1]), ∥ · ∥1) → (C∞([0, 1]), ∥ · ∥1)

where
Df = f ′.

This is clearly well-defined, and it is linear:

D(αf + βg) = (αf + βg)′ = αf ′ + βg′ = αDf + βDg.
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(v) Define the map
δ 1

2
: (C([0, 1]), ∥ · ∥p) → R

by
δ 1

2
(f) = f(1/2).

This is clearly linear.

We will investigate the continuity of these maps further in a moment. Before we do this, though,
we state one of the most important facts about linear operators.

Definition 2.2.4. Suppose that T : (X, ∥ · ∥X) → (Y, ∥ · ∥Y ) is a linear map between normed linear
spaces. We say that T is bounded if there is a constant C such that

∥Tx∥Y ≤ C∥x∥X .

We denote by B(X,Y ) the set of bounded linear operators from X → Y and we define the norm10

∥T∥B(X,Y ) = sup
x ̸=0

∥Tx∥Y
∥x∥X

.

Note: often we drop the B(X,Y ) subscript.

Exercise 2.2.3. Show that

∥T∥ = sup
x∈X\{0},
∥x∥X≤1

∥Tx∥Y = sup
x∈X,

∥x∥X=1

∥Tx∥Y .

From a philosophical point of view, why are bounded linear operators important? Let us change
perspective a bit and think about a function T : X → Y as describing the “similarity” of its domain
X and codomain Y . When we discuss normed linear spaces, the important parts of the space are
only the linear structure and the norms. If T is linear as an operator, then it necessarily preserves
the linear structure of X, which shows that, at least on the range of T , the linear structure of X
and Y are the same. If T is bounded, then it does not distort the norms “too much,” telling us that
there is some “similarity” of the norms ∥ · ∥X and ∥ · ∥Y .

Theorem 2.2.5. Suppose that T : (X, ∥ · ∥X) → (Y, ∥ · ∥Y ) is a linear map between normed linear
spaces and x̄ ∈ X. Then the following are equivalent:

(a) T is bounded;

(b) T is uniformly continuous;

(c) T is continuous at x̄;

(d) T is sequentially continuous at x̄.
10We will show this is a norm later.
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Proof. From the definition of continuity and Theorem 2.1.6, we have immediately that (b) implies
(c), and (c) implies (d). Hence, we need only establish that (a) implies (b) and (d) implies (a).

(a) implies (b): Fix ε > 0 and let
δ =

ε

1 + ∥T∥
.

Then, for any x1, x2 ∈ X, if ∥x1 − x2∥X < δ, we have

∥T (x1)− T (x2)∥Y = ∥T (x1 − x2)∥Y ≤ ∥T∥∥x1 − x2∥X ≤ ∥T∥δ ≤ ∥T∥ ε

1 + ∥T∥
< ε.

Thus T is uniformly continuous.

(d) implies (a): We show this by contrapositive (that is, if (a) does not hold, then (d) does not
hold). Suppose that T is not bounded. Then there are xn such that

∥Txn∥Y
∥xn∥X

→ ∞ as n→ ∞. (2.2.2)

Let
x̃n = x̄+

xn
∥Txn∥Y

.

By (2.2.2) and the homogeneity of ∥ · ∥Y , we see that

∥x̃n − x̄∥X =
∥xn∥X
∥Txn∥Y

→ 0 as n→ ∞.

Hence x̃n → x̄ as n→ ∞. On the other hand,

∥T x̃n − T x̄∥Y =

∥∥∥∥T x̄+ T
xn

∥Txn∥Y
− T x̄

∥∥∥∥
Y

=

∥∥∥∥T xn
∥Txn∥Y

∥∥∥∥
Y

=

∥∥∥∥ 1

∥Txn∥Y
Txn

∥∥∥∥
Y

=
∥Txn∥Y
∥Txn∥Y

= 1.

Hence T x̃n ̸→ T x̄ as n→ ∞. Thus T is not sequentially continuous at x̄.

Let’s revisit Example 2.2.3 to see which of these maps are continuous using Theorem 2.2.5.

Example 2.2.6. (i) The shift operator
S : ℓp → ℓp

defined by
S(x1, x2, . . . ) = (0, x1, x2, . . . )

is linear. We showed above that S is an isometry (see Definition 2.2.7), that is,

∥Sx̄∥ℓp = ∥x̄∥ℓp for all x̄ ∈ ℓp.

It follows that ∥S∥ = 1. Hence, S is (unsurprisingly) continuous.

(ii) Let ι : ℓ1 → ℓ2 be the inclusion map ι(x̄) = x̄. It is obvious that ι is linear. As we noted above,

∥ιx̄∥ℓ2 ≤ ∥x̄∥ℓ1 for all x̄ ∈ ℓp.

Hence, we have that ∥ι∥ ≤ 1. This is enough to deduce that ι is continuous. On the other
hand, it is easy to see that ∥ιe1∥ℓ2 = ∥e1∥ℓ1. Hence, ∥ι∥ = 1.
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(iii) Define the map
T : ℓ3 → ℓ3

by
T (x1, x2, . . . ) =

(
x1,

x2√
2
,
x3√
3
, . . . ,

xn√
n
, . . .

)
.

Exercise 2.2.4. The exact same analysis as in (ii) lets us conclude that ∥T∥ = 1 and T is
continuous. Show this!

(iv) Define the map
D : (C∞([0, 1]), ∥ · ∥1) → (C∞([0, 1]), ∥ · ∥1)

where
Df = f ′.

The L1-norm of f captures how big f is, which is unrelated to how much f ′ wiggles, as captured
by the L1-norm of f ′. Hence, we suspect that D will not be a bounded linear operator. We
show this now by constructing a sequence of functions fn such that ∥Dfn∥1/∥fn∥1 → ∞. Let

fn(x) = ne−nx.

Notice that ∥fn∥1 = 1− e−n. On the other hand,

∥Dfn∥1 =
∫ ∣∣−ne−nx

∣∣ dx = n

∫
fn(x)dx = n∥fn∥1.

Thus, as n→ ∞,

∥Dfn∥1
∥fn∥1

= n→ ∞, which implies that ∥D∥ = sup
f∈L1

∥Df∥1
∥f∥1

= ∞.

So D is not continuous.

(v) Define the map
δ 1

2
: (C([0, 1]), ∥ · ∥p) → R

by
δ 1

2
(f) = f(1/2).

Let us consider the case p <∞ first. In this case, we have to ask ourselves, does the Lp-norm
of a function control its size at a single point? This is, of course, not true, since one can
imagine f that has a maximum of 1 but is zero nearly everywhere else so that its Lp-norm is
small. We construct such an f now. For n ∈ N, let

fn(x) = e−n|x−1/2|.

Then, δ 1
2
(fn) = 1, but as n→ ∞,

∥fn∥p =
(∫

e−np|x−1/2|dx

) 1
p

=

(
2

np

(
1− e−

np/2
)) 1

p

→ 0.

Hence,

∥δ 1
2
∥ ≥ sup

n

|δ 1
2
fn|

∥fn∥p
= sup

n

(
np

2
(
1− e−np/2

)) 1
p

= ∞.

Hence δ 1
2

is not bounded for p <∞.
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Exercise 2.2.5. Show that δ 1
2

is continuous when p = ∞.

There is a special type of bounded linear transformation that is important in the study of duality.
We briefly introduce it here.

Definition 2.2.7. We say that T ∈ B(X,Y ) is an isometry if, for all x ∈ X,

∥T (x)∥Y = ∥x∥X .

Why is this important? Recall the discussion above about how a linear operator T : X → Y tells
us how “similar” to normed spaces are. If T is an isometry, then it tells us that the norms ∥ · ∥X
and ∥ · ∥Y (at least when restricted to the range of T , which may not be all of Y ), are exactly the
same. Taking this a bit further, it tells us that

T (X) = {T (x) : x ∈ X}

is an “exact copy” of X that lives inside of Y .

Exercise 2.2.6. (i) Show that any isometry is injective.

(ii) Show that ι : (Rn, ℓp) → ℓp given by ι(x̄) = (x1, . . . , xn, 0, . . . ) is an isometry.

(iii) Show that ι : ℓ1 → ℓ∞ given by ι(x̄) = x̄ is not an isometry.

2.2.1. The space B(X,Y ) is a normed linear space. Notice that, given T1, T2 ∈ B(X,Y ) and
α, β ∈ R, we can define a new normed linear operator (αT1 + βT2), defined by

(αT1 + βT2)(x) = αT1(x) + βT2(x).

This is clearly well-defined, and, by the triangle inequality, we get that

∥(αT1 + βT2)(x)∥Y ≤ ∥αT1(x)∥Y + ∥βT2(x)∥Y ≤ |α|∥T1∥∥x∥X + |β|∥T2∥∥x∥X .

Hence, (αT1 + βT2) is bounded and, thus, an element of B(X,Y ). We conclude that B(X,Y ) is a
linear space.

Now we check that ∥ · ∥B(X,Y ) is, indeed, a norm, as our notation suggests.

• (Positive definiteness) It is obvious that ∥T∥ is non-negative. If T ̸= 0, then Tx1 ̸= 0 for some
x1 ∈ X \ {0}. It follows that

∥T∥ = sup
x ̸=0

∥Tx∥Y
∥x∥X

≥ ∥Tx1∥Y
∥x1∥X

> 0,

where the last inequality uses the positive definiteness of ∥ · ∥X and ∥ · ∥Y . On the other hand,
if T = 0, it is clear that ∥T∥ = 0.

• (Homogeneity) Fix any αR. To show that ∥αT∥ = |α|∥T∥, we first show that ∥αT∥ ≤ |α|∥T∥
and then we show that ∥αT∥ ≥ |α|∥T∥.
Notice that, for any x ∈ X, we have

∥(αT )(x)∥Y = |α|∥Tx∥Y ≤ |α|∥T∥∥x∥X ,
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which implies that
∥αT∥ ≤ |α|∥T∥.

On the other hand, let xn ∈ X be a sequence of points such that ∥xn∥X = 1 for all n and

∥T∥ = lim
n→∞

∥Txn∥.

Then

∥αT∥ ≥ lim sup
n→∞

∥(αT )(xn)∥Y = lim sup
n→∞

∥αT (xn)∥Y

= lim sup
n→∞

|α|∥T (xn)∥Y = |α| lim sup
n→∞

∥T (xn)∥Y = |α|∥T∥.

The second equality above uses the homogeneity of ∥ · ∥Y .

• (Triangle inequality) Take any T, S ∈ B(X,Y ) and any x ∈ X. Then we have

∥(S + T )(x)∥Y = ∥Sx+ Tx∥Y ≤ ∥Sx∥Y + ∥Tx∥Y
≤ ∥S∥∥x∥X + ∥T∥∥x∥Y = (∥S∥+ ∥T∥) ∥x∥Y ,

where the first inequality is the triangle inequality in Y and the second inequality uses the
definition of ∥S∥ and ∥T∥. Since this holds for all x, we have that

∥S + T∥ ≤ ∥S∥+ ∥T∥.

2.2.2. The dual space: X∗.

Definition 2.2.8. Given any normed linear space X, a very special case of B(X,Y ) is the dual
space:

X∗ := B(X,R).

This is also called the space of bounded linear functionals.

Example 2.2.9. (i) Recall that c ⊂ ℓ∞ is the set of all sequences x̄ such that limn→∞ xn exists.
Define

λ : c→ R by λ(x̄) = lim
n→∞

xn.

Clearly λ is well-defined and linear. Additionally,

|λ(x)| = | lim
n→∞

xn| ≤ sup
n

|xn| = ∥x̄∥ℓ∞ .

Hence, λ is bounded, and, as a result, is an element of the dual space c∗.

Exercise 2.2.7. Show that there is no ȳ such that

λ(x̄) =

∞∑
i=1

xiyi for all x̄ ∈ c.

Note: using some fancy functional analysis techniques, we can utilize this λ to show that
(ℓ∞)∗ ̸= ℓ1.
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(ii) Consider C1([0, 1]) with the norm

∥f∥C1 = ∥f∥∞ + ∥f ′∥∞.

Then
λ : C1 → R defined by λ(f) = f(0)− 7f ′(2/3)

is a bounded linear functional: λ ∈ (C1)∗. Indeed, it is clearly well-defined and linear, while

|λ(f)| = |f(0)− 7f(2/3)| ≤ |f(0)|+ 7|f(2/3)| ≤ 7∥f∥∞ + 7∥f ′∥∞ = ∥f∥C1 .

The quintessential examples of a dual space are (where p and q are conjugate exponents):

• (Rn, ∥ · ∥p)∗ = (Rn, ∥ · ∥q);

• (ℓp)∗ = ℓq when p <∞ and (ℓ∞)∗ ⊋ ℓ1;

• (Lp)∗ = Lq when p <∞ and (L∞)∗ ⊋ L1 (see important footnote11).

This is a little poorly defined because we need to write down a way of identifying bounded linear
functionals with elements of the space on the right hand side of the equality. This is exactly where
the notion of an isometry comes in. If we can define an isometry ι : X → Y ∗, then it tells us
that there is an exact copy of X living inside of Y . If ι is a surjection (and, thus, a bijection by
Exercise 2.2.6), that exact copy of X is all of Y ∗. In other words, Y ∗ is an exact copy of X. We
usually abuse terminology in this case and simply say that X is Y ∗.

Let us first see this in a the case of Rn:

Lemma 2.2.10. The dual space of (Rn, ∥ ·∥p) is (Rn, ∥ ·∥q), where p and q are conjugate exponents.
By this, we mean that there is a linear map

ι : (Rn, ∥ · ∥q) → (Rn, ∥ · ∥p)∗

that is bijective (one-to-one and onto) and is defined in the following natural way: for any x̄ ∈
(Rn, ∥ · ∥q), ι(x̄) is the element in (Rn, ∥ · ∥p)∗ defined by:

ι(x̄)(ȳ) =
n∑

i=1

xiyi for all ȳ ∈ Rn.

Moreover, ι is an isometry (recall Definition 2.2.7).

Proof. It is easy to see that ι is linear. Next we check that it is one-to-one. Notice that, for any x̄
and z̄, we have

ι(x̄)(x̄− z̄)− ι(z̄)(x̄− z̄) = ι(x̄− z̄)(x̄− z̄) =
n∑

i=1

|xi − zi|2.

This is zero if and only if x̄ = z̄. Hence, ι(x̄) = ι(z̄) if and only if x̄ = z̄; that is, ι is one-to-one.
11We have been a bit vague in these notes about what L∞ means, which, up to now, really did not matter. It does,

however, play a huge role in determining the dual space. Actually, (C[0, 1], L∞)∗ is “nearly” L1([0, 1]) (in a sense
that we will not make more precise in these notes), but (L∞([0, 1]))∗ ̸= L1([0, 1]). To properly make sense of this,
we require measure theory, which we develop in a later section.
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We now check that ι is onto. Fix any λ ∈ (Rn, ∥ · ∥p)∗. Let ei be the standard basis vectors (ei is a
vector of all zeros, except in the ith coordinate where it is one). Let

x̄ = (λ(e1), λ(e2), . . . , λ(en)) ∈ Rn.

By linearity, we have, for any ȳ ∈ Rn,

λ(ȳ) = λ(y1e1 + y2e2 + · · ·+ ynen) =

n∑
i=1

yiλ(ei) =

n∑
i=1

yixi = ι(x̄)(ȳ).

Since this is true for all ȳ, we have that λ = ι(x̄).

Finally, we check the equality of the norms. We do this for p > 1. Fix any x̄ ∈ (Rn, ∥ · ∥q). First,
by Hölder’s inequality, we have, for all ȳ.

|ι(x̄)(ȳ)| ≤ ∥x̄∥q∥ȳ∥p,

which implies that
∥ι(x̄)∥ ≤ ∥x̄∥q. (2.2.3)

On the other hand, let z̄ have coordinates

zi = sign(xi)|xi|q−1.

It is easy to check that
∥z̄∥p = ∥x̄∥q−1

q .

Then

|ι(x̄)(z̄)| =
n∑

i=1

|xi|q = ∥x̄∥qq = ∥x̄∥q∥x̄∥p.

Thus, we have
∥ι(x̄)∥ ≥ ∥x̄∥q. (2.2.4)

The combination of (2.2.3) and (2.2.4) yield the claim in the case p > 1.

Exercise 2.2.8. Complete the proof in the case p = 1.

We point out that it is not so difficult to prove the sequence version of this:

Exercise 2.2.9. Show that (ℓp)∗ = ℓq where p and q are conjugate exponents with p < ∞. Here,
use the identification that, for a given x̄ ∈ ℓq,

λx̄(ȳ) =

∞∑
i=1

xiyi for any ȳ ∈ ℓp.

How does this work for Lp? We identify a function f ∈ Lq with a bounded linear functional λf ∈ Lq

as follows:
λf : Lp → R, defined by, for all g ∈ Lp λf (g) =

∫
f(x)g(x)dx. (2.2.5)

Then the content of the statement (Lp)∗ = Lq is to say the following: λf ∈ (Lp)∗ and, given any
λ ∈ (Lp)∗, there is f ∈ Lq such that λ = λf and ∥λf∥ = ∥f∥q. Let us prove most of this.
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Proposition 2.2.11. Let p, q ∈ [1,∞] be conjugate exponents. Let f ∈ Lq, and define λf as
in (2.2.5). Then λf ∈ (Lp)∗. Moreover,

∥λf∥ = ∥f∥q. (2.2.6)

Proof. It is clear that λf is well-defined and linear. The fact that λf is bounded follows directly
from Hölder’s inequality: for any g ∈ Lp,

|λf (g)| =
∣∣∣∣∫ f(x)g(x)dx

∣∣∣∣ ≤ ∥f∥q∥g∥p. (2.2.7)

To show (2.2.6), we first notice that (2.2.7) implies that ∥λf∥ ≤ ∥f∥q. The other inequality follows
directly from Proposition 1.4.7.

2.2.3. Aside: matrix norms. Given a norm ∥ · ∥ on Rn, a norm ~ ·~ on Rm, and a m×n matrix
A, we can think of:

A : (Rn, ∥ · ∥) → (Rm,~ · ~).

Is A bounded? Of course! We recall the following lemma that is a homework problem for you:

Lemma 2.2.12. There exists C > 0 such that

1

C
∥x∥2 ≤ ∥x∥ ≤ C∥x∥2,

where ∥ · ∥2 is the usual Euclidean norm and ∥ · ∥ is any norm.

Exercise 2.2.10. Prove this!

Now we show that A ∈ B((Rn, ∥ · ∥), (Rm,~ · ~)). Let e1, . . . , en be the standard basis vectors in
Rn. Then, for any x̄ ∈ Rn, we have

x̄ = x1e1 + · · ·xnen,

so that
Ax̄ = x1Ae1 + ·+ xnAen.

Thus, by the Cauchy-Schwarz inequality and Lemma 2.2.12,

~Ax̄~ ≤
n∑

i=1

|xi|~Aei~ ≤

(
n∑

i=1

|xi|2
) 1

2
(

n∑
i=1

~Aei~
2

) 1
2

= ∥x̄∥2

(
n∑

i=1

~Aei~
2

) 1
2

≤ C

(
n∑

i=1

~Aei~
2

) 1
2

∥x̄∥.

Hence,

∥A∥B((Rn,∥·∥),(Rm,~·~)) ≤ C

(
n∑

i=1

~Aei~
2

) 1
2

<∞.

Of course, the choice of ∥ · ∥ and ~ · ~ determine what norm of A we get, and, depending on what
we want to measure (i.e., depending on the application), certain norms will be better than others.
Some standard choices are:
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Example 2.2.13. (i) When ∥ · ∥ = ∥ · ∥∞ and ~ · ~ = ∥ · ∥∞, we find ∥A∥∞,∞ as follows. Let
v1, . . . , vm be the row vectors of A. In other words,

A =


− v1 −
− v2 −

...
− vm −

 so that, for all x ∈ Rm, Ax =


x · v1
x · v2

...
x · vm

 .

Then
∥Ax∥∞ = max{|x · v1|, . . . , |x · vn|} ≤ max{∥x∥∞∥v1∥1, . . . , ∥x∥∞∥vn∥1},

which implies that
∥A∥∞,∞ ≤ max{∥v1∥1, . . . , ∥vn∥1}.

Is this sharp? Of course it is! Take k ∈ {1, . . . , n} to be the index of the maximal ∥vi∥1. Take
v̂k to be such that v̂k ·vk = ∥v̂k∥∞∥vi∥1. Then, it is easy to check that ∥Av̂k∥∞ = ∥v̂k∥∞∥vk∥1.
Hence

∥A∥∞,∞ = max{∥v1∥1, . . . , ∥vn∥1}

(ii) We consider A : (Rn, ∥ · ∥2) → (Rn, ∥ · ∥2) for any A symmetric. Then by the spectral theorem,
there are eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn

associated to orthonormal eigenvectors v1, . . . , vn ( that is vi · vj = 0 if i ̸= j and ∥vi∥2 = 1).

We claim that ∥A∥ = max{|λi| : i = 1, . . . , n}. Indeed, for any x ∈ Rn, we have

x = α1v1 + · · ·+ αnvn where ∥x∥22 = α2
1 + · · ·+ α2

n.

Then
Ax = A(α1v1 + · · ·+ αnvn) = α1λ1v1 + · · ·αnλnvn.

Using then the orthonormality of v1, . . . , vn, we have

∥Ax∥22 = α2
1λ

2
1 + · · ·+ α2

nλ
2
n ≤ max{|λi| : i = 1, . . . , n}2(α2

1 + · · ·+ α2
n)

≤ max{|λi| : i = 1, . . . , n}2∥x∥22.

Hence ∥A∥2,2 ≤ max{|λi| : i = 1, . . . , n}.
The opposite inequality follows by evaluating Avk where k is such that |λk| = max{|λi| : i =
1, . . . , n}.

(iii)

Exercise 2.2.11. When A : (Rn, ∥ · ∥2) → (Rm, ∥ · ∥2), show that ∥A∥2,2 =
√

max{λi(ATA)}.

Let us note that there are many many other norms for matrices that do not come from thinking
of them as operators. For example, ∥A∥∞ = maxij |aij |. Each norm will be more or less useful
depending on the application.
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Aside: condition number of a matrix. Suppose we are seeking a solution of the problem

Ax = b

where A is an m× n matrix and we are working with the norms such that

A : (Rn, ∥ · ∥) → (Rm,~ · ~).

Suppose that we can only measure b up to error ε~b~ so that we can only work with b̃ ∈ Rm with

~b̃− b~ ≤ ε~b~.

(For example, perhaps b̃ is found by some inexact algorithm). How bad will our estimate for x be?
That is, if we let x̃ = A−1b̃, what estimate do we have on

∥x− x̃∥?

Notice that the relative error is given by

∥x− x̃∥
∥x∥

=
∥A−1(b− b̃)∥

∥x∥
≤ ∥A−1∥~b− b̃~

∥x∥

≤ ε∥A−1∥~b~

∥x∥
=
ε∥A−1∥~Ax~

∥x∥
≤ ε∥A−1∥∥A∥.

Hence the product r(A) = ∥A−1∥∥A∥ (which is necessarily at least 1!) measures the amplification
of the relative error. It is called the condition number.

Note, the condition number is scaling invariant. Indeed, consider the condition number associated
to αA for any α > 0. Notice that (αA)−1 = α−1A−1 so that

∥(αA)−1∥∥αA∥ =
1

α
∥A−1∥α∥A∥ = ∥A−1∥∥A∥.

Example 2.2.14. (i) A =

[
1

1000
1

500
0 1

2000

]
. At first, these numbers look terrible! But, due to scaling

invariance, it is enough to consider the simpler matrix

B =

[
2 4
0 1

]
since A =

1

2000
B.

Now we are more optimistic that these more “reasonable” numbers will not give us a terrible
condition number...

It is easy to see that B−1 =

[
1/2 −2
0 1

]
. Thus

r∞,∞(A) = r∞,∞(B) = ∥B∥∞,∞∥B−1∥∞,∞ =
5

2
· 6 = 15,

which is not terrible.

(ii)
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Exercise 2.2.12. Find the condition number for the matrix A of the previous example but
using the ∥ · ∥2,2 norm.

M =

[
1 1.999
1/2 1

]
. These numbers look more reasonable, but, it turns out that

r∞,∞(M) = 2.999 · 5998(≈ 18000!).

Roughly what is going on in the previous problems is that M is much “closer” to non-invertible
matrices than A is. Indeed,

M +

[
0 .001
0 0

]
is not invertible. Hence, it is more likely that we add a huge vector to x and have it change b by
only a little bit. This obstructs our ability to find approximate x’s given approximate b’s. Hence,
the condition number has to be large.

3. Topology

3.1. Dense sets and separable metric spaces.

3.1.1. How much information does a continuous function have?. Let us begin by noticing
the following silly oversight from our entire mathematical background... how is

√
2 defined? It is an

irrational number, so we cannot “just write it down.” Instead, we have to define it in a roundabout
way. Let f : R → R be defined by f(x) = x2. This is a continuous function and f(0) = 0, while
f(2) = 4. Hence, the intermediate value theorem implies that there exists some number θ ∈ (0, 2)
such that f(θ) = 2. We call

√
2 = θ.

If we only have the natural numbers at our disposal, the “closest” we can come to
√
2 is to note that√

2 ∈ (1, 2) since
f(1) = 1 < 2 < 4 = f(2).

What if we add the half-integers Z/2? Then the best we can do is

f(1) = 1 < 2 <
9

4
= f(3/2).

This is still not “good enough,” so we need to add more elements. Of course, Z/4, Z/8, etc. will
never get us “close enough.” But if we use Q, we will be all set. Why? Q is dense in R.

Definition 3.1.1. Given a metric space (X, d) and a subset Y ⊂ X, we say that Y is dense in X
if, for every x ∈ X, there is a sequence (yn)n of elements in Y such that

lim
n→∞

yn = x.

To push this a bit further, what if we only know f(x) = x2 for x ∈ Q and that f is continuous...
is that enough to determine f(x) for every x ∈ R? Yes! Indeed, take any x ∈ R and let xn be a
sequence of rational numbers such that xn → x. Then, we must have that

f(x) = lim
n→∞

f(xn).

48



Going about this backwards, if we “restrict” f to Q (that is, we consider the function f : Q → R
defined by f(x) = x2), it has enough information to extend it to a continuous function f̃ : R → R
that agrees with f on Q (that is, f(x) = f̃(x) for all x ∈ Q).

Exercise 3.1.1. Show this in generality: suppose f, g : (X, dX) → (Y, dY ) are continuous functions
that are equal on X̃ ⊂ X, which is dense, then f = g.

Will that always be the case? Starting with a continuous function on Q, can we extend
it to a continuous function on R? Naïvely, we might expect that the answer is yes. But, as
mathematicians, we should be suspicious of heuristics unless we can come up with some mathematics
to back it up...

Consider the following example: let g : Q → R be defined by

g(x) =

{
x2 if x2 > 2,

0 if x2 < 2.

lf we graph this, it might “seem” discontinuous. Roughly it looks like the following:

x

g(x)

But let us think about this more carefully. Fix any x0 ∈ Q and we will show that g is continuous
at x0. Let ε > 0.

(i) If x20 < 2, let δ = (2− x20)/10. Then, if |x− x0| < δ,

x2 = x20 + (x− x0)(x+ x0) ≤ 2− 10δ + (x− x0)(x+ x0) ≤ 2− δ + δ(|x|+ |x0|). (3.1.1)

Since x20 < 2, then |x0| < 2. Since δ = (2 − x20)/10 and x20 ≥ 0, then δ < 1. By the triangle
inequality, we have that |x| < |x0|+ 1 < 3. Returning to (3.1.1), we find

x2 ≤ 2− 10δ + δ(|x|+ |x0|) < 2− 10δ + δ · 5 < 2− 5δ.

It follows that g(x) = 0. It follows that if |x− x0| < δ then |g(x)− g(x0)| = 0 < ε.

(ii) If x20 > 2, let

δ = min

{
1,

x20 − 2

100(2|x0|+ 1)
,

ε

100(2|x0|+ 1)

}
.

Let x ∈ Q be such that |x− x0| < δ. First we show that x2 > 2.

x2 = x20 + (x− x0)(x+ x0) ≥ 100(2|x0|+ 1)δ + 2 + (x− x0)(x+ x0)

≥ 100(2|x0|+ 1)δ + 2− δ(|x|+ |x0|) ≥ 100(2|x0|+ 1)δ + 2− δ(2|x0|+ δ)

≥ 100(2|x0|+ 1)δ + 2− δ(2|x0|+ 1) ≥ 100(2|x0|+ 1)δ + 2− δ(2|x0|+ 1)

> 2.
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Hence, we have g(x) = x2. On the other hand, the usual proof works to show continuity in
this regime:

|x2 − x20| = |(x− x0)(x+ x0)| ≤ δ(2|x0|+ 1) ≤ ε

100(2|x0|+ 1)
(2|x0|+ 1) < ε.

Hence g is continuous.

Now let us see if there is g̃ : R → R that is continuous and agrees with g on Q. Suppose this were
true. Take xn ↘

√
2 and yn ↗

√
2 such that xn, yn ∈ Q. Then, by continuity and the fact that

g̃(xn) = g(xn) and g̃(yn) = g(yn), by assumption, we have

g̃(
√
2) = lim

n→∞
g̃(xn) = lim

n→∞
g(xn) = lim

n→∞
x2n = 2,

and
g̃(
√
2) = lim

n→∞
g̃(yn) = lim

n→∞
g(yn) = lim

n→∞
0 = 0.

This is clearly a contradiction, so no such g̃ can exist.

What is the difference between these two cases? Why can f be extended but g cannot
be? The difference has to do with uniform continuity. Notice that, on any bounded set (−a, a)∩Q,
f is uniformly continuous since, given any ε > 0, the choice

δ = max
{
1,

ε

100a

}
which does not depend on x0, suffices to show that |f(x)− f(x0)| < ε (this can be shown similar to
the computations in step (ii), above). On the other hand, g is not uniformly continuous on (−a, a)
whenever a >

√
2. We can, roughly12, see this since the choice of δ in the steps (i) and (ii) above

depends on the distance between x20 and 2.

3.1.2. Topology in metric spaces. Let (X, d) be a metric space throughout this section. We
introduce a few fundamental concepts.

Definition 3.1.2. The metric open ball Br(x) of radius r around x is the set of all points less than
distance r from x:

Br(x) := {y ∈ X : d(x, y) < r}.

A ball is the quintessential open set and the basis for all other open sets.

Definition 3.1.3. A set Ω ⊂ X is open if, for every point ω ∈ Ω, there is a radius rω > 0 such
that Br(ω). We denote the set of open subsets of X by T .

Example 3.1.4. (i) (X, d) = (R, | · |). Then the open balls are Br(x) = (x−r, x+r). Some open
sets are those of the form

(a, b), (−∞, a),
⋃
i∈Z

(i, i+ 1
1+|i|) R, and ∅.

12This is not a proof! Perhaps we just “did a bad job” of choosing δ and there is a better δ that we could have chosen.

Exercise 3.1.2. Prove that g is not uniformly continuous on (−2, 2).
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The last example vacuously satisfies Definition 3.1.3 – there is no x ∈ ∅ to test the condition
Br(x) ⊂ ∅ so it is true by default. Let us check the first example. Fix any x ∈ (a, b). Then
a < x < b, so we can set

r = min{x− a, b− x} > 0.

Then Br(x) = (x− r, x+ r) ⊂ (a, b). Why? If y ∈ (x− r, x+ r), we have

y > x− r ≥ x− (x− a) = a and y < x+ r ≤ x+ (b− x) = b.

Some non-open sets are those of the form

[a, b], (a, b], [a, b), Q, Z, and {a}.

Let us think about the last example. Why is this not open? Take any r > 0 and look at Br(a).
Is Br(a) ⊂ {a}? No! For example a+ r/2 ∈ Br(a) but a+ r/2 /∈ {a}.
Exercise 3.1.3. Prove the openness or non-openness of all the examples above.

(ii) (X, ddisc). Every set is open. Indeed, fix any set S ⊂ X and any s ∈ S. Let r = 1/2. Then
Br(s) = {s} ⊂ S. Hence, S is open.

(iii) (ℓp, ∥ · ∥ℓp) with p ∈ [1,∞]. Let
S = {x̄ : |x1| < 1}.

This is open. Indeed, fix any x̄ ∈ S and let r = 1− |x1| > 0. Then, if ∥ȳ − x̄∥p < r, we have

|y1 − x1| ≤ ∥ȳ − x̄∥ℓp < r.

Hence,
|y1| ≤ |y1 − x1|+ |x1| < r + |x1| = (1− |x1|) + |x1| = 1.

In other words, ȳ ∈ S. As we just showed that Br(x̄) ⊂ S, we conclude that S is open.

What about the set c0 ⊂ ℓ∞? Is this open? No! Take any element x̄ and any r > 0. Since
x̄ ∈ c0, there is N so that, for all n ≥ N , |xn| < r/3. Define a new point ȳ by

yn =

{
xn if n < N,
(−1)nr

3 if n ≥ N.

Then, we have that xn − yn = 0 if n < N , and |xn − yn| < |xn| + |yn| < r/3 + r/3 < r for all
n ≥ N . Hence

∥x̄− ȳ∥ℓ∞ < r.

On the other hand, clearly ȳ /∈ c0. Hence, ȳ ∈ Br(x̄) but ȳ /∈ c0. We conclude that c0 is not
open.

Exercise 3.1.4. What about c? Is c an open subset of ℓ∞?

Exercise 3.1.5. Show that if U1, U2, . . . are open subsets of X then so is
∞⋃
i=1

Ui = {u ∈ X : there exists i ∈ N such that u ∈ Ui}.

If you are feeling up to it, let I be any indexing set such that, for every ι ∈ I, there is an associated
open set Uι. Then show that⋃

ι∈I
Uι = {u ∈ X : there exists ι ∈ I such that u ∈ Uι}.

Hint: this is essentially the same as the previous case, where I = N.
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Exercise 3.1.6. Show that, for any metric space (X, d), any point x ∈ X, and any r > 0, Br(x) is
open.

Every set, open or not, has a “largest” open subset that we call the interior.

Definition 3.1.5. For any S ⊂ X, the interior of S, denoted13 Int(S) or S◦, is the set of all points
s such that there is rs > 0 such that Brs(s) ⊂ S. In other words

IntS = {s ∈ S : ∃rs > 0 such that Brs(s) ⊂ S}.

Exercise 3.1.7. For any S ⊂ X, show that IntS is the largest open subset; that is, for any open
set U ⊂ X, then U ⊂ IntS. Deduce that

IntS =
⋃

U∈T , U⊂S

U.

Example 3.1.6. Consider the set [3, 7] ⊂ R with the Euclidean metric. We claim that

Int[3, 7] = (3, 7). (3.1.2)

First, by definition, we have that
Int[3, 7] ⊂ [3, 7]. (3.1.3)

We first claim that
(3, 7) ⊂ Int[3, 7].

Indeed, take x ∈ (3, 7) and, since (3, 7) is open, there is r > 0 such that

Br(x) ⊂ (3, 7) ⊂ [3, 7].

Hence x ∈ Int[3, 7]. By the arbitrariness of x, we have

(3, 7) ⊂ Int[3, 7]. (3.1.4)

Now, by (3.1.3) and (3.1.4), we need only show that 3, 7 /∈ Int[3, 7] to conclude (3.1.2). We show
that 3 /∈ Int[3, 7], but a similar proof establishes the analogous claim for 7. Take any r > 0, and
notice that

3− r

2
∈ Br(3) and 3− r

2
/∈ [3, 7].

Hence Br(3) ̸⊂ [3, 7]. By the arbitrariness of r, it follows that no such ball exists that is a subset of
[3, 7]. Hence, 3 /∈ Int[3, 7].

We can also define density in a slightly different way:

Definition 3.1.7. A set D ⊂ X is dense if, for every x ∈ X and r > 0,

D ∩Br(x) ̸= ∅.

Note that X is trivially always dense in X.
13I will always denote this as IntS because I prefer notation that is self-explanatory (both for my own sake and

because I think this makes it easier for other readers).
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Exercise 3.1.8. Fix any open set U ⊂ X such that U ̸= ∅ and U ̸= X. Can U be dense in X?
Can the complement of U be dense in X? The complement is

X \ U := U c := {x ∈ X : x /∈ U}.

Let us go over these concepts with some examples.

Example 3.1.8. (i) Q is dense in R: Fix any x ∈ R and r > 0, and we must show that there is
q ∈ Q such that |x− q| < r. Let

N >
1

r
. (3.1.5)

Let
k = max{ℓ ∈ Z : ℓ/N < x}. (3.1.6)

This is well defined because ℓ/N → ∞ as ℓ → ∞. Moreover, by the choice of N (3.1.6), we
have that k ≥ 1. Finally, by (3.1.6), we have

k

N
< x ≤ k + 1

N
. (3.1.7)

Thus,

|x− k/N| = x− k

N
≤ k + 1

N
− k

N
=

1

N
< r,

where the first equality and the first inequality follows from (3.1.7) and the last inequality uses
the choice of N (3.1.5). This completes the proof of the density of Q with the choice q = k/N.

What is the intuition here? Basically, we created a ‘grid’ of all the rational elements of the
form ℓ/N . This grid ranges from −∞ to ∞ and every point of it is 1/N apart. Hence, x has
to be between two gridpoints, which implies that it is within 1/N of the two rational numbers
defining these gridpoints.

− 6/N − 5/N − 4/N − 3/N − 2/N − 1/N 0/N 1/N 2/N 3/N 4/N 5/N 6/N

x

(ii) Qn is dense in Rn (with the metric dp for any p ∈ [1,∞]): Let us show this for p = 1, that
is, the usual Euclidean metric. Fix any x̄ ∈ Rn and any r > 0. For each i, use the previous
example to find qi ∈ Q such that

|xi − qi| <
r

n
.

Let q̄ = (q1, q2, . . . , qn) ∈ Qn. Then

d(x̄, q̄) =
n∑

i=1

|xi − qi| <
n∑

i=1

r

n
= r.

Hence q̄ ∈ Br(x̄), as desired. This completes the proof that Qn is dense in Rn.

Exercise 3.1.9. Show that each metric dp is equivalent to d1, and use this to show that Qn

is dense in Rn for each p ∈ [1,∞].
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(iii) The only dense subset of (X, ddisc) is X. Clearly X is dense in X. Hence, we need only show
that any other dense set is actually X. Let D ⊂ X be dense. Pick any x ∈ X. Since D is
dense in X, there must be θ ∈ D such that θ ∈ D ∩ B1/2(x). Hence, ddisk(x, θ) < 1/2. By
definition of the discrete metric, it follows that x = d. Hence, x ∈ D.

We started with an arbitrary point in X and showed that it was a point in D. It follows that
X ⊂ D. On the other hand, we have, by assumption, that D ⊂ X. Hence, X = D.

(iv) For p ∈ [1,∞). Take the set

X = {x̄ ∈ ℓp : xi ∈ Q for all i and xn = 0 for all but finitely many i ∈ N}.

Roughly, x̄ are all elements of ℓp such that all entries are rational and there is N such that
xn = 0 for all n ≥ N .

We claim that X is a dense subset of ℓp. Fix any point z̄ ∈ ℓp and any r > 0. The proof is
complete if we can find x̄ such that

x̄ ∈ X ∩Br(z̄). (3.1.8)

We define x̄ = (x1, x2, . . . ) as follows. Fix N > 0 so that
∞∑

i=N+1

|zi|p ≤
( r

100

)p
.

For i > N , let xi = 0. By the density of Q in R, we can choose, for all i ∈ {1, 2, 3, . . . , N},
xi ∈ Q such that

|zi − xi| ≤
r

100(1 +N)1/p
.

Hence, we have defined x̄ = (x1, x2, . . . ). Then

∥z̄ − x̄∥pℓp =
N∑
i=1

|zi − xi|p +
∞∑

i=N+1

|zi|p <
N∑
i=1

rp

100p(1 +N)
+
( r

100

)p
=

rpN

100p(1 +N)
+
( r

100

)p
<

2rp

100p
< rp.

Hence, (3.1.8) holds.

Exercise 3.1.10. When p = ∞, is Example 3.1.8.((ii)) still true? That is, is X a dense subset of
ℓ∞?

Exercise 3.1.11. Show that R \Q is dense in R. You may use that π ∈ R \Q, and you may find
it helpful to show that π − q ∈ R \Q for every q ∈ Q.

Before we conclude with this quick foray into metric spaces, let us mention two last characterizations
of dense sets.

Proposition 3.1.9. Let Y ⊂ X, where (X, d) is a metric space. The following are equivalent:

(i) Y is dense;

(ii) for every x ∈ X, there is a sequence y1, y2, y3, · · · ∈ Y such that

lim
n→∞

yn = x;

(iii) for every open set U , we have U ∩ Y ̸= ∅.
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3.2. Countability and uncountability.

3.2.1. How many rational numbers are there anyways!?. Of course, the answer is there are
an infinite number. But, how does the ‘size’ of Q relate to other infinite sets we know, like

N, Z, R, Rn, and ℓ∞?

Well, it depends on how you quantify the size of a set. Here, we will look at cardinality. For finite
sets, this is easy to define: it is the number of elements in the set. For example,

card({1, 2, 277, 469, π}) = 5, card({∆,□, ◦}) = 3,

and card({x ∈ R : x3 − x = 0}) = 3
(3.2.1)

Of course, when we can count, it is pretty easy to say which sets are the same size. How do we
formalize the process of counting? When we count a bunch of objects, we point our finger at each,
in turn, and say 1 then 2 and so on. In essence, what we are doing here is associating, to every
element of the set, a unique natural number. Hence, we say that a set A has n elements if we can
uniquely associate to every element a of A a natural number ia ∈ {1, 2, . . . , n}. The above procedure
sounds an awful lot like defining functions!

This leads us to following preliminary definition.

Definition 3.2.1. We say that a set A has n elements if there is a bijection φ : {1, . . . , n} → A.

We say that a set A is finite if either A = ∅ (in which case we say that it has 0 elements) or A has
n elements for some n ∈ N.

OK, we have used bijections before, but for completeness let us write down the definition.

Definition 3.2.2. A function f : A → B is a bijection if it is an injection (one-to-one) and a
surjection (onto).

• f is an injection if, for every x, y ∈ A, f(x) = f(y) if and only if x = y.

• f is a surjection if, for every b ∈ B, there exists ab ∈ A such that f(ab) = b.

In the example above, we are essentially saying that A has n elements because A and {1, . . . , n}
have the same number of elements (cardinality), and we know this because the bijection between
them associates to every element of one set a unique element of the other set. This way of thinking
that two sets have the same cardinality does not really require finiteness! We formalize it in the
following:

Definition 3.2.3. We say that card(A) = card(B) if there exists a bijection φ : A→ B.

Of course, using equality here only makes sense if it is symmetric. This is guaranteed in the following
result.

Proposition 3.2.4. If φ : A → B is a bijection, then there is a bijection ψ : B → A. As a
consequence, if card(A) = card(B), then card(B) = card(A).
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Proof. It is clear that the second statement follows from the first, so we only prove the first. We
define ψ : B → A as follows. Fix any b ∈ B and, by the surjectivity of φ, there is ab such that
φ(ab) = b. Let ψ(b) = ab.

Let us check that ψ is well-defined (i.e., that our description above determines a ψ that is a function).
For this, we need only show that, for any b, if φ(ab) = b and φ(ãb) = b (making both ab and ãb
potential “outputs” for ψ(b)) then ab = ãb. Since φ is injective, φ(ab) = b = φ(ãb) implies that
ab = ãb, as desired. Thus, ψ is well-defined.

Let us point out that our construction of ψ yields

φ(ψ(b)) = φ(ab) = b and ψ(φ(a)) = a. (3.2.2)

The last equality holds because, by construction a = aφ(a). Note that this means that ψ is the
inverse function of φ.

We check that ψ is injective. Suppose that ψ(b) = ψ(b̃). Using the first identity in (3.2.2), we see
that

b = φ(ψ(b)) = φ(ψ(b̃)) = b̃,

Thus, ψ is injective.

We check that ψ is surjective. Fix any a ∈ A. Let b = φ(a). Then, by the second identity in (3.2.2),
we have

ψ(b) = ψ(φ(a)) = a.

Thus, ψ is surjective.

We conclude that ψ : B → A is a bijection, which concludes the proof.

Exercise 3.2.1. If f : A→ B is a bijection, then there is a bijection g : B → A such that f◦g(b) = b
for all b ∈ B and g ◦ f(a) = a for all a ∈ A.

Exercise 3.2.2. If f : A→ B and g : B → C are...

(i) ...surjections, then so is g ◦ f : A→ C.

(ii) ...injections, then so is g ◦ f : A→ C.

(iii) ...bijections, then so is g ◦ f : A→ C.

Notice that there is a bijection between the two three element sets in (3.2.1): let f : {∆,□, ◦} →
{x ∈ R : x5 + 8x4 − 44x3 − 240x2 = 0} be defined by

f(∆) = 0, f(□) = −1, and f(◦) = 1.

This is not, however, any bijection f : {1, 2, 277, 469, π} → {∆,□, ◦}, due to the Pigeonhole principle
(By injectivity, f(1), f(2), and f(277) are all distinct and, hence, must be equal to, in some order,
∆, □, and ◦. Since f(469) will be equal to one of ∆, □, or ◦, injectivity is violated).

How can we use this approach to define an infinite set?

Definition 3.2.5. A set A is infinite if, for every n, there is an injection φn : {1, . . . , n} → A.

Exercise 3.2.3. Let A be any set. The following are equivalent:
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(i) A is infinite;

(ii) there is B ⊊ A and a bijection φB : B → A;

(iii) A is not finite.

It is pretty clear that any finite set does not satisfy this condition since bijections preserve the
number of elements in a set. But let us see this in action in some infinite sets that we are used to...

Example 3.2.6. (i) Z – Notice that f : Z → 2Z, defined by f(z) = 2z for all z ∈ Z, is a bijection
(here 2Z is the set of even integers).

(ii) Z – Notice that f : Z → N defined by

f(z) =

{
2z − 1 if z > 0,

−2z if z ≤ 0,

is a bijection.

(iii) R – Notice that φ : R → (0, 1) defined by φ(x) = ex/(1+ ex) for all x ∈ R, is a bijection. The
injectivity is because φ′ > 0 (it is strictly increasing so that x ̸= y implies φ(x) ̸= φ(y)), and
the surjectivity is due to the intermediate value theorem, the continuity of φ, and the fact that

lim
x→−∞

φ(x) = 0 and lim
x→∞

φ(x) = 1.

(iv) ℓ∞ – Define the shift operator S : ℓ∞ → Z, where

Z = {x̄ ∈ ℓ∞ : x1 = 0},

that is defined by
Sx̄ = (0, x1, x2, x3, . . . ).

This is a bijection, but Z ⊊ ℓ∞.

With all of these tools in hand, one can ask all sorts of questions14, for our purposes, though, we
will focus only on the distinction between countable and uncountable sets.

Definition 3.2.7. A set A is countable if card(N) = card(A) and it is uncountable if A is infinite
it is not countable.

Sometimes this is easy to do: above we showed that card(N) = card(Z) = card(2Z) so all three sets
are countable. Sometimes it is difficult... An easier criteria is the following:

Theorem 3.2.8 (Cantor-Schröder-Bernstein). Two sets A and B have the same cardinality if and
only if there are injections f : A→ B and g : B → A.
14There has been a whole world of research on these questions – e.g., are cardinalities discrete? In particular, we’ll

show that, in some sense, card(N) < card(R)... but is there any set A such that card(N) < card(A) < card(R)?
It turns out this ‘continuum hypothesis’ is independent of mathematics under the standard axioms we use (ZFC);
that is, it can be neither proven nor disproven.
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This proof is extremely long, and the main ideas, while elegant, are not useful to the remainder of
this course. Hence, we relegate its proof to Appendix A, where only the very interested and intrepid
reader will find it.

The intuition here is that, roughly, card(A) ≤ card(B) when there is an injection f : A → B
(otherwise A would not ‘fit’ into B). Hence, if there are injections in both directions, we should
think of cardA ≤ cardB and cardB ≤ cardA. Then Theorem 3.2.8 tells us that this ≤ intuition
is reasonable. Actually, the same can be said with surjections: if f : A → B is a surjection then
cardA ≥ cardA.

Exercise 3.2.4. Show that, in this case, there must be an injection g : B → A.

Example 3.2.9. Q is countable – We will show this in a few steps.

Step one: N× N is countable. It is easy to see that f : N → N× N, defined by f(n) = (1, n) is
an injection. Hence, we need only find an injection g : N × N → N. One way to define this is the
following:

g(n,m) = 2n · 3m.

This is an injection because prime factorizations are unique – if 2n · 3m = 2ñ · 3m̃ then n = ñ and
m = m̃. Thus, by Theorem 3.2.8, N× N is countable.

Step two: Z×N is countable. We already showed that Z is countable. Hence, there is ψ : Z → N
that is a bijection. It follows that

Ψ : Z× N → N× N,

defined by Ψ(z, n) = (ψ(z), n), is a bijection. Hence, card(Z× N) = card(N× N) = card(N).

Step three: Q is countable. First note that

ι : N → Q

defined by ι(n) = n is clearly an injection. Hence, we need only find an injection from Q into N.
Let ρ : Z× N → N be a bijection (this exists due to the work in Step two). Then we define

f : Q → Z× N

as follows: for q ∈ Q, there is a unique way to write q = aq/bq, where aq ∈ Z and bq ∈ N, in lowest
terms15. Using this representation, we let

f(q) = f(aq/bq) = (aq, bq).

By the uniqueness of the representation q = aq/bq, this map is injective.

Exercise 3.2.5. Is it surjective?

Then we note that ρ ◦ f : Q → N is an injection.

Exercise 3.2.6. Check this!

Applying Theorem 3.2.8, we see that Q is countable.

Exercise 3.2.7. Show the following sets are countable:
15‘Lowest terms’ means that there is no element d ∈ N \ {1} such that bq/d ∈ N and aq/d ∈ Z.

58



(i) Nn for any n;

(ii) Zn for any n;

(iii) Qn for any n;

(iv) X defined in Example 3.1.8.((ii));

(v) the set of all polynomials with coefficients
in Q;

(vi) the set of finite subsets of N.

Next, we show understand how countability interacts with unions and complements.

Lemma 3.2.10. Suppose that B is a finite or countable set. Fix any other set A.

(i) Suppose that A is countable. Then so is A ∪B.

(ii) Suppose that A is uncountable. Then A \B is uncountable.

(iii) Suppose that A is uncountable. Then card(A) = card(A \B).

Proof of (i). Let us take B to be countable; however, it is easy to modify the proof if B is finite.
By definition, we have bijections

φ : A→ N and ψ : B → N.

Let us apply Theorem 3.2.8, as usual. We need only demonstrate the existence of injections from
A ∪B to N and from N to A ∪B.

We begin with the easy direction. Since φ is a bijection, so is φ−1 : N → A. Define the usual
inclusion map

ι : A→ A ∪B,

by ι(a) = a. This is injective. Hence, by Exercise 3.2.2, we have that

ι ◦ φ−1 : N → A ∪B

is an injection.

We now proceed with the more difficult direction. Fix any bijection

η : N× N → N,

which exists by Example 3.2.9. Then, define

f : A ∪B → N× N,

by

f(x) =

{
(φ(x), 1) if x ∈ A,

(1, 1 + ψ(x)) if x ∈ B \A.

Exercise 3.2.8. Show that f is injective.

Hence, we have, again by Exercise 3.2.2, that

η ◦ f : A ∪B → N

is injective. This concludes the proof.
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Proof of (ii). Let us show the uncountability of A \ B first. We show this by establishing the
contrapositive. Suppose that it is countable and we show that A is then countable. Then, by
Lemma 3.2.10.((ii)), we have

A = (A \B) ∪B

is countable.

Proof of (iii). Let us again assume that B is countable, as this is the trickier claim to prove. If B
is finite, the modifications are straightforward. Again, let

ψ : B → N

be a bijection.

Since A \B is uncountable, it is nonempty. Hence, there is

c1 ∈ A \B.

Applying Lemma 3.2.10.((ii)), we have that A \ (B ∪ {c1}) is uncountable and, thus, nonempty.
Choose

c2 ∈ A \ (B ∪ {c1}).

Continuing in this way, by selecting, for each n,

cn ∈ A \ (B ∪ {c1, . . . , cn−1})

we find points
c1, c2, c3, · · · ∈ A \B such that ci ̸= cj

whenever i ̸= j. Define
φ : A→ A \B

as follows. Fix any x ∈ A. If
x ∈ A \ (B ∪ {c1, c2, . . . }),

then let
φ(x) = x.

If x = ci for some i, let
φ(x) = c2i−1.

If x ∈ B, let i = ψ−1(x) and define
φ(x) = c2i.

Exercise 3.2.9. The function φ is bijective.
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3.2.2. How many real numbers are there?. What about uncountable sets? Let us give Georg
Cantor’s “diagonalization” argument to show that R is uncountable. First, we consider a case that,
while essentially the same, allows us to see the argument a little bit more cleanly. Let us stress
that this is the heart of the argument that R is uncountable – nearly everything else is “technical
wrangling.”

Proposition 3.2.11. The set {0, 1}N is uncountable.

Proof. First, we observe that {0, 1}N is clearly infinite. Hence, we may proceed by contradiction,
assuming that {0, 1}N is countable and that there is, thus, a bijection

φ : N → {0, 1}N.

For each n, let fn = φ(n). It follows that

{0, 1}N = {f1, f2, f3, . . . }; (3.2.3)

that is, if f ∈ {0, 1}N then f = fi for some i ∈ N.

We now construct an f ∈ {0, 1}N such that this is not the case. To guarantee that f ̸= fn, it is
natural to make them differ in how they evaluate n; that is, f(n) ̸= fn(n). Thus, we define f as
follows: for n ∈ N, let

f(n) =

{
0 if fn(n) = 1,

1 if fn(n) = 0.

Notice that f(n) ̸= fn(n), which implies that f ̸= fn. We deduce that f ∈ {0, 1}N, but f ̸= fi for
any i, which contradicts (3.2.3). This concludes the proof.

Let us now begin the slog of upgrading the uncountability of {0, 1}N to that of R. First, we show
that {0, 1}N is “mostly” made up of sequences that do not terminate in repeating decimals. For
shorthand, let us temporarily use

S = {0, 1}N.

Recall that we showed that S is uncountable.

Lemma 3.2.12. Let Srepeat be the set of all sequences in S that end in repeated 1’s:

Srepeat = {b̄ ∈ S : ∃N such that bn = 1 for all n ≥ N}.

Then Srepeat is countable.

Proof. As usual, we use Theorem 3.2.8. Notice that f : N → Srepeat is easy to construct:

f(n) = (0, . . . , 0︸ ︷︷ ︸
n places

, 1, 1, . . . ).

This is clearly an injection.

Now we establish an injection g : Srepeat → N. Define g by, for any x̄,

g(x̄) =

∞∑
i=1

|xi − 1|2i.
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Notice that |xi − 1| is one if xi = 0 and is 0 if xi = 1. This is a compact (if opaque) way of writing
the procedure of swapping all ones and zeros. Since x̄ terminates in all ones, g(x̄) is a finite sum
and, thus, well-defined.

Let us show by contradiction that g is an injection. Let us argue by contradiction assuming that
there are x̄, ȳ ∈ Srepeat such that x̄ ̸= ȳ and

g(x̄) = g(ȳ).

Let
ℓ = max{i : xi ̸= yi}.

Since x̄ and ȳ are not equal but terminate in all 1’s, ℓ is well-defined. Then

0 = g(x̄)− g(ȳ) =

∞∑
i=1

|xi − 1|2i −
∞∑
i=1

|yi − 1|2i

=

ℓ∑
i=1

|xi − 1|2i −
ℓ∑

i=1

|yi − 1|2i.
(3.2.4)

Without loss of generality, assume that xi = 0 and yi = 1. Also, notice that, for i < ℓ,

||xi − 1| − |yi − 1|| ≤ 1.

Then, from (3.2.4)

2ℓ = |xℓ − 1| − |yℓ − 1| = −
ℓ−1∑
i=1

|xi − 1|2i +
ℓ−1∑
i=1

|yi − 1|2i

=
ℓ−1∑
i=1

(|yi − 1| − |xi − 1|)2i ≤
ℓ−1∑
i=1

2i = 2ℓ − 2.

This is clearly a contradiction, so g must be injective. This completes the proof.

We now reduce the proof down to showing that intervals are uncountable.

Lemma 3.2.13. Let a < b and suppose that I is an interval of the form (a, b), [a, b), (a, b], or [a, b].
Then card(I) = card(R).

Proof. This holds due to Theorem 3.2.8. Indeed, ι : I → R defined by ι(x) = x is injective, and
φ : R → I defined by φ(x) = a+ (b− a)(ex/(1 + ex)) is injective.

Note that the injectivity of φ, above, is a consequence of the following exercise.

Exercise 3.2.10. Fix any sets A,B ⊂ R. Let φ : A → B be a strictly increasing function; that is,
φ(x1) < φ(x2) if x1 < x2. Show that any strictly increasing function in injective.

We finally show that intervals are uncountable by showing that they have the same cardinality as
S = {0, 1}N.

Lemma 3.2.14. We have card(S) = card{[0, 1)}. Thus, [0, 1) is uncountable.
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Proof. In view of Lemma 3.2.10 and Lemma 3.2.12, it is enough to show that

card(S \ Srepeat) = card([0, 1)).

Any element x ∈ [0, 1) can be given by a unique binary expansion

x =
∞∑
i=k

bk
2k
,

where bk ∈ {0, 1} and where there is no N such that bk = 1 for all k ≥ N (e.g., we take the binary
expansion of 1/2 to be b1 = 1 and bk = 0 for all k > 1 instead of the expansion b1 = 0 and bk = 1
for all k > 1). Thus, let

f : S \ Srepeat → [0, 1),

be defined by

f(x̄) =

∞∑
i=1

xi
2i
.

It follows that f is a bijection.16 This completes the proof.

Theorem 3.2.15. The real numbers R are not countable. Further, if a < b then any interval I of
the form (a, b), [a, b), (a, b], or [a, b] is not countable.

Proof. It follows from Proposition 3.2.11 that [0, 1) is not countable. By Lemma 3.2.13, R, I, and
[0, 1) all have the same cardinality. This completes the proof.

Exercise 3.2.11. Show that there is a bijection between [0, 1) and PN. Recall that PN = {A : A ⊂
N}.

As we show on the homework, cardA ̸= cardPA, for any set A. Of course, it is easy to make an
injection A → PA (indeed, take a 7→ {a}), so we conclude that cardA < cardPA. This tells us
that, not only are there different levels of infinity, there are an infinite number of different levels of
infinity:

cardN, cardPN, cardPPN
, cardPPPN

, . . .

Actually, there is an interesting question called the Continuum Hypothesis.. The Continuum
Hypothesis asserts that there is no cardinality between that of N and that of R (or, equivalently,
that of PN). Gödel proved that the Continuum Hypothesis cannot be disproved using the standard
mathematical axioms (Zermelo-Frankael set theory with the Axiom of Choice) in 1940, while Cohen
proved that the Continuum Hypothesis cannot be proved using standard mathematical axioms in
1963. Interestingly, both Gödel and Cohen did not believe that the Continuum Hypothesis was
true.

Separability: Countable sets are useful because we can enumerate them! Usually, however, we do
not have the luxury of working with countable sets (indeed, we are not number theorists and, thus,
have to work at least R). On the other hand, many useful spaces have dense countable sets. We
give a name for these:
16Injectivity can be proved directly using the ideas in Lemma 3.2.12. Surjectivity is a bit harder; however, the main

idea is, for a fixed r ∈ [0, 1), inductively define xi as follows. If you have already picked x1, . . . , xi−1, then let xi = 0
if r − (x1/2 + · · ·+ xi−1/2i−1 < 2−i. Otherwise, let xi = 1. One can then check that f(x̄) = r.
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Definition 3.2.16. A metric space (X, d) is separable if there is a countable dense set A ⊂ X.

Example 3.2.17. (i) R is separable because Q is a countable dense subset of R.

(ii) Rn is separable because Qn is a countable, dense subset of Rn. The density of Qn was estab-
lished in Example 3.1.8.((ii)). Here is a proof of countability.

We show countability by induction with the case n = 1 already complete (see above). Hence,
we assume the claim is true for Qn−1 and we use that to show it is true for Qn. Recall
that we showed that Q and N × N are countable. Hence, there are bijections f : Qn−1 → N,
g : N× N → N, and h : Q → N. We define

ψ : Qn → N by ψ(q̄, qn) = g(f(q̄), h(qn)) for q̄ ∈ Qn−1, qn ∈ Q.

Is this injective? If ψ(q̄, qn) = ψ(p̄, pn), then, by the injectivity of g, we have f(q̄) = f(p̄) and
h(qn) = h(pn). By the injectivity of f and h, we conclude that q̄ = p̄ and qn = pn; that is,
(q̄, qn) = (p̄, pn). We conclude that ψ is injective.

Is this surjective? Fix any n ∈ N. Let (n1, n2) ∈ N×N be such that g(n1, n2) = n. This exists
by the surjectivity of g. Then, by the surjectivity of f and h, we find q̄ ∈ Qn−1 and qn ∈ Q
such that f(q̄) = n1 and h(qn) = n2. It follows that ψ(q̄, qn) = n. We conclude that ψ is
surjective.

Hence, card(Qn) = card(N) and the proof is complete.

(iii) The space X from Example 3.1.8.((ii)) is a countable, dense subset of ℓp for p ∈ [1,∞). We
showed the density above, while you showed the countability on your homework.

(iv) By the Stone-Weierstrass theorem, the set of all polynomials with coefficients in Q is dense in
C([a, b]) (for any −∞ < a < b <∞ and with the ∥ · ∥∞-norm). By a homework problem, this
set is countable.

(v) (Important example that we justify in the future) The set of all functions of the form:

N∑
n=1

(an sin(2πnx) + bn cos(2πnx)),

where N ∈ N, an, bn ∈ Q, are dense in L2([0, 1]).

3.3. Complete Metric Spaces. Let us return to our motivating questions: given a continu-
ous function between metric spaces f : X → Y , when can f extend to larger metric spaces X̄ and
Ȳ ? Abstractly, we would like to “extend by density” in the following way:

1. given x̄ ∈ X̄, pick a sequence xn → x̄;

2. find the limit ȳ = limn→∞ f(xn);

3. let f̄(x̄) = ȳ.

The first step is the only one that is not fraught (assuming that X is dense in X̄).

In the second step, why should ȳ exist? Even if we expect that the xn’s converging means that
the f(xn)’s should be “close together,” what if there is a hole that they are centered around? For
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example, if we try to extend f : Q → Q, defined by f(x) = x2, to f̄ : R → Q, we will have problems
with f(21/4) since this “should” be

√
2. Hence need the codomain to be complete.

In the last step, our definition of f̄(x̄) depends on the choice of xn... what if we chose a different
sequence x̃n? Hence, our f̄ might not be well-defined. We need to know that, if the xn’s and x̃n’s
converge to the same point x̄, then f(xn) and f(x̃n) converge to the same point. Since x̄ /∈ X,
continuity is not enough... we will need uniform continuity.

The first step to understanding this is the introduce two new concepts:

Definition 3.3.1. A sequence x1, x2, . . . is a Cauchy sequence if, for all ε > 0, there is Nε so that

d(xn, xm) < ε whenever n,m ≥ N.

Exercise 3.3.1. • Show that any convergent sequence is a Cauchy sequence.

• Show that if x1, x2, . . . is a Cauchy sequence that has a convergence subsequence xn1 , xn2 , . . . ,
then x1, x2, . . . is convergent and

lim
n→∞

xn = lim
k→∞

xnk
.

Definition 3.3.2. A metric space (X, d) is complete if, for any x1, x2, . . . that is Cauchy, there is
x∞ such that

x∞ = lim
n→∞

xn.

Example 3.3.3. • Q is not complete: Indeed, we showed above that Q is dense in R. Hence,
for each n, we can find xn ∈ Q such that |xn −

√
2| < 1/n. This is a Cauchy sequence: for

ε > 0, let N be such that N ≥ 2ε. Then, if n,m ≥ N ,

|xn − xm| ≤ |xn −
√
2|+ |

√
2− xm| ≤ 1

n
+

1

m
≤ 2

N
< ε.

But xn cannot converge to a rational number (since it converges to
√
2!).

• R is complete: We essentially take this as an axiom. (It is impossible for us to prove since we
never ‘constructed’ the real numbers...)

• N with the metric d(n,m) = |n−m| is complete. Indeed, Cauchy sequences are those that are
eventually constant (there is N such that xn = xm for all n,m ≥ N). These clearly converge.

• N with the metric d(n,m) = |1/n − 1/m|.

Exercise 3.3.2. Check that this is a metric

What do Cauchy sequences (xn)n look like?

If the sequence is bounded (by, say, M), let ε = 1/(M + 1)2 and find N such that d(xn, xm) < ε
for n,m ≥ N . Then

1

(M + 1)2
= ε > d(xn, xm) =

∣∣∣∣ 1xn − 1

xm

∣∣∣∣ ≥
{
0 if xn = xm,
1

M2 if xn ̸= xm.

Clearly this implies that xn = xm for all n ≥ N . Hence, (xn)n is eventually constant. (These
clearly converge to a point x̄ ∈ N).
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If the sequence is not bounded, then we claim that xn → ∞ as n → ∞. Fix any M > 0. Let
ε = 1/2M and let N be such that n,m ≥ N , then d(xn, xm) < ε. Since the sequence is not
bounded, there is n0 > N such that xn0 > 2M . Then, for any n ≥ N , we have

1

xn
− 1

2M
<

1

xn
− 1

xn0

≤
∣∣∣∣ 1xn − 1

xn0

∣∣∣∣ = d(xn, xn0) < ε =
1

2M
.

Hence, 1/xn < 1/M; that is xn > M . By the arbitrariness of M , this is precisely the definition
of convergence to ∞.

In summary, any Cauchy sequence must either be eventually constant or tend to infinity.
Notice that xn = n is, thus, a Cauchy sequence, but does not converge to anything in N!
Hence N, with this metric, is not complete.

Is there a complete metric space containing N (similar to how R is a complete metric space
containing Q)? Let N̄ = N∪{∞}, where ∞ is an added distinguished point. We take the metric
d̄ : N̄ × N̄ → [0,∞) such that d̄(n,m) = |1/n − 1/m| if n,m ∈ N, d̄(∞, n) = d̄(n,∞) = 1/n if
n ∈ N, and d̄(∞,∞) = 0.

One can check that d̄ is a metric, and it agrees with d on N×N. On the other hand, N̄ is now
a complete metric space.

Exercise 3.3.3. Show this!

Definition 3.3.4. We say that a sequence x1, x2, . . . in a metric space (X, d) is bounded if there
exists R > 0 such that d(x1, xn) < R for every n.

Exercise 3.3.4. Suppose that x1, x2, . . . is a Cauchy sequence in (X, d), a metric space. Show that
it bounded.

3.3.1. Completing a metric space. Notice that, for Q and (N, d), we could ‘complete’ the metric
space to find a (unique-ish!) metric space containing them. We now show how to do this in general.

Definition 3.3.5 (Equivalence relation). Given a set A, an equivalence relation ∼ satisfies:

(i) (Reflexivity) a ∼ a;

(ii) (Transitivity) a ∼ b and b ∼ c implies that a ∼ c;

(iii) (Symmetry) a ∼ b implies that b ∼ a.

[Note: one can write this very formally as ∼⊂ A× A such that (a, a) ∈∼ for all a ∈ A, etc... I do
not personally find this useful as it is overly formal for my liking, but I am happy to develop it with
you in office hours if you are curious / think it will be helpful!]

Example 3.3.6. (i) = is an equivalence relation on R;

(ii) For a, b ∈ N, a ∼ b if a mod 2 = b mod 2 (that is, if both a and b are even or if both a and
b are odd) is an equivalence relation.

(iii) Consider C(R). An equivalence relation is: f ∼ g if f(0) = g(0).

(iv) For a ‘nice’ set of functions, an equivalence relation is: f ∼ g if f and g are equal except at
a countable number of points.
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Definition 3.3.7 (Equivalence classes). Given an equivalence relation ∼ on a set A, we can form
the (disjoint) equivalence classes: for each a ∈ A, its equivalence class is

[a] := {a′ ∈ A : a ∼ a′}.

Note that, if a ∼ a′, then [a] = [a′].

We note that, if set up well, the equivalence classes have the same features as their elements. For
example, in Example 3.3.6.((ii)), we can add elements: indeed, for any sets A and B that are a part
of a larger linear space V :

A+B = {z ∈ V : z = a+ b for some a ∈ A, b ∈ B}.

Applying this, we see that [0]+ [0] = [0], [0]+ [1] = [1], and [1]+ [1] = [0]... this make sense because
they encode “even plus even is odd,” “even plus odd is odd,” and “odd plus odd is even,” respectively,
and each of these is true irrespective of which element of the equivalence class you take.

Idea: If we wish to “complete” a metric space, let us use equivalence classes of Cauchy sequences
to fill in the “holes” in the metric space. Let (X, d) be a metric space and let

X̄ = {[(xn)n] : x1, x2, . . . is a Cauchy sequence in X},

where we use the equivalence relation

(xn)n ∼ (yn)n if lim
n→∞

d(xn, yn) = 0.

Exercise 3.3.5. Check that this is an equivalence relation!

This inherits a distance function d̄ from X:

d̄([(xn)n], [(yn)n]) = lim
n→∞

d(xn, yn). (3.3.1)

Exercise 3.3.6. Show this is well-defined; that is, show that the limit on the right exists and is
independent of the choice of representatives (xn)n and (yn)n of the equivalence class.

The last part of this exercise is important – we want our operations to work equally well on any
element of the equivalence class.

Note that “a copy” of X “lives inside” the larger space X̄:

Xcopy = {[(xn)n] ∈ X̄ : x1 = x2 = · · · = xn = · · · }. (3.3.2)

There is a clear bijection f : X → Xcopy such that

d(x, y) = d̄(f(x), f(y)) for all x, y ∈ X. (3.3.3)

Importantly, one can show that the new space is itself complete

Exercise 3.3.7. Show that (X̄, d̄) is complete. This is a little tricky, but if you want to shore up
your technical skills, it is worthwhile!

Moreover, if ( ¯̄X, ¯̄d) is another complete metric space in which X is dense, then one can find f :
X̄ → ¯̄X that is a bijection and preserves distance (as in (3.3.3)).
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Exercise 3.3.8. Show this!

Let us sum all of the above up into one result:

Theorem 3.3.8 (Cauchy completion theorem). Suppose that (X, d) is a metric space. Let ∼ be an
equivalence relation on the set X̃ ⊂ XN of all Cauchy sequences in X defined by

(xn)n ∼ (yn)n if and only if lim
n→∞

d(xn, yn) = 0.

Define (X̄, d̄) to be defined by

• X̄ = {[(xn)n] : (xn)n ∈ X̃}; • d̄([(xn)n)], [(yn)n]) = limn→∞ d(xn, yn).

This is a complete metric space. Additionally, there is a copy of X living in X̄; that is, there is a
map

ι : X → X̄ defined by ι(x) = (x, x, . . . )

that satisfies d(x, y) = d̄(ι(x), ι(y)) for any x, y ∈ X.

Example 3.3.9. • N with the metric d(n,m) = |1/n − 1/m|. We showed in Example 3.3.3 that
N is completed by adding in a point ∞. Let us see this at the level of Cauchy sequences. Let
(xn)n be a Cauchy sequence. As we showed in Example 3.3.3, either xn is eventually constant
(that is, there is N such that xn = x̄ for some x̄ and all n ≥ N) or xn → ∞ as n → ∞
(that is, for any M > 0, there is N such that xn ≥ M for all n ≥ N). In the former case,
we identify x̄ with [(xn)n]. In the latter case, we identify ∞ with ∞ with [(xn)n]. Hence, the
completion procedure outlined above yields N ∪ {∞} as in Example 3.3.3.

• One way to define R is as the completion of Q.

Exercise 3.3.9. Find the completion of (N, d̃) where d̃ is defined as:

d̃(n,m) = |((−1)n + 1/n)− ((−1)m + 1/m)| .

Back to extending functions: So if we have a uniformly17 continuous function f : X → Y and
the completions X̄ and Ȳ of f , can we define f̄ : X̄ → Ȳ that agrees18 with f on X and Y and is
itself continuous?

A useful fact to know is the following:

Lemma 3.3.10. Suppose that f : X → Y is uniformly continuous. Then (f(xn))n is Cauchy
whenever (xn)n is Cauchy.

Proof. Take x1, x2, . . . that is Cauchy in X and fix ε > 0. We show that f(x1), f(x2), . . . is
Cauchy in Y . Since f is uniformly continuous, there is δ > 0 such that d(x, y) < δ implies that
d(f(x), f(y)) < ε. By the Cauchy-ness of xn, take N such that n,m ≥ N implies that d(xn, xm) < δ.
Hence, if n,m ≥ N , we have

dY (f(xn), f(xm)) < ε.

This shows that f(xn) is Cauchy. Hence, the proof is complete.
17Actually, our motivating example was locally uniformly continuous – it was uniformly continuous on any open ball
Br(x0). Actually, one can show that any Cauchy sequence is bounded, so that the assuming uniformly continuous
instead of locally uniformly continuous is really just a technical assumption and can be relaxed at the expense of
more work... so let us just do less work!

18OK, truly we should use the “copy” of X and Y living in X̄ and Ȳ (see (3.3.2)), but let us not be so pedantic...
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Now we will extend f to get f̄ :

• Cauchy sequences in X get taken to Cauchy sequences in Y : This follows from Lemma 3.3.10.

• Defining f̄ : X̄ → Ȳ : Fix an element x̄ = [(xn)n] ∈ X̄ and let

f̄(x̄) = [(f(xn))n].

Well-defined? By the previous set (f(xn) is a Cauchy sequence). But we need to be careful
that this value does not depend on the choice of representative. In other words, take (xn)n
and (yn)n such that (xn)n ∼ (yn)n and we need to show that (f(xn))n ∼ (f(yn)n. Fix ε > 0
and take δ as in the definition of uniform continuity for f . Next, find N such that, if n ≥ Nx,
we have

dX(xn, yn) < δ.

Hence, dY (f(xn), f(yn)) < δ. It follows that (f(xn))n ∼ (f(yn))n and f̄ is well-defined.

• Uniform continuity: Fix any ε > 0. Using the uniform continuity of f , take δ > 0 such that

dY (f(x), f(z)) <
ε

2
whenever dX(x, z) < δ.

Suppose that x̄ and z̄ ∈ X̄ satisfy

d̄X̄(x̄, z̄) <
δ

2
.

By (3.3.1), there is N such that, if n ≥ N , we have

dX(xn, zn) < δ.

Hence, whenever n ≥ N ,
dY (f(xn), f(zn)) <

ε

2
.

It follows that
dȲ (f̄(x̄), f̄(z̄)) = lim

n→∞
dY (f(xn), f(zn)) ≤

ε

2
< ε.

This is exactly the proof that f̄ is uniformly continuous.

• Uniqueness: Suppose that ¯̄f : X̄ → Ȳ is continous and ¯̄f |X = f .

Exercise 3.3.10. Show that ¯̄f = f̄ !

Theorem 3.3.11. Suppose f : X → Y is a uniformly continuous function and X̄ and Ȳ are
complete metric spaces such that X is a dense subset of X̄ and Y is a dense subset of Ȳ . Then
there is a unique continuous function f̄ : X̄ → Ȳ such that f̄ |X = f .

3.3.2. How to tell a space is complete? And closed sets.

Definition 3.3.12 (Closed sets). A set C ⊂ X of a metric space (X, d) is closed if X \ C = {x ∈
X : x /∈ C} is open.

WARNING: open and closed are not opposites!

• (Sets can be open and closed): ∅ and X are both open and closed.
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• (Sets can be neither open nor closed): [0, 1) is neither open nor closed in R (with the usual
metric).

Example 3.3.13. (i) R – the following sets are closed:

{a}, [a, b], [a,∞), (−∞, a].

(ii) (X, ddisc) – any subset S ⊂ X is closed (and open!).

(iii) The subspaces of ℓ∞, c0 and c, are closed (see, e.g., HW1 Problem 8).

Proposition 3.3.14 (Alternate definition of closed). A subset S of a metric space (X, d) is closed
if and only if, for every convergent sequence sn of points in S, lim

n→∞
sn ∈ S.

Proof of =⇒. Let sn be an arbitrary convergent sequence of points in S and denote its limit x̄ ∈ X.
Suppose, by way of contradiction that x̄ ∈ X \ S. Since S is closed, X \ S is open. Hence, there is
r > 0 such that

Br(x̄) ⊂ X \ S. (3.3.4)

On the other hand, since sn → x̄, there is N such that, if n ≥ N , we have

d(sn, x̄) < r; that is, sn ∈ Br(x̄).

This contradicts (3.3.4), which concludes the proof.

Proof of ⇐=. We prove this by showing the contrapositive. Assume that S is not closed and, hence,
that X \ S is not open. This implies that there exists x̄ ∈ X \ S such that, for every r > 0,

Br(x̄) ̸⊂ X \ S.

Thus, for each n ∈ N, we may find
sn ∈ B1/n(x̄) ∩ S.

In other words, sn ∈ S and

d(sn, x̄) <
1

n
.

It follows that sn → x̄ as n→ ∞, sn ∈ S for each n, and x̄ /∈ S. This completes the proof.

Why might closed sets be useful for us? One reason is that it gives an easy way to tell if a metric
space is complete:

Proposition 3.3.15. Suppose that (X, d) and (Y, ρ) are metric spaces with X ⊂ Y and ρ|X×X = d.
If Y is complete and X is closed (as a subset of Y ), then X is a complete metric space.

Proof. Suppose that xn is a Cauchy sequence in X. Since Y is complete, there is ȳ ∈ Y such that
xn → ȳ as n→ ∞. As X is closed, ȳ ∈ X by Proposition 3.3.14. Hence, X is complete.

Some other important properties of closed sets.

Proposition 3.3.16. If f : X → Y is a continuous function with A ⊂ Y closed, then f−1(Y ) is
closed.
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Exercise 3.3.11. Prove this!

This is particularly useful when thinking about the kernel of an operator: if λ : X → R is a bounded
linear functional, then λ−1({0}) is closed.

Proposition 3.3.17. Suppose (X, d) is a metric space. The following are true:

(i) If I is an indexing set and Aι is a collection of closed subsets, then⋂
ι∈I

Aι is closed.

(ii) The closure of A, denoted Ā, and given by:

Ā =
⋂

B⊃A,B is closed

B

is a closed set. It is the smallest closed set containing A: if B ⊃ A and B is closed, then
Ā ⊂ B.

(iii) The closure is the set of points in A and its limit points:

Ā = A ∪Alp

where Alp = {x ∈ X : there is a sequence an ∈ A such that an → x as n→ ∞}.

Exercise 3.3.12. Prove this! (Hint: these are simply analogous to the same statements for open
sets, unions, and interiors)

3.4. Compactness.

A thought experiment. Suppose we have some sufficiently nice function F : X → Y , where
(X, dX) and (Y, dY ) are metric spaces. In order to solve a problem

F (x̄) = ȳ, (3.4.1)

where ȳ ∈ Y is given but x̄ is unknown. The “nicest” case is when X is finite. Then we can simply
take every element x1, x2, . . . , xN in X and try them out; that is, we just check F (x1) then F (x2)
and so on until we find the correct xi such that F (xi) = ȳ.

If X is infinite, we can no long do that. However, the whole world of numerical analysis has
developed algorithms for many problems like this. Hence, we should be able to “approximately”
solve it. Indeed, perhaps there is an algorithm to get “close” to the solution: we can find x1 ∈ X
and y1 ∈ Y such that

F (x1) = y1 with y1 ≈ y,

and then iterate to get “closer”:

F (xn) = yn with d(yn, y) < d(yn−1, y).

If we are lucky, xn is convergent to some x and F is continuous so that F (x) = y.

There is a tension here: we want convergence to be “easy” so that the sequence xn converges, but
if it is too “easy,” then this makes it “harder” for F to be continuous (more convergent sequences to
test in the definition of sequential continuity). For example:
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Exercise 3.4.1. Suppose that (X, d) is a nonempty metric space in which all sequences are conver-
gent. Then X has exactly one point.

A more refined idea might be to work in a space where all sequences xn have subsequences xnk
that

converge. Notice that, were this the case, our strategy to solve (3.4.1) would still be successful.

Example 3.4.1. (i) Assume that X is a finite set: there is N such that

X = {x1, x2, . . . , xN}.

Suppose that sn is a sequence of elements of X. We identify sn with the function f : N → X
defined by f(n) = sn. Since

N =
N⋃
k=1

f−1({xk}),

there must be some ℓ ∈ {1, . . . , N} such that f−1(xℓ) is infinite. This set is, of course,
countable, so we can enumerate it n1, n2, n3, . . . . It follows that

(sn1 , sn2 , sn3 , . . . ) = (xℓ, xℓ, xℓ, . . . ).

Hence, sn has a convergent subsequence.

Actually, there are a number of other advantages to working in this sort of finite setting, the biggest
one being the existence of maxima and minima of any functions. But notice that this will be true
of a space in which all sequences have convergent subsequences (we will show this in a bit). This
shows us that this sort of “generalized finite” space is very useful. Let us now formally define it.

Definition 3.4.2 (Sequentially compact). A metric space (X, d) is sequentially compact if, for every
sequence xn of points in X, there is x̄ and a subsequence xnk

such that

lim
k→∞

xnk
= x̄.

Note: There is another notion that is equivalent to sequential compactness in the setting of metric
spaces. A space X is called “compact” if, for every collection O = {Uι : ι ∈ I} of open sets Uι such
that

X ⊂
⋃
ι∈I

Uι,

there is a finite subcollection Uι1 , . . . , Uιn ∈ O such that

X ⊂
n⋃

k=1

Uιk .

We will not use this notion, but you should be aware that it exists and is sometimes more useful.

Example 3.4.3. (i) R is not sequentially compact – Take the sequence xn = n. No subsequence
converges since, for any subsequence xnk

, we have xnk
= nk → ∞ as k → ∞.

(ii) (0, 1) is not sequentially compact – Take xn = 1 − 1/n. Clearly, xn → 1 as n → ∞, but
1 /∈ (0, 1)! Similarly, if S ⊊ R is a nonempty, open set, then S is not compact.

Exercise 3.4.2. Prove this!
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(iii) [0, 1] is sequentially compact – We will show this soon...

(iv) The unit ball B1(0) of ℓp (or even the closure of the unit ball!) is not sequentially compact –
Take the sequence x̄n = (1/2)ēn, which is all zeros except a 1/2 in the nth place. Since

∥sn − sm∥ℓp ≥ 1

2
if n ̸= m,

then sn is not Cauchy (and, thus, not convergent).

(v) (N ∪ {∞}, d) with d(n,m) = |1/n − 1/m| as in Example 3.3.3.

Exercise 3.4.3. Show this is sequentially compact. Hint: we already characterized all con-
vergent sequences.

Proposition 3.4.4. Any closed, finite interval [a, b] is sequentially compact.

Intuitively, we want to use the pigeonhole principle to make this argument, similar to how we
approached Example 3.4.1.((i)). Let us “cut” the space in half – one of those halves has to have
infinitely many points of the sequence, so we will take our first element of our subsequence from
that half. Then, we cut this half in half again, taking our next point from there. And so on and so
forth.

Proof. Fix a sequence xn ∈ [a, b], and we show that it has a convergent subsequence.

Step one: Let f : N → [0, 1] be the function such that f(n) = xn. We choose a sequence of
intervals [an, bn] inductively so that, for all n,

f−1([an, bn]) is infinite, [an+1, bn+1] ⊂ [an, bn], and bn − an = (b− a)2−n. (3.4.2)

First, let [a0, b0] = [a, b]. Now we show how to find [an+1, bn+1] whenever we have been given
[an, bn]. Let δ = bn − an > 0. As in Example 3.4.1.((i)), either

f−1([an, an + δ/2]) or f−1([an + δ/2, bn])

must be infinite. If the former (or if both are infinite), let [an+1, bn+1] = [an, an + δ/2], and if the
latter, let [an+1, bn+1] = [an + δ/2, bn].

Step two: We now choose a subsequence inductively as follows. Let Xn = f−1([an, bn]). Let
n1 = minX1. Now, suppose that we have chosen the indices n1, n2, . . . , nk. Choose nk+1 to be

nk+1 = minXk+1 \ {1, 2, 3, . . . , nk}.

We point out two things: (1) Xk+1 is infinite, by construction, so that the set on the right is
nonempty, and (2) the set on the right is a set of natural numbers so that a minimum does exist
(as opposed to an infimum). Hence, nk+1 is well-defined and, by construction

n1 < n2 < n3 < · · ·

so that xnk
is an admissible subsequence of xn. We note that

nk = (nk − nk−1) + nk+1 ≥ 1 + nk+1
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Iterating this, we have
nk ≥ k. (3.4.3)

Step three: We show that xnk
is a Cauchy sequence, which will finish the proof (by the complete-

ness of [a, b], xnk
is convergent). Fix ε > 0 and choose N such that

(b− a)2−N < ε.

Notice that, by (3.4.2), we have, if k, ℓ ≥ N ,

xnk
, xnℓ

∈ [aN , bN ],

where we recall that, by (3.4.3), nk, nℓ ≥ N . Hence,

|xnk
− xnℓ

| ≤ |bN − aN | = (b− a)2−N < ε.

By the arbitrariness of ε, we deduce that xnk
is a Cauchy sequence. Since [a, b] is complete, it

follows that xnk
is convergent. This concludes the proof.

We can easily upgrade this to Rd.

Proposition 3.4.5. Let ai < bi for i = 1, 2, . . . , d. Then

[a1, b1]× [a2, b2]× · · · × [ad, bd]

is a sequentially compact subset of Rd.

Proof. Fix any sequence x̄1, x̄2, . . . in [a1, b1]× · · · × [ad, bd]. Notationally let,

x̄k = (x
(1)
k , x

(2)
k , . . . , x

(d)
k );

that is, the superscript indicates the coordinate and the subscript denotes where in the sequence x̄k
falls.

Notationally, this is an intricate proof. But the idea is that, fixing. a coordinate i, the sequence
x(i) has to converge (up to taking a subsequence). So we can take a subsequence for the first
coordinate that converges, then we take a subsequence of that to get convergence of these second
coordinate, and so on until the dth coordinate. Since there are only finitely many coordinates,
the last subsequence (which is, in a sense, a sub-sub-· · · -subsequence) is still a subsequence of the
original one.

Using Proposition 3.4.4, we can find a subsequence n(1)1 , n
(1)
2 , . . . and a point x(1) such that

x
(1)

n
(1)
k

→ x(1) as k → ∞.

We can repeat this process: for each j ∈ {2, . . . , d}, we can apply Proposition 3.4.4 to find a
subsequence n(j)1 , n

(j)
2 , . . . of n(j−1)

1 , n
(j−1)
2 , . . . and a point x(j) such that

x
(j)

n
(j)
k

→ x(j) as k → ∞.

Since n(d)k is a subsequence of n(j−1)
k , we have x(d−1)

n
(d)
k

→ x(d−1) as k → ∞. Similarly, x(i)
n
(d)
k

→ x(i) as

k → ∞ for every i ∈ {1, . . . , d}. In other words

x̄
n
(d)
k

→ (x(1), x(2), . . . , x(d)) as k → ∞.
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Exercise 3.4.4. Suppose that (X1, d1), . . . , (XN , dN ) are sequentially compact metric spaces. Then
X1 × · ×XN is a sequentially compact metric space.

While this gives us the quintessential example of a sequentially compact set, it also is a key piece
in characterizing all sequentially compact subsets of Rn. We do this now.

3.4.1. The Bolzano-Weierstrass Theorem. Our goal is to prove the characterization of sequen-
tially compact sets in Rn. Along the way, we also prove several general results that will be useful
to us.

Theorem 3.4.6 (Bolzano-Weierstrass Theorem). A set K ⊂ Rn is sequentially compact if and only
if K is closed and bounded.

Let me make a large disclaimer here: this theorem is only true in Rn and other special cases. See,
for example, Example 3.4.3.((iv)). We should also clarify the definition of bounded:

Definition 3.4.7. A set C is bounded in a metric space (X, d) if there is some x0 ∈ X and r > 0
such that C ⊂ Br(x0).

The first step is the following.

Proposition 3.4.8. If (X, d) is a sequentially compact metric space and K ⊂ X is closed set, then
(K, d) is a sequentially compact metric space.

Proof. If kn is a sequence of points in K, then it is a sequence of points in X. By the sequential
compactness of X, there is a subsequence kni and a point x ∈ X so that kni → x as i → ∞.
Since K is closed, x ∈ K by Proposition 3.3.14. By the arbitrariness of the original sequence, K is
sequentially compact.

The next ingredient is that sequentially compact sets are closed and bounded.

Proposition 3.4.9. Suppose that (X, d) is a metric space and K ⊂ X such that (K, d) is sequen-
tially compact. Then K is closed as a subset of X and bounded.

Proof. This is easiest to prove by contradiction. Let us do bounded first.

Boundedness: Suppose that C is not bounded. Fix any x0 ∈ X. Then, for each n, there is
xn ∈ C ∩ (Br(x0)

c). Suppose that xn → x̄ for some x̄ ∈ C. Notice that

d(xn, x̄) ≥ d(xn, x0)− d(x0, x̄) → ∞ as n→ ∞.

This contradicts. that xn → x̄.

Closedness: Suppose that K is not closed. Then, by Proposition 3.3.14, there is x̄ ∈ X \K and
kn ∈ K such that kn → x̄ as n → ∞. Since K is sequentially compact, there is a k̄ ∈ K and a
subsequence kn1 , kn2 , . . . such that

kni → k̄ as i→ ∞.

Of course, kni must converge to x̄ as well (it is a subsequence of a sequence converging to x̄). It
follows that x̄ = k̄. This is a contradiction because x̄ ∈ X \K and k̄ ∈ K.
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We can now prove the Bolzano-Weierstrass theorem.

Proof of Theorem 3.4.6. =⇒: This follows directly from Proposition 3.4.9.

⇐=: Since K is bounded, there is r > 0 and x̄ ∈ Rn such that K ⊂ Br(x̄). It is easy to check that

K ⊂ Br(x̄) ⊂ [−R,R]n,

where R = |x̄|+ r. By Proposition 3.4.5.

3.4.2. Sequentially compact sets and continuous functions.

Proposition 3.4.10 (Extreme Value theorem). Suppose that f : X → R is a continuous function
and (X, d) is a sequentially compact metric space. Then there is xmax ∈ X such that

f(xmax) = sup
x∈X

f(x).

Proof. There exists a sequence xn ∈ X such that

f(xn) → sup
x∈X

f(x).

By sequential compactness, there is a subsequence xnk
such that xnk

→ x̄ as k → ∞ for some
x̄ ∈ X. By the continuity of f , we have

f(x̄) = lim
k→∞

f(xnk
) = lim

n→∞
f(xn) = sup

x∈X
f(x).

You are probably already aware that this is very useful. You are probably also aware that the
hypotheses may not be relaxed:

Example 3.4.11. (i) Define f : (0, 1) → R by f(x) = x. Then sup f = 1, but f(x) < 1 for all
x ∈ (0, 1). Hence, “closedness” cannot be relaxed.

(ii) Define g : (0, 1) → R by g(x) = 1/x. Then sup g = +∞, and, thus, there is no xmax such that
g(xmax) = sup g. Again we see that “closedness” cannot be relaxed.

(iii) Define h : [0,∞) → R by h(x) = 1 − e−x. Then suph = 1, but h(x) < 1 for all x ∈ [0,∞).
Hence, “boundedness” cannot be relaxed.

It turns out that Proposition 3.4.10 is extremely useful! Let us prove a few results using it in order
to illustrate its power.

First, you now have it in your power to actually prove the following (this was a homework problem
where we used the Extreme Value theorem out of the box...)

Proposition 3.4.12. Let ∥ · ∥ be any norm on Rd. Then ∥ · ∥ is equivalent to ∥ · ∥2.

Second, although not an application of the Extreme Value theorem, is similar in spirit to it.
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Proposition 3.4.13. Suppose that K and C are, respectively, sequentially compact and closed
subsets of a metric space (X, d) with K ∩ C = ∅. Then there exists δ > 0 such

δ = dist(K,C) := inf{d(k, c) : k ∈ K, c ∈ C}.

Exercise 3.4.5. Suppose, in Proposition 3.4.13, that C is sequentially compact as well. Then there
exists k ∈ K and c ∈ C such that

0 < d(km, cm) = dist(K,C).

The easiest proof of this uses Proposition 3.4.10 (the Extreme Value theorem).

Proof. We prove this by contradiction: assume that δ = 0. Take a sequence of points kn ∈ K and
cn ∈ C such that

d(kn, cn) → δ as n→ ∞.

Since K is sequentially compact, there is a subsequence knℓ
and a point k̄ such that knℓ

→ k̄ as
ℓ→ ∞. We note that k̄ ∈ K so, by the disjointness of K and C, k̄ /∈ C.

We have

0 = δ = lim
ℓ→∞

d(knℓ
, cnℓ

) ≥ lim sup
ℓ→∞

d(cnℓ
, k̄)− lim

ℓ→∞
d(knℓ

, k̄) = lim sup
ℓ→∞

d(cnℓ
, k̄).

Hence, cnℓ
→ k̄ as ℓ → ∞. Since C is closed, we deduce that k̄ ∈ C, which is a contradiction. We

conclude that δ > 0,m as claimed.

Example 3.4.14. The conditions that K is sequentially compact and C is closed are very important.
For example, let us consider the following simple examples of disjoint sets:

(i) Let
C1 = N and C2 = {n+ 1/n : n ∈ N, n ≥ 2}.

Clearly C1 ∩ C2 = ∅ and each set Ci is closed. On the other hand, the result of Proposi-
tion 3.4.13 is false:

|n− (n+ 1/n)| = 1

n
→ 0 as n→ ∞,

so dist(C1, C2) = 0.

(ii) Let K = {0}, which is sequentially compact, and V = (0, 1). While K is sequentially compact,
V is not closed. The result of Proposition 3.4.13 is not true since

|0− 1/n| → 0 as n→ ∞,

so dist(K,V ) = 0.

Proposition 3.4.15. Let (C, d) be a compact metric space, and let (Y, ρ) be any metric space. If
f : C → Y is continuous, then f is uniformly continuous.

Proof. We argue by contradiction. If f is not uniformly continuous, then there is ε > 0 such that,
for every n, there is xn, yn ∈ C with

ρ(f(xn), f(yn)) ≥ ε0 and d(xn, yn) <
1

n
.
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By sequential compactness, we have convergent sequences xnk
and ynk

so that, letting

x∞ = lim
k→∞

xnk
and y∞ = lim

k→∞
ynk

.

Notice that

d(x∞, y∞) ≤ d(x∞, xnk
) + d(xnk

, ynk
) + d(ynk

, y∞) < d(x∞, xnk
) +

1

nk
+ d(ynk

, y∞).

Taking the limit k → ∞, we find

d(x∞, y∞) = 0, that is, x∞ = y∞.

On the other hand,

ε0 ≤ ρ(f(xnk
), f(ynk

)) ≤ ρ(f(xnk
), f(x∞)) + ρ(f(x∞), f(y∞)) + ρ(f(y∞), f(ynk

)),

which implies, after taking the limit k → ∞ and using the continuity of f ,

0 < ε0 ≤ 0 + ρ(f(x∞), f(y∞)) + 0 = ρ(f(x∞), f(y∞)) = 0.

The last equality follows from the fact that x∞ = y∞. This is clearly a contradiction, which
completes the proof.

One final point to make about sequentially compact spaces is that they must be complete:

Exercise 3.4.6. Show that if (X, d) is sequentially compact, then it is also complete.

3.5. Contraction mappings. Returning to the idea of solving an equation, one nice way of
finding solutions is to frame a problem

F (x) = y

as a “fixed point” problem:
G(x) = x.

In this case, we can do so by writing G(x) = F (x) − y + x. There is a whole world full of “fixed
point theorems.” We will give the basic one here.

Theorem 3.5.1. Suppose that (X, d) is a complete metric space and T : X → X is a map such
that there is θ ∈ [0, 1) such that

d(T (x), T (y)) ≤ θd(x, y) for every x, y ∈ X. (3.5.1)

(We say that T is a contraction mapping). Then there is a unique point xf such that T (xf ) = xf .

Remark 3.5.2. • The restriction θ < 1 is extremely important (as we shall see in the proof).
Indeed, consider the case T : Rn → Rn such that T (x) = e1+x. This satisfies d(T (x), T (y)) =
d(x, y) (that is, (3.5.1) with θ = 1), but it clearly does not have a fixed point.
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• Let us give another example about the restriction θ < 1. It is not enough to have d(T (x), T (y)) <
θd(x, y) for all x ̸= y. Indeed, consider f : [1,∞) → [1,∞) defined by f(x) = x+ e−x.

Consider any x < y. Notice that, by the Mean Value Theorem, there exists ξ ∈ [x, y] such that

|f(x)− f(y)| = |f ′(ξ)||x− y| = (1− e−ξ)|x− y| < |x− y|.

On the other hand, we cannot have a fixed point x0 since this would imply that

x0 = f(x0) = x0 + e−x0 > x0.

This is clearly a contradiction.

• One way that this is often applied (especially in numerics) is, if we are trying to solve an
equation S(x) = 0 on a normed vector space M , we look for a number µ such that T (x) =
x− µS(x) is a contraction mapping. In this case, the fixed point xf must satisfy S(xf ) = 0!

This method of solving S(x) = 0, that follows the proof below, is often called "relaxation".

• Any contraction mapping is uniformly continuous. In fact, the condition (3.5.1) (with or with-
out the assumption that θ < 1) is a particular type of continuous called “Lipschitz continuous.”
Why is it continuous? Given ε > 0, let δ = ε/(θ + 1), and, if d(x, y) < δ,

d(T (x), T (y)) ≤ θd(x, y) ≤ θδ = θ
δ

θ + 1
< ε.

Proof. There are two parts to this proof: existence of a fixed point and uniqueness of the fixed
point. We show these separately.

Existence: The intuition here is that if we keep applying T to some point, it always brings the
successive points closer together. In the limit, the points will have to be infinitely close together;
that is, the limit and T applied to it, will have to be the same!

We inductively define a sequence xn as follows. Let x1 ∈ X be any point. Then, for any n, let
xn+1 = T (xn). We note that

d(xn+1, xn) = d(T (xn), T (xn−1)) ≤ θd(xn, xn−1) = θd(T (xn−1), T (xn−2))

≤ · · · ≤ θn−1d(x2, x1).
(3.5.2)

We claim that xn is a Cauchy sequence. Fix ε > 0 and Nε to be chosen19 (depending only on x1,
x2, and ε). Fix any n,m ≥ Nε and assume that n ≥ m without loss of generality. Applying the
triangle inequality and then (3.5.2), we find

d(xm, xn) ≤
n−m∑
k=0

d(xm+k, xm+k+1) ≤
n−m∑
k=0

θm+k−1d(x1, x2) ≤ d(x1, x2)

∞∑
k=0

θm+k−1

= d(x1, x2)
θm−1

1− θ
≤ d(x1, x2)

θNε−1

1− θ
.

Choosing

Nε > 1 +
log
( (1−θ)ε
d(x1,x2)

)
log θ

,

19The non-lazy way to choose Nε is to explicit write it here. But, in practice, mathematicians often write that it is
“to be chosen” and then determine it after the computations. One has to be very careful here to make sure to not
end up with a circular proof – this is why I have specified at the outset that it will only depend on x1, x2, and ε.
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we conclude that
d(xn, xm) < ε,

and, hence, that xn is Cauchy.

It follows that xn is convergent to some point xf . By the continuity of T , we have

lim
n→∞

T (xn) = T ( lim
n→∞

xn) = T (xf ).

On the other hand T (xn) = xn+1 → xf . It follows that

xf = T (xf ).

Hence, a fixed point exists.

Uniqueness: We now check that this is the only fixed point. The intuition is the following: two
fixed points do not get moved by T , but the condition (3.5.1) implies that T moves points closer
together. These two behaviors are not compatible!

Let us prove it now. Fix any point x̃f such that T (x̃f ) = x̃f . Then, by (3.5.1), we find

d(xf , x̃f ) = d(T (xf ), T (x̃f )) ≤ θd(xf , x̃f ).

Since θ < 1, this is not possible unless d(xf , x̃f ) = 0. Thus, we have proven that xf = x̃f ; that is,
the fixed point is unique.

Example 3.5.3. • (Newton’s method) Fix a C1 function f : R → R and suppose that we
know that

– f has a zero somewhere in [x0 − ε, x0 + ε] (perhaps we know that f(x0 − ε) < 0 and
f(x0 + ε) > 0 by some other means);

– |f | < δ on [x0 − ε, x0 + ε] for some small δ (this is not crazy since we are “near” a zero
so, by decreasing ε, we should be able to make δ arbitrarily small);

– satisfies |f ′| >
√
δ on [x0−ε, x0+ε] (this is the strongest assumption since it is completely

reasonable that f and f ′ can vanish as the same place; e.g., f(x) = x2).

Let us find this zero. Consider the map:

T (x) = x− f(x)

f ′(x)
.

Any fixed point x∗ = T (x∗) is also a zero of f : f(x∗) = 0. Using Taylor’s theorem on f/f ′,
we find

|T (x)− T (y)| =
∣∣∣x− f(x)

f ′(x)
− y +

f(y)

f ′(y)

∣∣∣
=
∣∣∣(x− y)− (x− y)

f ′(ξx,y)f
′(ξx,y)− f(ξx,y)f

′′(ξx,y)

f ′(ξx,y)2

∣∣∣
=
∣∣∣(x− y)

f(ξx,y)f
′′(ξx,y)

f ′(ξx,y)2

∣∣∣ ≤ |x− y|
√
δ∥f ′′∥L∞([x0−ε,x0+ε]),

where ξx,y is some point between x and y. If δ < ∥f ′′∥2L∞([x0−ε,x0+ε]), this is a contraction
map. Hence, there is a fixed point of T , which means that f has zero!

Importantly, the proof of Theorem 3.5.1 gives a procedure to find the zero that can easily be
implemented numerically.
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• (Iterative solutions of matrix equations) Let T : V → V be a mapping from a complete
normed vector space to itself satisfying ∥T∥ < 1. Suppose that we seek a fixed point of M
defined by

M(v) = Tv + b.

for some vector b ∈ V . Notice that

∥Mv −Mw∥ = ∥T (v − w)∥ ≤ ∥T∥∥v − w∥.

Since ∥T∥ < 1, this is a contraction mapping (∥T∥ plays the role of θ here). Hence, M has a
fixed point v∗. Examining the proof of Theorem 3.5.1, we see that

v∗ = b+ Tb+ T 2b+ T 3b+ · · ·

Why? Let v0 = b. Then v1 =Mb = Tb+ b, v2 =Mv1 =M(Tb+ b) = T 2b+ Tb+ b, etc.

Does this make any sense!? Let

Tn = I + T + T 2 + T 3 + · · ·+ Tn.

Notice that, for any n ≥ m, we have

∥Tn − Tm∥ ≤ ∥Tn + Tn−1 + · · ·+ Tm+1∥ ≤
n∑

k=m+1

∥T k∥

≤
n∑

k=m+1

∥T∥k ≤ ∥T∥m

1− ∥T∥
.

Hence, ∥Tnb − Tmb∥ ≤ ∥T∥m(1 − ∥T∥)−1∥b∥, which implies that Tnb is a Cauchy sequence.
The assumed completeness of V then implies that v∗ is well-defined and satisfies

Tv∗ + b =Mv∗ = v∗ or, equivalently, (I − T )v∗ = b.

That is (I − T )−1 = I + T + T 2 + · · · . That is, the standard geometric series identity holds
for linear operators as well!

The operator I + T + T 2 + · · · is called a Neumann series.

How can we use this insight in more generality? Let us say we want to solve Ax = b. Then
we try to split A = D + E where D is an “easily invertible” matrix (say a diagonal or lower
triangular matrix). Then we rewrite the problem Ax = b as

x+D−1Ex = D−1b.

If ∥D−1E∥ < 1, then we can apply the above method to solve this. (Note: we get to choose the
norms here, so it might be that the condition ∥D−1E∥ < 1 can be obtained by choosing “good”
norms). In this case, the matrix D is called a preconditioner.

To be able to apply some of these ideas in more sophisticated ways, we need to show that a few
spaces that we know and love are complete. Let us begin with C([0, 1]).

Proposition 3.5.4. For any a < b, the space C([a, b]) is complete (with the L∞-norm).

Before we prove this, let us show an application of it.
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Example 3.5.5 (Solving ODE by contraction mappings). Suppose we look for a solution of the
ordinary differential equation

x′ = f(t, x) x(0) = x0 (3.5.3)

where f is Lipschitz continuous in x; that is, there is Cf such that |f(t, x)− f(t, y)| ≤ Cf |x− y| for
all x, y ∈ R and all t ∈ R. By integrating this, it can be recast as solving the integral equation

x(t) = x0 +

∫ t

0
f(s, x(s))ds. (3.5.4)

Let ε = 1/(2Cf ). Define T : C([0, ε]) → C([0, ε]) by

(Tx)(t) = x0 +

∫ t

0
f(s, x(s))ds.

Notice that

∥Tx− Ty∥∞ =
∥∥∥∫ t

0
f(s, x(s))ds−

∫ t

0
f(s, y(s))ds

∥∥∥
∞

≤
∫ t

0
∥f(s, x(s))− f(s, y(s))∥∞ds

≤
∫ t

0
Cf∥x− y∥∞ds ≤ εCf∥x− y∥∞ <

1

2
∥x− y∥∞.

Hence, T is a contraction mapping. It has a fixed point x∗ ∈ C([0, ε]), which, by (3.5.4), is a solution
of the ODE (3.5.3) on the time interval20 [0, ε].

Proof. Fix any Cauchy sequence fn ∈ C([a, b]).

Existence of a limiting function f : Since fn is Cauchy, we can choose a subsequence n1 such
that

∥fnk
− fnm∥∞ ≤ 2−min{k,m} (3.5.5)

for every k,m.

Exercise 3.5.1. Prove this!

Then we define

f(x) = fn1(x) +
∞∑
k=1

(fnk+1
(x)− fnk

(x)) = fn1(x) + lim
N→∞

N∑
k=1

(fnk+1
(x)− fnk

(x)). (3.5.6)

It is easy to see that the limit on the right hand side exists because the series on the right hand
side is absolutely summable21:

N∑
k=1

|fnk+1
(x)− fnk

(x)| ≤
N∑
k=1

∥fnk+1
− fnk

∥∞ ≤
N∑
k=1

2−k < 1.

We have now identified f , but it remains to show that fn → f in the L∞-norm and that f ∈ C([a, b]).
20This can actually be upgrade to a solution on R by iterating the result on [ε, 2ε] then [2ε, 3ε], etc.
21You may worry that this “calculus fact” is not rigorously justified. If you are one of these people, like me, then it

is a good exercise to show that the sequence of partial sums is Cauchy and, hence, convergent.
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Convergence of fn to f : We first show that fnk
→ f in the L∞-norm. This follows easily

from (3.5.6). Fix ε > 0 and let N be such that 2−N+1 < ε. Then notice that, for any k,

f = fnk
+

∞∑
ℓ=k

(fnℓ+1
− fnℓ

)

so that, for k > N ,

∥f − fnk
∥∞ =

∥∥∥ ∞∑
ℓ=k

(fnℓ+1
− fnℓ

)
∥∥∥
∞

≤
∞∑
ℓ=k

∥(fnℓ+1
− fnℓ

)∥∞ ≤
∞∑
ℓ=k

2−ℓ

=
2−k

1− (1/2)
= 2−k+1 ≤ 2−N+1 < ε.

(3.5.7)

Thus, we have shown that fnk
→ f .

Now we show that fn → f . Fix ε > 0 and let N1 be such that, if n,m ≥ N1,

∥fn − fm∥∞ <
ε

2
,

and N2 be such that 2−N2+1 < ε
2 . Let N = max{N1, N2}. If k ≥ N , we have

∥f − fk∥∞ ≤ ∥f − fnk
∥∞ + ∥fnk

− fk∥∞ ≤ 2−k+1 +
ε

2
< ε.

The first inequality is due to the triangle inequality, the second is due to the work in (3.5.7) and
the fact that nk ≥ k ≥ N , and the third is due to the fact that 2−k+1 ≤ 2−N+1 < ε/2.

Finally, we prove that f is continuous. Fix ε > 0 and x ∈ [a, b]. Let N be such that ∥f − fN∥∞ <
ε/100. Since fN is continuous, there is δ > 0 such that if |x− y| < δ then |fN (x)− fN (y)| < ε/100.
Hence, if |x− y| < δ, we have

|f(x)− f(y)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)|

≤ ∥f − fN∥∞ + |fN (x)− fN (y)|+ ∥f − fN∥∞ <
3ε

100
< ε.

In other words, f is continuous. This completes the proof.

Next, we show that the ℓp spaces are complete as well. We state first a useful lemma.

Lemma 3.5.6. If xn is a Cauchy sequence in a metric space (X, d) and there is a convergent
subsequence xnk

to a point x̄, then xn → x̄.

Exercise 3.5.2. Prove this!

Proposition 3.5.7. For p ∈ [1,∞], ℓp is complete.

Proof. Fix any Cauchy sequence x̄n ∈ ℓp. Notationally, we write x̄n as the sequence

x̄n = (xn,1, xn,2, xn,3, . . . ).

We use the same trick as we did in showing the completeness of C([a, b]). Arguing exactly as
in (3.5.5), we take nk such that

∥x̄nk
− x̄nm∥ℓp < 2−min{k,m} (3.5.8)
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and then, for each k, we define

x∞,k = xn1 +
∞∑
k=1

(xnk+1
− xnk

).

This is a finite real number for the same reasons as in the proof of Proposition 3.5.4.

Fix any k, m and let us consider the case p <∞. Then, using the identity

x∞,k = xnm,k +
∞∑

i=m

(xni+1,k − xni,k)

we find

∥x̄∞ − x̄nm∥ℓp =

∥∥∥∥∥
∞∑

k=m

(x̄nk+1
− x̄nk

)

∥∥∥∥∥
ℓp

≤
∞∑

k=m

2−k = 2−m+1. (3.5.9)

Hence x̄nm → x̄∞. The proof is then concluded by Lemma 3.5.6.

Actually, there is a subtle lie above! It may not be kosher to take the triangle inequality an infinite
number of times. So how do we repair this? Fix any N . Define the vectors v1, . . . , vL, by

vi = (xni+1,1 − xni,1, xni+1,2 − xni,2, . . . , xni+1,N − xni,N ) ∈ RN .

We also momentarily define the notation ∥ · ∥ℓp,RN denote the ℓp norm on RN . Then(
N∑
k=1

|x∞,k − xnm,k|p
)1/p

= lim
L→∞

(
N∑
k=1

∣∣∣ L∑
i=m

(xni+1,k − xni,k)
∣∣∣p)1/p

= lim
L→∞

∥∥∥∥∥
L∑

i=m

vi

∥∥∥∥∥
ℓp,RN

≤ lim sup
L→∞

L∑
i=M

∥vi∥ℓp,RN = lim sup
L→∞

L∑
i=m

(
N∑
k=1

|xni+1,k − xni,k|
p

)1/p

≤ lim sup
L→∞

L∑
i=m

2−i = 2−m+1,

where the first inequality is due to Minkowski’s inequality and the last inequality is due to (3.5.8).
Then (3.5.9) follows by taking N → ∞ in the above.

Exercise 3.5.3. Do the case p = ∞!

4. Measure theory

4.1. Generalities. At the highest level, measure theory is about providing a “better” integral
(the Lebesgue integral) than the Riemann integral. It will be more powerful in that it will allow us
to integrate more functions than the Riemann integral. Additionally, and perhaps most importantly,
using it will allow us to have complete spaces of integrable functions: Lp will be a complete normed
linear space (a Banach space) for every p ∈ [1,∞]. This is not possible with the Riemann integral.
Beyond these benefits, measure theory is the basis for probability theory, allowing us to make sense
of randomness, which is essential in modern applied mathematics.
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In a sense, the very basic goal of measure theory is simply to determine the “length” of sets. When
the set is an interval, it is easy to say that its measure should be the difference between the endpoints:

m([a, b]) = m((a, b)) = m([a, b)) = m((a, b]) = b− a. (4.1.1)

Some other easy cases are the emptyset and any infinite or half-infinite interval:

m(∅) = 0 and m(R) = m(a,∞) = m(−∞, b) = ∞.

Of course, any “reasonable” notion of length should involve finite additivity: whenever A,B are
measurable22 and disjoint then

m(A ∪B) = m(A) +m(B). (4.1.2)

Additionally, we would expect “bigger” sets to have greater measure: A ⊂ B implies that

m(A) ≤ m(B). (4.1.3)

These are not exactly the conditions that we put on generic measures, but at the moment we are
only speaking roughly in order to build up our intuition.

It turns out that, if (4.1.2)-(4.1.3) are your only requirements, there are many measures!

Example 4.1.1. (i) (Trivial measure) Define m : PR → R+ by:

m(A) =

{
0 if A = ∅,
∞ otherwise.

(ii) (Counting measure) Given any set A, defined

#(A) =

{
card(A) if A is finite,
∞ if A is infinite.

(iii) (Delta measure) Fix a point x0 in a space X. Then, we define

δx0(A) =

{
1 if x0 ∈ A,

0 if x0 /∈ A.

Although this is a somewhat trivial example,

(iv) (Coin Flip) Roughly, we think of a coin flip as taking the value heads, which we will represent
with 1, or tails, which we will represent as 0, each with probability 1/2. This gives rise to the
probability measure:

P : P{0,1} → R+

defined by
P(∅) = 0, P({0}) = 1/2 P({1}) = 1/2, and P({0, 1}) = 1.

The first and last statement mean, respectively, that the probability of getting neither heads
nor tails is zero and that the probability of getting at least one of heads or tails is 1.

There is no reason that the probabilities have to be balanced: one could look at a Bernoulli(p)
random variable for any p:

P(∅) = 0, P({0}) = 1− p P({1}) = p, and P({0, 1}) = 1. (4.1.4)

Notice that, actually, only the second and third equalities are require, while the first and third
arise via (4.1.2)-(4.1.3).

22We will make this precise later, but for now we just mean that m(A) and m(B) “make sense.”
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Exercise 4.1.1. Show this!

(v) Sequence of n independent Bernoulli(p) random variables: Let Xi be the ith coin flip. It
follows (4.1.4). On the other hand, we can define the probability measure on the sequence
(f1, . . . , fn) by:

P((f1, . . . , fn) = (a1, . . . , an)) = pn0(1− p)n−n0 (4.1.5)

where (a1, . . . , an) ∈ {0, 1}n with

n0 = |{i ∈ {1, . . . , n} : ai = 1}|.

Accommodating (4.1.1) is much harder. Indeed, how do we measure the “length” of something that
is not made up of intervals? For example, what is m(Q)? Recall that Q and R \Q are dense in R,
so that both have “holes everywhere.” It is clear that we cannot write these as unions of disjoint
intervals.

4.2. Defining the Lebesgue measure. The measure satisfying the natural property (4.1.1)
is called the Lebesgue measure. It was (amazingly!) introduced by Henri Lebesgue in his PhD
thesis at the beginning of the 20th century. For the moment, we will mainly be concerned with this
measure. Later, we will widen our gaze to include more measures, such as those in Example 4.1.1.

4.2.1. Some basic facts about sets. Before we get started on the careful construction of the
Lebesgue measure, let us recall some

Remark 4.2.1 (Set Operations). Some basic properties of ∪, ∩, and ·c:

• A ∪B = B ∪A;

• A ∩B = B ∩A;

• (A ∪B) ∪ C = A ∪ (B ∪ C);

• (A ∩B) ∩ C = A ∩ (B ∩ C);

• (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C);

• (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C);

• (Ac)c = A;

• (A ∪B)c = Ac ∩Bc;

• (A ∩B)c = Ac ∪Bc.

Let us begin by first working with “nice” sets, that is, those that can be written as a disjoint
collection of intervals.

Proposition 4.2.2. A set W ⊂ R is open and nonempty if and only if it is a disjoint collection of
intervals: there is N ∈ N, possibly infinite and ai < bi such that

W =

N⋃
i=1

(ai, bi),

where (ai, bi) ∩ (aj , bj) = ∅ when i ̸= j. We allow for the possibilities that ai = −∞ and bi = ∞.

Proof. ⇐=: This direction is obvious thanks to our earlier work in Section 3.
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=⇒: Fix any arbitrary open set W . Let q1, q2, . . . be an enumeration of the elements of W ∩Q that
exists due to the countability of the rational numbers23. We collect intervals (ai, bi) inductively as
follows.

For i = 1, we let

a1 = inf{t < q1 : (t, q1) ⊂W} and b1 = sup{t > q1 : (q1, t) ⊂W}.

The openness of W ensures that a1 and b1 exist and satisfy a1 < b1. Also, it follows from their
definition that (a1, b1) ⊂W . We let n(1)i denote an enumeration of the subsequence of q1, q2, . . . of
elements in (W ∩Q) \ (a1, b1):

{q
n
(2)
1

, q
n
(2)
2

, q
n
(2)
3

, q
n
(2)
4

, . . . } = (W ∩Q) \ (a1, b1).

We use the convention that n(1)k = nk. We point out that q1, . . . , qn(1)
1 −1

∈ (a1, b1) and a1, b1 /∈ W .
(Indeed, if, for example, a1 ∈ W , then, by the definition of openness, there is r > 0 such that
(a1−r, a1+r) ⊂W , which implies that a1−r is a “smaller infimum” than a1, which is a contradiction.)

For general i, we assume that we have already defined disjoint (a1, b1), . . . , (ai, bi) as above. If

W =
i⋃

k=1

(ak, bk),

we are finished. Otherwise, we define:

ai+1 = inf{t < q
n
(i)
1

: (t, q
n
(i)
1

) ⊂W} and bi+1 = sup{t > q
n
(i)
1

: (q
n
(i)
1

, t) ⊂W}.

Similarly as above, the openness of W ensures that ai+1 and bi+1 exist and satisfy ai+1 < bi+1.
Also, it follows from their definition that (ai+1, bi+1) ⊂ W . We let n(i+2)

1 , n
(i+2)
2 , . . . denote an

enumeration of the subsequence of q
n
(i+1)
1

, q
n
(i+1)
2

, . . . of elements in

(W ∩Q) \

(
i+1⋃
ℓ=1

(aℓ, bℓ)

)
;

that is

{q
n
(i+2)
1

, q
n
(i+2)
2

, q
n
(i+2)
3

, q
n
(i+2)
4

, . . . } = (W ∩Q) \

(
i+1⋃
ℓ=1

(aℓ, bℓ)

)
.

We point out that ai+1, bi+1 /∈W and

q1, . . . , qn(i+1)
1 −1

∈
i+1⋃
ℓ=1

(aℓ, bℓ). (4.2.1)

We claim that (ai+1, bi+1) is disjoint from (aℓ, bℓ) for all ℓ < i + 1. We argue by contradiction,
assuming that (ai+1, bi+1) ∩ (aℓ, bℓ) ̸= ∅. Without loss of generality, assume that q

n
(i+1)
1

< q
n
(ℓ)
1

.
Then

W ̸∋ aℓ ∈ (q
n
(i+1)
1

, q
n
(ℓ)
1

) ⊂ (min{ai+1, aℓ},max{bi+1, bℓ}) = (ai+1, bi+1) ∪ (aℓ, bℓ) ⊂W.

23One might worry that there is not an infinite number of elements in W ∩Q. This can be seen as follows. Since W is
open, there is r > 0 and x0 ∈ W such that Br(x0) ⊂ W . Since Q is dense in R, there is q ∈ Br(x0). Thus, q < x0+r,
and, as a result, there is N sufficiently large that, q + 1/N < x0 + r. It follows that x0 − r < q < q + 1/n < x0 + r
for every n ≥ N , which gives an infinite set of points in Br(x0) ⊂ W .
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This is a contradiction.

If N is finite, the proof is finished, as noted at the beginning of the inductive step. Otherwise, we
must show that

W =

∞⋃
i=1

(ai, bi).

Clearly “⊃” holds. If “⊂” does not hold, then there is w ∈ W such that w /∈ (ai, bi) for every i.
Since W is open, there is r > 0 such that (w − r, w + r) ⊂ W . Since ai, bi /∈ W , it follows that
ai, bi /∈ (w − r, w + r). It follows that

(w − r, w + r) ⊂W \

( ∞⋃
i=1

(ai, bi)

)
. (4.2.2)

Then there is ℓ0 such that qℓ0 ∈ (w − r, w + r) and then we must have that, by (4.2.1),

qℓ0 ∈
ℓ0+1⋃
ℓ=1

(aℓ, bℓ)

which contradicts (4.2.2).

Thus, for any open set U we can declare that

m(U) =

N∑
i=1

|bi − ai|,

where a1, b1, a2, b2, . . . is from the decomposition in Proposition 4.2.2... But what about the rest of
the sets A ⊂ R?

Philosophy: Two “close” sets should have measures that are “close.” In other words, we expect
our measure to be continuous. This is apparent when we look at the following: let ε > 0 and a < b,
then

|m((a, b+ ε))−m((a, b))| = |(b+ ε− a)− (b− a)| = ε.

Our goal is to use this to define the measure of “nice” sets:

m(A) = inf
U⊃A,open

m(U).

While the comment about “niceness” might seem unimportant, let me stress that not all sets will
be “nice,” and one must take care with this issue!

4.2.2. Outer measure. We begin with a preliminary form of measure:

Definition 4.2.3 (Outer measure). The outer measure is m∗ : PR → R+ defined by

m∗(A) = inf

{ ∞∑
i=1

|bi − ai| : A ⊂
∞⋃
i=1

(ai, bi)

}
.

We notice that this works nicely for open sets. Thanks to Proposition 4.2.2, we immediately see
that, if U is open:

m∗(U) = m(U).
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Actually, there is a tiny bit to prove here, but let us ignore that for now. Recall that m is, at this
point, only defined on open sets. Further, it is not hard to prove that

m∗(A) = inf
U open,U⊃A

m(U). (4.2.3)

Exercise 4.2.1. Do this!

Rephrased, we have that, if U ⊃ A is an open set then m∗(A) ≤ m(U) and, for all ε > 0, there is
an open set Uε ⊃ A such that

m∗(A) ≥ m(Uε)− ε.

The advantage to this is that it is defined on all sets and will allow us to identify “nice” sets. The
disadvantage is that it will lead to some nasty contradictions before we reduce to “nice” sets.

We point out that an immediate consequence of (4.2.3) is that, if A ⊂ B, then

m∗(A) ≤ m∗(B). (4.2.4)

A nice property of outer measures (that the Lebesgue measure will inherit!) is countable subaddi-
tivity.

Proposition 4.2.4. Let A1, A2, . . . be a collection of sets. Then, letting

A =

∞⋃
i=1

Ai,

we have

m∗ (A) ≤
∞∑
i=1

m∗(Ai).

Proof. Before beginning, we note that there is nothing to prove if

∞∑
i=1

m∗(Ai) = ∞,

hence, we assume that this sum is finite.

Fix ε > 0. For each i, there is collection of intervals (ai,k, bi,k) with k = 1, 2, . . . such that

m∗(Ai) ≥
∞∑
k=1

|bi,k − ai,k| −
ε

2i
and Ai ⊂

∞⋃
k=1

(ai,k, bi,k).

Notice that (ai,k, bi,k) is a countable collection of intervals whose union contains A. Hence,

m∗(A) ≤
∞∑
i=1

∞∑
k=1

|bi,k − ai,k| ≤
∞∑
i=1

(
m∗(Ai) +

ε

2i

)
=

∞∑
i=1

m∗(Ai) + ε.

Since this is true for all ε, the claim follows.

Notice that, for any open set U , m∗(U) = m(U). There are other sets that we can find the outer
measure of in a relatively straightforward way.
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Proposition 4.2.5. The set of rational numbers has outer measure 0: m∗(Q) = 0. Further, any
countable set has outer measure zero.

Warning: not every measure zero set is countable!

Proof. Fix any ε > 0 and let Q = {q1, q2, . . . }. For each i, let

ai = qi −
ε

2i+1
and bi = qi +

ε

2i+1
.

It is clear that

Q ⊂
∞⋃
i=1

(ai, bi),

so that

0 ≤ m∗(Q) ≤
∞∑
i=1

|bi − ai| =
∞∑
i=1

ε

2i
= ε.

Since this is true for all ε, it follows that m∗(Q) = 0.

This sort of proof is very common when showing something has measure zero. Try it yourself!

Exercise 4.2.2. Suppose that A1, A2, . . . have outer measure zero. Show that A = A1 ∪ A2 ∪ · · ·
has outer measure zero. Use this to show that any countable set has outer measure zero.

Exercise 4.2.3. A metric on sets. For any A,B ⊂ R, let

d̃(A,B) = m∗(A∆B) = m∗((A \B) ∪ (B \A)).

Show that d̃ may be infinite and that there are A ̸= B such that d̃(A,B) = 0. Instead of considering
PR, let PR/ ∼ where A ∼ B if m∗(A∆B) = 0. We say that then A and B are the same up to a set
of measure zero. Let

d([A], [B]) =
d̃(A,B)

1 + d̃(A,B)
.

Show that d is a metric on PR/ ∼.

4.2.3. Lebesgue measurability. Here we answer the question: what are the “nice” sets on which
we can define the measure? First, notice that Proposition 4.2.4 implies that

m∗(E) ≤ m∗(A ∩ E) +m∗(Ac ∩ E). (4.2.5)

We would expect that equality holds (since A∩E and Ac ∩E are disjoint), but we have not proven
that yet. In fact, it is not always true! If A and Ac are “very intertwined” then a cover of A by
integrals might include “a lot” of points of Ac as well. It takes some effort to construct such messy
sets, and essentially every set you know does not have this bad property. So let us just restrict our
universe to just the nice sets where equality holds in (4.2.5).

Definition 4.2.6 (Measurability). A set A ⊂ R is (Lebesgue) measurable if, for every E ⊂ R,

m∗(E) = m∗(A ∩ E) +m∗(Ac ∩ E).

We denote the set of measurable sets by M. If A ∈ M, then we denote its measure

m(A) = m∗(A).
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We note that, due to (4.2.5), a set A is measurable if and only if

m∗(E) ≥ m∗(A ∩ E) +m∗(Ac ∩ E). (4.2.6)

Example 4.2.7. (i) Measure zero sets are measurable. Note that this includes the empty
set, finite sets, and countable sets.

Assume that m∗(A) = 0. Fix any set E ⊂ R. Then

m∗(A ∩ E) +m∗(Ac ∩ E) = 0 +m∗(Ac ∩ E) ≤ m∗(E).

Here we used (4.2.4) twice. The above is precisely (4.2.6), which yields the measurability of
A.

(ii) The half-open interval (−∞, β) is measurable. Fix any set E ⊂ R. Take any ε > 0 and
(a1, b2), (a2, b2), . . . to be a collection of open sets such that

∞∑
n=1

|bn − an| ≤ m∗(E) + ε and E ⊂
∞⋃
n=1

(an, bn).

We now define two new collections of intervals as follows. For each n, if bn ≤ β, we let

cn = min{an, β}, dn = min{bn, β}, en = max{an, β}, and fn = max{bn, β}.

Here are the three different situations that the above choices represent:

an

cn

bn

dn en = fn

β an

cn

bn

fndn = en

β

an

en

bn

fncn = dn

β

Notice that
fn − en + dn − cn = bn − an.

Additionally, notice that

(−∞, β) ∩ E ⊂
∞⋃
n=1

(cn, dn) and (β,∞) ∩ E ⊂
∞⋃
n=1

(en, fn).

Hence,

m∗((−∞, β) ∩ E) +m∗((−∞, β)c ∩ E) = m∗((−∞, β) ∩ E) +m∗([β,∞) ∩ E)

≤ m∗((−∞, β) ∩ E) +m∗({β}) +m∗((β,∞) ∩ E)

≤
∞∑
n=1

(dn − cn) + 0 +
∞∑
n=1

(fn − en) =
∞∑
n=1

(bn − an) ≤ m∗(E) + ε.

Taking ε→ 0, we arrive at (4.2.6), which proves that (−∞, β) is measurable.
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We can get many more measurable sets by observing measurability is preserved under the oper-
ations of set complementation, countable unions, and countable intersections. This, along with
Example 4.2.7, shows that all open and closed sets are measurable, as well as, essentially, any set
we have ever come across in the wild before.

We prove this in several results below. We first consider set complements.

Proposition 4.2.8. If A ⊂ R is measurable, then so is Ac.

Proof. This is essentially obvious after noting that (Ac)c = A. Indeed, for any E, we have, by the
measurability of A,

m∗(E) = m∗(A ∩ E) +m∗(Ac ∩ E) = m∗((Ac)c ∩ E) +m∗(Ac ∩ E).

This is precisely the definition of measurability of Ac.

In order to establish the result about countable unions and intersections, we first prove a preliminary
version of it for finite unions and intersections.

Lemma 4.2.9. Let N ∈ N and A1, . . . , AN be measurable sets.

(i) The following sets are measurable:

UN =
N⋃
i=1

Ai and IN =
N⋂
i=1

Ai.

(ii) If we further assume that the sets are pairwise disjoint (i.e., Ai ∩Aj = ∅ for i ̸= j), then

m∗(E ∩ UN ) =
N∑
i=1

m∗(E ∩Ai) (4.2.7)

for any set E ⊂ R. In particular,

m(UN ) =
N∑
i=1

m(Ai).

Proof of Lemma 4.2.9.(i). We need only show the measurability of UN ; that is, that any finite union
of measurable sets is itself measurable. Indeed, let us show how the measurability of IN follows
from this fact. Observe that

Ic
N =

N⋃
i=1

Ac
i

and that
IN = (Ic

N )c . (4.2.8)

Observe that, for all i, Ac
i is measurable, by Proposition 4.2.8. Using this and the measurability

of finite unions of measurable sets, we see that Ic
N is measurable. Finally, by (4.2.8) and Proposi-

tion 4.2.8, we deduce that IN is measurable.

Next, we prove the measurability of UN by induction. The base case N = 1 is immediate since
U1 = A1, which is measurable by assumption. Then we consider the inductive step. Suppose that
N > 1 and that UN−1 and AN are measurable. We show that UN is measurable.
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Fix any set E ⊂ R. Observe some basic identities:

UN = UN−1 ∪AN ,

(UN−1 ∪AN ) ∩ E = (UN−1 ∩ E) ∪ (Uc
N−1 ∩AN ∩ E), and

(UN−1 ∪AN )c ∩ E = Uc
N−1 ∩Ac

N ∩ E.
(4.2.9)

Fix any set E. Then

m∗((UN−1 ∪AN ) ∩ E) +m∗((UN−1 ∪AN )c ∩ E)

= m∗ ((UN−1 ∩ E) ∪ (Uc
N−1 ∩AN ∩ E)

)
+m∗ (Uc

N−1 ∩Ac
N ∩ E

)
≤ m∗(UN−1 ∩ E) +m∗(Uc

N−1 ∩AN ∩ E) +m∗(Uc
N−1 ∩Ac

N ∩ E)

≤ m∗(UN−1 ∩ E) +m∗ (AN ∩ (Uc
N−1 ∩ E)

)
+m∗ (Ac

N ∩ (Uc
N−1 ∩ E)

)
.

(4.2.10)

In the first equality, we simply re-wrote the unions and intersections using (4.2.9), and in the
first inequality, we used (4.2.5). The last inequality is simply a reordering of the intersections for
expository reasons. Next, the measurability of AN yields

m∗ (AN ∩ (Uc
N−1 ∩ E)

)
+m∗ (Ac

N ∩ (Uc
N−1 ∩ E)

)
= m∗(UN−1 ∩ E).

Hence, (4.2.10) becomes

m∗((UN−1 ∪AN ) ∩ E) +m∗((UN−1 ∪AN )c ∩ E)

≤ m∗(UN−1 ∩ E) +m∗(UN−1 ∩ E).
(4.2.11)

We then similarly using the measurability of UN−1 to deduce that the right hand side of (4.2.11) is
m∗(E). We, thus, deduce that

m∗((UN−1 ∪AN ) ∩ E) +m∗((UN−1 ∪AN )c ∩ E)

≤ m∗(UN−1 ∩ E) +m∗(Uc
N−1 ∩AN ∩ E) +m∗(Uc

N−1 ∩Ac
N ∩ E)

= m∗(UN−1 ∩ E) +m∗(Uc
N−1 ∩ E) = m∗(E).

This is precisely (4.2.6), which completes the proof of the measurability of UN .

Proof of Lemma 4.2.9.(ii). Again, we proceed by induction. The case N = 1 is immediate since
U1 = A1. Next, we consider the inductive step. Fix any E ⊂ R. Suppose that N > 1 and
that (4.2.7) holds for N − 1; that is,

m∗(E ∩ UN−1) =
N−1∑
i=1

m∗(E ∩Ai). (4.2.12)

We notice that

(E ∩ (UN−1 ∪AN )) ∩ UN−1 = E ∩ UN−1 and
(E ∩ (UN−1 ∪AN )) ∩ Uc

N−1 = E ∩AN .
(4.2.13)

In the second equality, we used that UN−1 and AN are disjoint.

Using the measurability of UN−1 (due to Lemma 4.2.9.(i)) and then (4.2.13), we have

m∗(E ∩ (UN−1 ∪AN )) = m∗((E ∩ (UN−1 ∪AN )) ∩ UN−1) +m∗((E ∩ (UN−1 ∪AN )) ∩ Uc
N−1)

= m∗(E ∩ UN−1) +m∗(E ∩AN ).
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Figure 5: A cartoon of the definition of Ã1, Ã2, Ã3.

We then apply (4.2.12) to deduce that

m∗(E ∩ (UN−1 ∪AN )) = m∗(E ∩ UN−1) +m∗(E ∩AN )

=

(N−1∑
i=1

m∗(E ∩Ai)

)
+m∗(E ∩AN ) =

N∑
i=1

m∗(E ∩Ai).

The proof is complete.

We now bootstrap this to the countably infinite case.

Proposition 4.2.10. Suppose that A1, A2, . . . are measurable sets.

(i) The following sets are measurable:

U =

∞⋃
i=1

Ai and I =

∞⋂
i=1

Ai.

(ii) If we further assume that the sets are pairwise disjoint, then

m(U) =
∞∑
i=1

m(Ai).

Proof of Proposition 4.2.10.(i). As in the proof Proposition 4.2.10.(i), we need only show the mea-
surability of U .

We define a new collection of sets

Ãn = An \ (A1 ∪ · · · ∪An−1) = An ∩ (Ac
1 ∩ · · · ∩Ac

n−1).

The advantage to this collection is encapsulated in the following exercise; that is, this collection is
pairwise disjoint and its union is still U .
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Exercise 4.2.4. Show that the sets Ã1, Ã2, . . . have the property that

Ãn ∩ Ãm = ∅ if n ̸= m and U =

∞⋃
i=1

Ãi.

By parts (i) and (ii), each Ãi is measurable. Using the measurability of

UN =

N⋃
i=1

Ãi =

N⋃
i=1

Ai,

we find
m∗(E) = m∗(UN ∩ E) +m∗(Uc

N ∩ E).

Since Uc
N ⊂ Uc, we have

m∗(E) ≥ m∗(UN ∩ E) +m∗(Uc ∩ E).

Using the fact that each Ãi is disjoint as well as part (ii), we have

m∗(E) ≥
N∑
i=1

m∗(Ãi ∩ E) +m∗(Uc ∩ E).

Since this holds for every N , we may take N to infinity to find

m∗(E) ≥
∞∑
i=1

m∗(Ãi ∩ E) +m∗(Uc ∩ E) ≥ m∗(U ∩ E) +m∗(Uc ∩ E).

In the second inequality, we used Proposition 4.2.4. This completes the proof.

Proof of Proposition 4.2.10.(ii). From Proposition 4.2.4 and the measurability of U , we immediately
get that

m(U) ≤
∞∑
i=1

m(Ai). (4.2.14)

On the other hand, for any N , we have UN ⊂ U , which, along with Lemma 4.2.9.(ii) implies that

N∑
i=1

m(Ai) = m(UN ) ≤ m(U).

Since this holds for all N , we may take the limit as N → ∞ to deduce that

∞∑
i=1

m(Ai) ≤ m(U). (4.2.15)

The combination of (4.2.14) and (4.2.15) completes the proof.

Before giving the proof of this, we see what it tells us about measurable sets. First, we note that it
is not easy to understand what the space of Lebesgue measurable sets looks like. It is quite large,
and contains some very messy sets! Second, let us look at some new examples of measurable sets.

Example 4.2.11. (i) Open sets –
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Exercise 4.2.5. Homework problem!

(ii) Closed sets – If K is a closed set, then Kc is open and, hence, measurable. It follows from
Proposition 4.2.8 that K = (Kc)c is open.

(iii) The irrational numbers – R \Q = Qc.

(iv) Countable unions and intersections of open sets and closed sets – This is an important
“σ-algebra” (we define this below, see Definition 4.3.4) called the Borel σ-algebra. It yields all
sorts of sets, such as

[0, 1] ∩ (R \Q), {z : sin(z) ∈ Q}, and
∞⋃
k=1

∞⋃
n=1

[
k +

1

10n
, k +

1

5n

]
.

Exercise 4.2.6. You may find it useful to think hard about why each of the above arises in
the way claimed.

Exercise 4.2.7 (The Cantor set). We form a subset C ⊂ [0, 1] in the following way. Let C0 = [0, 1].
At each step i, Ci ⊂ Ci−1 obtained by removing the middle third of each interval making up Ci−1:

C1 = [0, 1/3] ∪ [2/3, 1],

C2 = [0, 1/9] ∪ [2/9, 3/9] ∪ [6/9, 7/9] ∪ [8/9, 1],

...

Cℓ =
ℓ⋂

n=1

3n−1−1⋃
i=0

([
3i

3n
,
3i+ 1

3n

]⋃[
3i+ 2

3n
,
3i+ 3

3n

])
,

...

Another way to characterize Ck is that it is all real numbers between 0 and 1 (inclusive) with a
ternary expansion in which the first k terms in the expansion have a numerator of 0 or 2:

Ck =

{
x ∈ [0, 1] : x =

∞∑
i=1

αi

3i
, where αi ∈ {0, 2} if i ≤ k and αi ∈ {0, 1, 2} for all i

}
.

Let

C =

∞⋂
k=1

Ck.

Show that C is uncountable and has measure zero.

4.2.4. An example of a non-measurable set. First, we must define modular arithmetic. This
is an intuitively simple concept that, in our case of “mod 1 arithmetic,” essentially boils down to
“forgetting” the integer part of a number; for example, .7 + .8 mod 1 = .5 since it “usually” is 1.5.
More precisely, we say that, for any x, y ∈ R,

x+ y mod 1 = x+ y − n

where n = max{n′ ∈ Z : n′ ≤ x+ y}. One can check that all of the usual manipulations of addition
hold in this setting.

96



Next, define an equivalence relation ∼ by

x ∼ y ⇐⇒ there is q ∈ Q such that x = y + q.

We can partition [0, 1) with this equivalence relation into disjoint equivalence classes [x] ⊂ [0, 1) for
each x ∈ [0, 1).

Using the Axiom of Choice, we obtain a set B that contains exactly one element from each equiva-
lence class [x] defined using ∼. In other words, for every p, p̃ ∈ P , either p = p̃ or p ̸∼ p̃.

Let q1, q2, . . . be an enumeration of Q ∩ [0, 1). Define

Pi = P + qi mod 1 = {z ∈ [0, 1) : z = p+ qi mod 1 for some p ∈ P}.

The goal is to show that P is not measurable.

We proceed by contradiction, assuming that P is measurable. Then m(P ) = m(Pi) for all i (see
Lemma 4.2.12). On the other hand, (see Lemma 4.2.13) the Pi are disjoint and their union is [0, 1),
so that, by Proposition 4.2.10.(ii),

1 = m([0, 1)) = m
( ∞⋃

i=1

Pi

)
=

∞∑
i=1

m(Pi) =
∞∑
i=1

m(P ).

If m(P ) = 0, the right hand side is zero, which is a contradiction. If m(P ) > 0, the right hand side
is infinite, which is also a contradiction.

Let us now prove the two component pieces of this argument. To show that Pi = P + qi mod 1
is measurable (if we, by contradiction, assume that P is measurable), we establish a more general
claim.

Lemma 4.2.12. Suppose that A is measurable and b ∈ R.

(i) The set A+ b is measurable and m(A) = m(A+ b).

(ii) If A ⊂ [0, 1) and b ∈ [0, 1). then so is Ab := A+ b mod 1 is as well and m(Ab) = m(A).

Proof of (i). We first show the following claim:

for any S ⊂ R and b ∈ R, m∗(S) = m∗(S + b). (4.2.16)

To prove this, we simply show that

m∗(S + b) ⊂ m∗(S).

Indeed, since S = (S − b) + b then the opposite inequality follows. Fix any ε > 0 and any
(a1, b1), (a2, b2, ) . . . such that

S ⊂
∞⋃
i=1

(ai, bi) and
∞∑
i=1

|βi − αi|+
∞∑
i=1

|bi − ai| ≤ m∗(S) + ε.

collection. Then

S + b ⊂
∞⋃
i=1

(ai + b, bi + b).
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Hence,

m∗(S + b) ≤
∞∑
i=1

|βi − αi|+
∞∑
i=1

|(bi + b)− (ai + b)| =
∞∑
i=1

|βi − αi|+
∞∑
i=1

|bi − ai| ≤ m∗(S) + ε.

Then (4.2.16) follows by taking ε→ 0.

Fix any set E ⊂ R. Notice that

(A+ b) ∩ E = (A ∩ (E − b)) + b and
(A+ b)c ∩ E = (Ac + b) ∩ E = (Ac ∩ (E − b)) + b.

Using this, followed by (4.2.16), the measurability of A, and (4.2.16) again, we find

m∗((A+ b) ∩ E) +m∗((A+ b)c ∩ E) = m∗((A ∩ (E − b)) + b) +m∗((Ac ∩ (E − b)) + b)

= m∗((A ∩ (E − b))) +m∗((Ac ∩ (E − b)))

= m∗(E − b) = m∗(E).

Thus, A + b is measurable. That m(A + b) = m(A) follows from (4.2.16). This completes the
proof.

Proof of (ii). Let A1 = A∩ [0, 1−b) and A2 = A∩ [1−b, 1). Notice that A1 and A2 are measurable,
disjoint, and their union is A. Hence,

m(A) = m(A1) +m(A2).

Moreover, notice that
A+ b mod 1 = (A1 + b) ∪ (A2 + b− 1),

and the two sets on the right hand side are disjoint. This, along with Lemma 4.2.12.(i) yields

m(A+ b) = m(A1 + b) +m(A2 + b− 1) = m(A1) +m(A2) = m(A).

The proof is complete.

Next we show that the Pi are pairwise disjoint and their union is [0, 1).

Lemma 4.2.13. If i ̸= j, then Pi ∩ Pj = ∅. Further,

∞⋃
i=1

Pi = [0, 1). (4.2.17)

Proof. We begin by showing the disjointness first. We argue by contradiction. Fix i ̸= j and suppose
there is

z ∈ P1 ∩ Pj .

Then there exist pi ∈ Pi and pj ∈ Pj such that

z = pi + qi mod 1 = pj + qj mod 1.

Thus, we have
pi − pj = qj − qi mod 1.
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Recall that qi − qj mod 1 ̸= 0. It follows that pi − pj differ by a non-zero rational number, which
implies that pj ∼ pi. This contradicts the construction of P . Thus, Pi ∩ Pj = ∅.
Now we show that (4.2.17) holds. It is clear that “⊂” holds, by construction. We show that “⊃”
holds as well. Take any x ∈ [0, 1). We need only find i such that x ∈ Pi. By construction of P ,
there exists p ∈ P such that p ∼ x. By definition of ∼, there is i such that x = p+qi mod 1. Thus,
x ∈ Pi. This completes the proof.

4.3. General theory of measures. Let us move beyond the notion of the Lebesgue mea-
sure. As we see below, there are many measures out there that are important in the world. Perhaps
the largest source of these is that of probability measures (which formalize random events). Of
course, the reader is encouraged, on the first pass through this section, to special all theorems to the
Lebesgue measure for the sake of intuition.

In order to carefully define the general notion of a measure on an arbitrary set X, we need to first
carefully define which sets we can measure! As we saw in the previous section (Section 4.2.4), it may
not be possible to assign measure every set. Which sets should we be able to measure? Certainly,
we should have a notion of the size of the whole space; i.e., X should be measurable. Of course,
if we can measure a set A and we can measure X, we should be able to measure its complement
Ac = X \A. Finally, if we can measure a (countable) collection of sets, we should be able to measure
their union just by adding.

This leads us to the following:

Definition 4.3.1. A σ-algebra on a set X is a set F ⊂ PX such that

(i) X ∈ F ;

(ii) if A ∈ F , then Ac ∈ F ;

(iii) if A1, A2, · · · ∈ F , then A1 ∪A2 ∪ · · · ∈ F .

A σ-algebra is the collection of sets to which we will assign measure when we construct a measure
space. Note that we showed that the set of Lebesgue measurable sets satisfies these properties. In
other words, we arrive at the following:

Proposition 4.3.2. Let L ⊂ PR denote the set of Lebesgue measurable sets. Then L is a σ-algebra.

Exercise 4.3.1. Show that ∅ ∈ F .

Example 4.3.3. Here are two further (simple) σ-algebras. Fix any set X.

(i) Let F = {∅, X}. Then F is a σ-algebra.

(ii) The power set PX is a σ-algebra.

Given a collection of sets, one can generate the “smallest” σ-algebra containing it. This is similar
to the process we used to define the interior, the closure, and the convex/affine/conic hulls of sets.
Let P ⊂ PX , then

σ(P ) :=
⋂

Σ⊃P,Σ is a σ-algebra

Σ. (4.3.1)

One should check that σ(P ) is, in fact, a σ-algebra:
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Exercise 4.3.2. Given any set X and a collection P ⊂ PX , the set σ(P ) is a σ-algebra. More
generally, any arbitrary intersection of σ-algebras is a σ-algebra.

In general, taking the σ-algebra σ(P ) generated by a collection of sets P is a pretty messy process.
Indeed, the first example of this that we have seen is the Borel σ-algebra (see Example 4.2.11.(iv)):

Definition 4.3.4. The Borel σ-algebra is the one generated by open subsets of R:

B = σ ({U ⊂ R : U is open}) .

We say a set S is Borel measurable if S ∈ B. Often we simply say that S is a Borel set.

Let us note that the definition of the Borel σ-algebra makes sense in any metric space. This is one
reason that is quite useful in applications.

We do not have an explicit characterization of Borel σ-algebra – given a set, one must “check by
hand” if it is Borel. Unfortunately, this is typical of generated σ-algebras; however it is usually
not an issue. In practice, it is reassuring that such a set exists (as we shall see, this is useful in
probability theory), and often one does not really need to know explicitly what σ(P ) looks like.
One thing that we can say is that Borel sets are Lebesgue measurable:

Lemma 4.3.5. Let B denote the Borel σ-algebra and L denote the σ-algebra of Lebesgue measurable
sets. Then B ⊂ L.

Proof. Let T = {U ⊂ R : U is open}. Then T ⊂ L by Example 4.2.11. It follows that B ⊂ L
because L is one of the σ-algebras in the intersection (4.3.1) defining B.

We present one “nice” case here where we can characterize σ(P ).

Example 4.3.6. Suppose P = {A1, . . . , An} is a partition of X (that is, Ai ∩ Aj = ∅ if i ̸= j and
X = A1 ∪ · · · ∪An). Then σ(P ) must contain

∅, X,A1, A2, . . . , An. (4.3.2)

It must also contain any finite union of the Ai; that is, any set of the form⋃
i∈S

Ai, (4.3.3)

where S ∈ P{1,...,n}. Actually, correctly interpreted, the unions in (4.3.3) represents all the elements
in (4.3.2) as well.

One can check that this is the entirety of σ(P ). Indeed, the disjointness of the Ai implies that taking
complements does not add any new elements because, for any S ∈ P{1,...,n},(⋃

i∈S
Ai

)c

=
⋃
i∈Sc

Ai. (4.3.4)

Hence,

σ(P ) =

{⋃
i∈S

Ai : S ∈ P{1,...,n}

}
.
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Exercise 4.3.3. Prove (4.3.4) and deduce that there is a bijection between σ(P ) and P{1,...,n}.

We can then define measurable spaces and measure spaces:

Definition 4.3.7. A measurable space is a pair (X,F), where X is a set and F is a σ-algebra on
X.

A measure space is a triple (X,F , µ), where (X,F) is a measurable space and µ is a measure; that
is, µ : F → R+ satisfies

µ(∅) = 0, and µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai) if A1, A2, · · · ∈ F are disjoint.

It may seem strange to the reader to have the intermediate step of “measurable spaces.” This is
because it is often important to have two (or more) measures on the same measurable space. In
fact, it is useful to work in metric spaces of measures defined on the same measurable space.

An important special case is that of a probability space.

Definition 4.3.8. A probability space (X,F ,P) is a measure space where

P(X) = 1.

This simply formalizes the idea that the probability that one of all possible events happening is one.

Notice that the measures in Example 4.1.1.(iii)-(v) are all probability measures. By the language
we used, this is “obvious” for (iv) and (v), which are the coin flipping probabilities. But it is also
true of (iii), the delta measure.

Exercise 4.3.4. Choose a specific example of a set X and a point x0 in Example 4.1.1.(iii), and
give a heuristic explanation of the probabilistic meaning of δx0.

4.4. Measurable functions and the definition of the integral.

Remark 4.4.1. It is often convenient in what follows to allow functions to take infinite values (as
we did with convex optimization). Some references call this the “extended real numbers” and use a
special notation for it. Here, we abuse notation and simply use R with the understanding that ±∞
are legal values for functions to take.

Let us return back to the land of the Lebesgue measure and begin to build up the basic ideas for
integration. First, let us look at simple functions

1S(x) =

{
1 if x ∈ S,

0 if x /∈ S.

If there is any sense to the Lebesgue integral we should have that∫
1S(x)dx =

∫
S
1dx = m(S). (4.4.1)

This is obvious when S = [a, b]. The above procedure, however, makes sense if and only if S is
measurable. Indeed, if S is not measurable, m(S) is not defined. Hence, we should think of 1S as
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not being a “measurable function.” How do we make sense of this for general f : R → R? Let us
notice something: for any α > 0,

f−1((α,∞)) = {x ∈ R : f(x) > α} =


∅ if α ≥ 1,

S if α ∈ [0, 1),

R if α < 0.

When S is measurable, this set is measurable for every α. When S is not measurable, this set is
not measurable for some α. This motivates the following definition:

Definition 4.4.2. • A function f : R → R is Lebesgue (resp. Borel) measurable if, for every
α ∈ R,

f−1((α,∞)) = {x ∈ R : f(x) > α}

is a Lebesgue (resp. Borel) measurable set.

• In general, if we have a function

f : (Ω,F) → (Σ,G)

where (Ω,F) and (Σ,G) are measurable spaces, then f is measurable if f−1(G) ∈ F for every
G ∈ G.

Remark 4.4.3 (Terminology convention). Given a function f : R → R, when we say that f is
measurable without clarifying the σ-algebras involved, we always mean that it is Lebesgue measurable.
In other words, we mean that

f : (R,L) → (R,B)

is measurable.

Given an arbitrary measure space (Ω,F , µ), when we say a function f : Ω → R is measurable
without clarifying the σ-algebra of the codomain, we always mean that it is measurable as a function
f : (Ω,F) → (R,B). In other words, we always mean that it satisfies:

f−1((α,∞)) ∈ F for all α ∈ R.

The main motivation for this is in how we develop integration theory below.

Example 4.4.4. From the work above, we see that 1A is measurable if and only if A is measurable.

Exercise 4.4.1. Show that f is measurable if and only if any one of the following hold:

(i) f−1([α,∞)) is measurable for all α;

(ii) f−1((−∞, α)) is measurable for all α;

(iii) f−1((−∞, α]) is measurable for all α.

Example 4.4.5 (Popcorn function). Define

f : R → R by f(x) =

{
1
q if x = p

q , p ∈ Z, q ∈ N (lowest terms),
0 if x /∈ Q.

Its name comes from the fact f has different “jumps” up at each rational number, like popcorn
popping (and therefore jumping in the air).
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Exercise 4.4.2. Show that f is continuous at each irrational point and discontinuous at each
rational point.

If α ≥ 0, then f−1((α,∞)) ⊂ Q has measure zero and is thus Lebesgue measurable. If α < 0, then
f−1((α,∞)) = R is measurable.

Exercise 4.4.3. If f : R → R is measurable, then f−1(U) is measurable for any open set U .
Similarly, f−1(K) is measurable for any closed set K.

A more general version of Exercise 4.4.3 is the following, which will be useful in the sequel.

Lemma 4.4.6. Fix a measure space (Ω,F , µ). Suppose that f : Ω → R is measurable. Then f−1(B)
is measurable for every Borel set B.

Proof. Let G = {E ⊂ R : f−1(E)} is measurable24. We claim that G is a σ-algebra. Indeed,
f−1(R) = Ω, which is measurable, so R ∈ G. Additionally, if E ∈ G, then

f−1(E)c = f−1(Ec).

Due to the assumed measurability of f−1(E), the left hand side above must be measurable. We
conclude that Ec ∈ G. Finally, if E1, E2, · · · ∈ G, then

f−1
( ∞⋃

i=1

Ei

)
=

∞⋃
i=1

f−1(Ei).

Again, due to the assumed measurability of f−1(Ei) for each i, the right hand side above must be
measurable. We conclude that

∞⋃
i=1

Ei ∈ G.

On the other hand, clearly G contains sets of the form (α,∞). It follows that G must contain the
σ-algebra that these sets generate:

G ⊃ σ ({(α,∞) : α ∈ R}) = B.

It follows that f−1(B) is measurable for every B ∈ B, which completes the proof.

Proposition 4.4.7. (i) If f : R → R is continuous, then it is Borel measurable.

(ii) If f : R → R is Borel measurable, then it is Lebesgue measurable.

(iii) If f : R → R is Lebesgue measurable and g : R → R is Borel measurable, then g ◦f is Lebesgue
measurable.

(iv) If c ∈ R, f, g : R → R are measurable, then so are cf , f + g, and fg.

Exercise 4.4.4. A function f : R → R is continuous if and only if f−1(U) is open for every open
set U .
24In this lemma, we use measurable as shorthand for either Lebesgue or Borel measurable, depending on the assump-

tions.
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Proof of Proposition 4.4.7.(i). This follows immediately from the exercise above and the measura-
bility of open sets.

Proof of Proposition 4.4.7.(ii). This is immediate from the fact that any Borel measurable set is
Lebesgue measurable (see Lemma 4.3.5).

“Proof” of Proposition 4.4.7.(iii). Since set operations commute with inverse images under func-
tions, it is easy to check that g−1((α,∞)) is Borel and that f−1(B) is Lebesgue measurable if B is
Borel. The result follows from this.

Proof of Proposition 4.4.7.(iv). We show the second is measurable and leave the first and third as
an exercise. Indeed: let Q = {q1, q2, . . . }, and notice that, for any α > 0,

(f + g)−1((α,∞)) =

∞⋃
n=1

{x : f(x) > α+ qn and g(x) > −qn}

=
∞⋃
n=1

(
f−1((α+ qn,∞)) ∩ g−1((−qn,∞))

)
is measurable due to Proposition 4.2.10.

Another operation that works well with measurability is limits:

Proposition 4.4.8. Suppose that f1, f2, . . . is a sequence of measurable functions. Then the func-
tions lim infn fn, lim supn fn, infn fn, and supn fn are all measurable.

Exercise 4.4.5. Prove this!

4.4.1. Random variables and the beginnings of integration. An important “example” of a
measurable function is a random variable X on a probability space (Ω,F ,P). Let us consider some
more explicit examples.

Example 4.4.9. (Coin flipping) – Recall Example 4.1.1.(v), in which we flip a biased coin n times
that takes the value tails with probability p and heads with probability 1− p. Recall that our measure
space is

Ω = {0, 1}n and F = P{0,1}n ,

and with P is defined by (4.1.5). Since this is a “discrete” space, we can assign measure to every
set without an issues.

Suppose we are gambling and receive $2 for every tails, and lose $3 for every heads. We define a
random variable X that represents our winnings:

X(f1, f2, . . . , fn) = 2#{i : fi = 0} − 3#{i : fi = 1} = 2#{i : fi = 0} − 3(n−#{i : fi = 0})
= 5#{i : fi = 0} − 3n.

Since all sets are measurable, all functions are also measurable. Hence, X is measurable.

How should we define the integral? In this case, we can simply decompose X into a collection of
indicator functions:

X(ω) = 5

n∑
k=0

k1Ak
(ω)− 3n.
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Then, we have that the expected value is

E[X] =

∫
Ω
X(ω)dP = 5

n∑
k=0

kP(Ak)− 3n.

Using (4.1.5), we know that the probability of any string of heads and tails is 2−n. Hence,

P(Ak) = 2−n#Ak.

Combinatorially, it is easy to check that this is
(
n
k

)
(there are k entries that you choose to put a 0

in). Hence

E[X] = 5 · 2−n
n∑

k=0

k

(
n

k

)
− 3n.

Using that

n(1 + x)n−1 =
d

dx
(1 + x)n =

n∑
k=0

k

(
n

k

)
xk−1,

we get

E[X] =
5n

2
− 3n = −n

2
.

This is not a good outlook for our wallet...

4.4.2. Integration theory. Notice that, above, we computed the integral for the indicator func-
tion of any measurable set (recall (4.4.1)). Since we expect integrals to be linear, we can easily
extend this definition to the linear combination of any indicator functions (see the notion of “simple
function” in Definition 4.4.10), and, by approximation, to all measurable functions. Let us begin by
setting the notion of simple function in stone.

Definition 4.4.10. Let (Ω,F , µ) be a measure space. A simple function is a function f : Ω → R
such that

f =
n∑

i=1

ci1Ai

for n ∈ N, c1, . . . , cn ∈ R, and A1, . . . , An ∈ F (i.e., are measurable) and satisfy µ(Ai) <∞ for all
i = 1, 2, . . . , n.

We note that f is measurable because it is the linear combination of measure functions 1Ai . In
general, we only consider measurable simple functions because of their important role in defining
the Lebesgue integral.

Remark 4.4.11. (i) If f and g is simple and α, β ∈ R, then αf +βg is simple as well. Roughly,
any “reasonable” modification of a simple function leads to another simple function (cf. Exer-
cise 4.4.6).

(ii) In the definition above, there is no uniqueness in the choice of ci and Ai. For example,

1[0,1] = 1[0,1/2) +
1

2
1[1/2,3/4] +

1

2
1[1/2,1] +

1

2
1(3/4,1].

However, we can choose a canonical representative in the following way. If f is simple, then
the set f(R) \ {0} is finite. Let n be the number of elements and label them c1, . . . , cn. Let

Ai = {x : f(x) = ci} for each i = 1, . . . , n.
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Then

f =
n∑

i=1

ci1Ai

where the sets A1, . . . , An are mutually disjoint and ci ̸= cj for all i ̸= j. This choice of
representative is unique, and it often makes computations easier.

Exercise 4.4.6. If f is a simple function, so are |f |, f+ = max{0, f}, and f− = max{0,−f}.

For such functions, the Lebesgue integral is easy to compute:∫
f dm =

n∑
i=1

ci

∫
1Ai dm =

n∑
i=1

cim(Ai). (4.4.2)

While we are “okay” with the integral being infinite, we start to get uneasy if we have +∞ − ∞
showing up in (4.4.2). This is our motivation for restricting to sets Ai with finite measure in
Definition 4.4.10. In general, we usually work with absolutely integrable functions f such that∫

|f | dm <∞

or, at the very least, functions such that f− has a finite integral. Keep this in mind for when we
define the general Lebesgue integral.

Another important thing to notice is that we change f on a set of measure zero, the integral is
unaffected. To make this more explicit, let us consider the following: let

f̃(x) = f(x) + 1Q.

Clearly f̃ is a simple function, f̃ ̸= f , and∫
|f̃(x)− f(x)| dm =

∫
1Q dm = 0. (4.4.3)

The last equality shows us that, as far as the natural metric associated to the Lebesgue measure is
concerned, f̃ = f . So what gives!? As we discuss more later, we start to think of functions as being
“the same” if they only differ on a set of measure zero.

A useful (and important!) property of the Lebesgue integral is its monotonicity.

Exercise 4.4.7. If f and g are simple functions and f ≤ g, then∫
f dm ≤

∫
g dm. (4.4.4)

What about if f ≤ g on a set A ⊂ R such that m(R \A) = 0? Does (4.4.4) still hold?

Definition 4.4.12. If f : R → R+ is a measurable function, then we define∫
f dm = sup

s≤f,
s is a simple function

∫
s dm.

If f : R → R is a measurable function and either∫
f+ dm <∞ or

∫
f− dm <∞,
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then we define ∫
f dm =

∫
f+ dm−

∫
f− dm.

In general, we say that f ∈ L1 (“f is integrable”) if∫
|f | dm =

∫
f+ dm+

∫
f− dm <∞.

Sometimes we write this as L1(dm) or L1(R) depending on whether we want to emphasize the
measure or the domain of integration.

For the definition above to make sense, we need the following exercise:

Exercise 4.4.8. If f is measurable, so are |f |, f+, and f−.

Remark 4.4.13. (i) One should always worry about consistency. If we apply Definition 4.4.12
to a simple function f , do we get the value given by Definition 4.4.10? Yes! This relies on
the monotonicity of the Lebesgue integral (4.4.4).

Exercise 4.4.9. Convince yourself of this!

(ii) Suppose that f is Riemann integrable on a set [a, b]. In this case, we see that the Lebesgue
integral yields the same value as the Riemann integral as follows. Fix N > 0. Let

An,N =

[
a+ n

b− a

N
, a+ (n+ 1)

b− a

N

]
, ℓn,N = inf

x∈An,N

f(x) and un,N = sup
x∈An,N

f(x).

Using Definition 4.4.12 and the monotonicity of the Lebesgue integral on simple functions, one
can check that

N∑
i=1

ℓn,Nm(An,N ) ≤
∫
1[a,b]f dm ≤

N∑
i=1

un,Nm(An,N ) (4.4.5)

where the integral in the middle is the Lebesgue integral. But the terms on the left and right
hand sides are the lower and upper Riemann sums, respectively. By Riemann integrability, they
must converge to the Riemann integral. It follows that the Riemann and Lebesgue integrals
are equal.

Exercise 4.4.10. Work out the details! Notice that we did not show that f is measurable...
show this!

(iii) Exercise 4.4.11. The monotonicity (4.4.4) extends to all Lebesgue measurable functions.

Example 4.4.14. The function 1Q is not Riemann integrable. Indeed, using the notational of
Remark 4.4.13.(ii), un,N = 1 and ℓn,N = 0 for every n and N , so the left and right hand sides
of (4.4.5) are, respectively, 0 and ∞ for every N . This disagreement between the upper and lower
Riemann sums is exactly what it means to be not Riemann integrable.

On the other hand, we see that ∫
1Q dm = m(Q) = 0.
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Remark 4.4.15. We say that f = g almost everywhere (a.e.), or, equivalently, up to a set of
measure zero, if m ({x : f(x) ̸= g(x)}) = 0. As we first pointed out in (4.4.3), we take the perspective
that two functions are the same if they are equal a.e. In this way, we we can make sense of the
Lp-norms being actual norms (otherwise, positive-definiteness would not be satisfied).

The flip side to making this equivalence is that we can no longer assign a value to f(x) for any x.
This may seem like a strange thing to say. But it is unavoidable: if you fix you favorite function,
which is f = π−|x|, and tell me that f(51) = π−51, I might tell you that you are wrong because my
favorite equivalent function to f is g = f + 1{57}, which yields g(51) = π−51 + 1. Who is wrong
here? Neither of us!

We do not need to sink into a nihilistic despair, though, because we can still use the Lp-norms to
distinguish functions. Indeed, in the example above,∫

f dm =

∫
g dm and

∫
|f − g| dm = 0,

but, for any measurable function h that is not equal to f a.e.,∫
|f − h| dm > 0.

More on this later.

Exercise 4.4.12. Fix a complete25 measure space (Ω,F , µ). Show that if f = g µ-a.e. and f is
measurable, then g is measurable as well. Is this true if (Ω,F , µ) is not complete?

Lastly, let us recall how important the linearity of the integral is. Indeed, all of our work in Lp-
spaces in Section 1.5 is built off of this property. We immediately get that the Lebesgue integral
has this property as well. Indeed, it is immediate from the definition that if s1, s2 are simple and
a1, a2 ∈ R, then ∫

(a1s1 + a2s2) dm = a1

∫
s1 dm+ a2

∫
s2 dm. (4.4.6)

This can be bootstrapped to general measurable functions with a bit of work. Let us be more precise
below.

Proposition 4.4.16. Fix any a, b ∈ R and suppose that f, g are measurable functions such that∫
(af)+ dm,

∫
(bg)+dm <∞ or

∫
(af)− dm,

∫
(bg)−dm <∞.

Then ∫
(af + bg) dm = a

∫
f dm+ b

∫
g dm.

Here we use the convention that 0 · ∞ = 0 if necessary.

We prove this only for bounded functions whose support has finite measure. Once we learn the
convergence theorems in Section 4.5.2, we can easily extend this to general measurable functions.
To prove (our bounded version of) linearity, we need the following lemma:
25See Definition 4.4.18.
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Lemma 4.4.17. Suppose that m(supp f) <∞ and sup |f | <∞. Then∫
f dm = inf

s≥f,
s is a simple function

∫
s dm.

Here supp f = {x ∈ R : f(x) ̸= 0}.

Proof. Let us point out that the “≤” direction follows from Exercise 4.4.11. We, thus, seek only to
prove that ∫

f dm ≥ inf
s≥f,

s is simple

∫
s dm. (4.4.7)

We prove this for f ≥ 0. However, by writing f = f+ − f−, this is easily extended to the general
case. Let M = sup f and fix any n ∈ N. Let, for any k = 1, . . . , n,

Λk,n =

{
x :M

k − 1

n
< f(x) ≤M

k

n

}
.

We define the simple functions

s(x) =
n∑

k=1

M(k − 1)

n
1Λk,n

and s(x) =
n∑

k=1

Mk

n
1Λk,n

.

It follows that s ≤ f ≤ s, so that, by Exercise 4.4.11,∫
s dm ≤

∫
f dm ≤

∫
s dm.

On the other hand, we have that, by (4.4.6),∫
s dm−

∫
s dm =

∫
(s− s) dm =

∫ n∑
k=1

M

n
1Λk,n

dm

=
M

n

n∑
k=1

m(Λk,n) ≤
M

n
m(supp f).

We deduce that

inf
s≥f,

s is simple

∫
s dm− M

n
m(supp f) ≤

∫
s dm− M

n
m(supp f) ≤

∫
s dm ≤

∫
f dm.

Taking n→ ∞, we arrive at (4.4.7), which completes the proof.

Proof of Proposition 4.4.16. It is clearly enough to prove this simply for f, g ≥ 0 since the linearity
of the positive and negative parts is built into Definition 4.4.12. We make the additional simplifying
assumption that a, b > 0. When a or b is zero, the proof is obvious. If either of a or b is negative, the
proof follows similarly. Finally, we assume f and g satisfy the additional hypotheses of Lemma 4.4.17
(see the discussion above Lemma 4.4.17 about how to remove this extra hypothesis).

Fix any ε > 0, and let sf and sg be nonnegative simple functions such that

sf ≤ f, sg ≤ g,

∫
f dm ≤

∫
sf dm+ ε and

∫
g dm ≤

∫
sg dm+ ε. (4.4.8)

109



Then, we have that asf and bsg are simple, asf ≤ af , and bsg ≤ bg. Hence,

asf + bsg ≤ af + bg,

so that ∫
(asf + bsg) dm ≤

∫
(af + bg) dm.

Using then (4.4.8)

a

∫
f dm+ b

∫
g dm− (a+ b)ε ≤

∫
(asf + bsg) dm ≤

∫
(af + bg) dm.

Since ε is arbitrary, we deduce that

a

∫
f dm+ b

∫
g dm ≤

∫
(af + bg) dm.

To show the opposite inequality, fix ε > 0 again, and let sf and sg be nonnegative simple functions
such that

sf ≥ f, sg ≥ g,

∫
f dm ≥

∫
sf dm− ε and

∫
g dm ≤

∫
sg dm− ε. (4.4.9)

This is possible by Lemma 4.4.17. Then, we have that asf and bsg are simple, asf ≥ af , and
bsg ≥ bg. Hence, asf + bsg ≥ af + bg, and, applying Lemma 4.4.17 again,∫

(asf + bsg) dm ≥
∫

(af + bg) dm.

Using then (4.4.9),

a

∫
f dm+ b

∫
g dm+ (a+ b)ε ≥ a

∫
sf dm+ b

∫
sg dm

=

∫
(asf + bsg) dm ≥

∫
(af + bg) dm.

Since ε is arbitrary, we deduce that

a

∫
f dm+ b

∫
g dm ≥

∫
(af + bg) dm,

which completes the proof.

Exercise 4.4.13. Show that the definition of integral developed above works in general. More
precisely, if (Ω,F , µ) is a measure space, then we may define∫

f dµ = sup
s≥f,

s is a simple function

∫
s dµ

for any measurable f : Ω → R. Here, we define∫
s dµ =

N∑
i=1

cim(Ai) if s(x) =
N∑
i=1

ci1Ai(x).

Show that all of the above results extend to this case.

Exercise 4.4.14. Show that if f = g a.e., then∫
fdm =

∫
gdm.

Is the converse true?

110



4.4.3. Arbitrary measure spaces, new measures, and a technical note about complete
measure spaces. We can define the integral associated to any arbitrary measure space (Ω,F , µ)
exactly as in Definition 4.4.12. All theorems proved above hold in the general setting.

Actually, integration gives us a method by which to create new measures. Let (Ω,F , µ) be a measure
space. Let f be a nonnegative measurable function. Then (Ω,F , µf ), where

µf (A) =

∫
A
f dµ =

∫
1Af dµ.

for all A ∈ F , is a measure space. In this case, we refer to f as the “density” of µf . Sometimes we
write this as either

dµf = f dµ or
dµf
dµ

= f.

The existence of densities is the subject of the Radon-Nikodym theorem, which is outside the scope
of these notes. We shall see the importance of densities in Section 5, when we study probability
theory.

In the future, when we introduce measurable functions and develop some of the theory of Lp-spaces,
it is less awkward to work with “nicer” measure spaces. This is not totally essential to the material
presented here, so the reader may choose to simply ignore this technical detail.

Definition 4.4.18. A measure space (Ω,F , µ) is complete if, for all A ∈ F (i.e. A is measurable),
if B ⊂ A and µ(A) = 0, then B ∈ F (i.e., B is measurable).

We see immediately that the Lebesgue measure space is complete because of how it is defined via
outer measure (see Example 4.2.7.((i))). This is not true of the Borel sigma algebra paired with the
Lebesgue measure.

Why might one want to do this? Rudin26 points out the following motivation related to equivalence
classes of functions. Recall that f ∼ g if f = g almost everywhere. Suppose that we want to
redefine f on a set E of measure zero in a complicated way. Call f̃ the resulting function. Then
f = f̃ on Ec and, hence, almost everywhere. We would think of f and f̃ as the “same” function
and, of course, the integral of f is not changed at all. However, if B ⊂ E is a non-measurable set,
and we accidentally define f̃ to take one value on B and a different value on E \B, then f̃ will no
longer be measurable. This is quite annoying! And, actually, this scenario does appear when one
talks about "weak derivatives," which are central to many branches of modern analysis.

Luckily, one can “complete” any measure space in a unique way. This completed space will have
the same integration properties of the original measure space. There is, thus, no loss of generality
in working with complete measure spaces.

We always work with complete measure spaces from this point on. Actually, with some effort any
measure space can be “completed,” so this is not really a restriction.

Exercise 4.4.15. Let (Ω,F , µ) be a measure space. Then there is a unique complete measure space
(Ω, F̄ , µ̄) such that

(i) if A ∈ F , then A ∈ F̄ and µ(A) = µ̄(A);

(ii) if Ā ∈ F̄ then there is A ∈ F such that µ̄(Ā∆A) = 0. Recall ∆ from Exercise 4.2.3.

(Hint: develop an outer-measure µ̄∗ using µ.)

Exercise 4.4.16. Show that the Lebesgue measure space (R,L,m) is the completion of (R,B,m).
26“Real and complex analysis” 1987.
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4.5. Limits and convergence. The real power of the Lebesgue measure comes from how
well it works with limits. As we will see, the Lp-spaces are complete with the Lp-norm, and this
seemingly modest fact plays an enormous role in the development of modern analysis. Completeness
is a statement about how limits, so let us dive into understanding how limits work with measures.

4.5.1. Sets and measures. Given an increasing sequence of measurable sets A1 ⊂ A2 ⊂ · · · ,
there is an obvious “limit” set:

A =
∞⋃
i=1

Ai.

What happens with the measure?

Example 4.5.1. (i) If An = (0, 1− 1/n), then Ai intuitively “approaches” (0, 1), and we see that

A =
∞⋃
i=1

Ai = (0, 1).

Notice that m(An) = 1− 1/n → 1 = m(A).

(ii) If An = (0, n), then Ai intuitively “approaches” (0,∞), and we see that

A =
∞⋃
i=1

Ai = (0,∞).

Notice that m(An) = n→ ∞ = m(A).

(iii) If An = {q1, . . . , qn}, where Q = {q1, q2, . . . } then Ai intuitively “approaches” Q, and we see
that

A =
∞⋃
i=1

Ai = Q.

Notice that m(An) = 0 → 0 = m(A).

It seems that measures work very nicely with increasing sequences! Let us prove that:

Lemma 4.5.2. Let A1 ⊂ A2 ⊂ · · · be an increasing sequence of measurable sets, then

µ

(
A =

∞⋃
i=1

Ai

)
= lim

n→∞
µ(An).

Proof. First, if µ(An) = ∞ for any n, then the proof is trivial. Let us, therefore, assume that
µ(An) <∞ for all n. Let use generate a disjoint countable collection that yields the same union:

B1 = A1, B2 = A2 \A1 . . . and Bn = An \An−1.

Then we have

µ(An) =
n∑

k=1

µ(Bk) and µ(A) =
∞∑
k=1

µ(Bk).

The conclusion thus follows from basic calculus results.
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Given a decreasing sequence of sets A1 ⊃ A2 ⊃ · · · , there is an obvious “limit” set:

A =
∞⋂
i=1

Ai.

What happens with the measure?

Example 4.5.3. (i) If An = (0, 1 + 1/n), then Ai intuitively “approaches” (0, 1], and we see that

A =
∞⋂
i=1

Ai = (0, 1].

Notice that m(An) = 1 + 1/n → 1 = m(A).

(ii) If An = (n,∞), then Ai intuitively “approaches” ∅, and we see that

A =
∞⋂
i=1

Ai = ∅.

Notice that m(An) = ∞, which does not converge to 0 = m(∅) = m(A).

(iii) If An = Q \ {q1, . . . , qn}, where Q = {q1, q2, . . . } then Ai intuitively “approaches” ∅, and we
see that

A =
∞⋂
i=1

Ai = ∅.

Notice that m(An) = 0 → 0 = m(A).

So we see that decreasing sequences are not as nice! Let us conjecture two things, though: (1) it
seems that the “limit” works as long as some of the Ai are finite, and (2) it seems that you can only
“lose” mass in the limit, not gain it.

Exercise 4.5.1. Suppose that A1 ⊃ A2 ⊃ · · · are measurable sets and µ(AN ) <∞ for some N ∈ N.
Then

µ

( ∞⋂
i=1

Ai

)
= lim

n→∞
µ(An).

Let us test out these guesses with two non-increasing and non-decreasing sequences. Here we may
not have a good notion of convergence, but in analogy with sequences, we should still be able to
define a “lim inf” and “lim sup.” Indeed

Definition 4.5.4. Suppose that A1, A2, . . . is a countable collection of sets. Then we define

lim inf
n

An =
∞⋃
i=1

∞⋂
j=i

Aj and lim sup
n

An =
∞⋂
i=1

∞⋃
j=i

Aj .

Roughly, lim inf An is the set of points that are in all but finitely many of the An while lim supAn

is the set of points that are in An infinitely often.

Exercise 4.5.2. (i) Show that, for ever x,

1lim infn An(x) = lim inf
n→∞

1An(x).

Similarly for lim supnAn.
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(ii) If An is an increasing sequence of sets, show that

∞⋃
n=1

An = lim inf
n

An = lim sup
n

An.

(iii) If An is an decreasing sequence of sets, show that

∞⋂
n=1

An = lim inf
n

An = lim sup
n

An.

Example 4.5.5. (i) Let An = (−1)n[−1, 2].

A2 = A4 = A6 = · · ·

A1 = A3 = A5 = · · ·

−2 0

2

Then

lim inf
n

An =

∞⋃
i=1

∞⋂
j=i

Aj = [−1, 1].

Notice that
m
(
lim inf

n
An

)
= 2 ≤ 3 = lim inf

n
m(An).

(ii) Let An = [0, 1] ∪ [n, 2n]. Then

lim inf
n

An =

∞⋃
i=1

∞⋂
j=i

Aj = [0, 1].

Notice that
m
(
lim inf

n
An

)
= 1 ≤ ∞ = lim inf

n
m(An).

Lemma 4.5.6 (Fatou’s Lemma). Suppose that (Ω,F , µ) is a measure space.

(i) If A1, A2, . . . is a sequence of measurable sets, then

µ
(
lim inf

n
An

)
≤ lim inf

n
µ(An).

(ii) If f1, f2, . . . is a sequence of nonnegative measurable functions, then∫ (
lim inf

n
fn

)
dµ ≤ lim inf

n

∫
f dµ.

We point out that (i) corresponds to our observations above.

Proof of (i). This follows immediately from part (ii) and the correspondence between sets and their
indicator functions.
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Exercise 4.5.3. Write down the steps for this!

Proof of (ii). Let f = lim inf fn and fix any non-negative simple function

s =
n∑

i=1

ci1Ai

such that s ≤ f . Let ε ∈ (0, 1), and take, for any k,

Bi,ε
k = {x ∈ Ai : (1− ε)s(x) = (1− ε)ci ≤ fℓ(x) for all ℓ ≥ k}.

Notice that Bi,ε
k is an increasing sequence in k such that

∞⋃
k=1

Bi,ε
k = Ai.

Here is where we have used the ε. Thus, by Lemma 4.5.2,∫
(1− ε)s(x) dµ =

n∑
i=1

(1− ε)ciµ(Ai) = lim
k→∞

n∑
i=1

(1− ε)ciµ(B
i,ε
k )

= lim
k→∞

n∑
i=1

∫
Bi,ε

k

(1− ε)ci dµ ≤ lim inf
k

n∑
i=1

∫
Bi,ε

k

fk(x) dµ

≤ lim inf
k

∫
Ω
fk(x) dµ.

Since this holds for all ε, we deduce that∫
s(x) dµ ≤ lim inf

k

∫
fk(x) dµ.

The claim then follows by the arbitrariness of s as well as the definition of the integral:∫
f dµ = sup

s≤f,
s is a simple function

∫
s dµ ≤ lim inf

k

∫
fk dµ.

What about the limsup?

Exercise 4.5.4. Borel-Cantelli Lemma: If Ak is a sequence of sets such that µ(A1)+µ(A2)+ · · · <
∞, then µ(lim supAn) = 0. Prove this. Additionally, show that the conclusion is not necessarily
true if the summability condition is not satisfied.

Let us now look at our first (and weakest) notion of convergence:

Definition 4.5.7 (Convergence almost everywhere). We say that a sequence of measurable functions
fn on a measure space (Ω,F , µ) converges to a function f almost everywhere if there is a set A ⊂ Ω
such that µ(Ω \A) = 0 and, for every x ∈ A,

lim
n→∞

fn(x) = f(x).
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Exercise 4.5.5. Show that f is measurable in the above setting.

Example 4.5.8. Clearly if fn → f pointwise (in the sense we learned in calculus class once upon
a time), then fn → f a.e. Let us look at some more exotic examples in action:

x

y

0 1/3 2/3 1

0

1/3

2/3

1 f1
f2
f4
f8
f16
f

(i) Let fn(x) = xn on the measure space defined by the Lebesgue
measure on [0, 1]. Then fn(x) → 0 if x ∈ [0, 1) and fn(1) =
1 for all n. Let f(x) = 1{1}. It follows that fn → f a.e. On
the other hand, we may also define φ(x) = 0 for all x. We
also see that fn → φ a.e. Note that f = φ a.e., so that does
not cause issues with uniqueness of limits in a world where
we only think about almost everywhere limits and where we
identify two functions that are equal almost everywhere.

(ii) Let gn(x) = ex
2−n|x|.

Exercise 4.5.6. Give two examples of functions to which gn converges almost everywhere.

Exercise 4.5.7. Show that if fn → f a.e., gn → g a.e., and fn = gn a.e., then f = g a.e.

4.5.2. Convergence of integrals. In many branches of math, we solve problems by approxima-
tion or we ask questions about long-time limits, both of which involve limits. For example, let us
say that pn(x) is the density of “heat” on a

√
n spatial scale – roughly, it represents the temperature

at time n and location x
√
n. Is it true that pn converges to some other function? If it does, do

“bulk” quantities like ∫
pn(x)

2dm and
∫
xpn(x)dm

converge? These might be thought of as the energy and the “center of heat” of the system, respec-
tively.

To get our hands on this a little, let us look at two simple examples:

Example 4.5.9. (i) Let gn(x) = n−21[0,n]. Clearly gn → 0 pointwise in x. Notice also that, for
any n, ∫

gn dm =
1

n
.

Hence,

lim
n→∞

∫
gn dm = 0 =

∫ (
lim
n→∞

gn(x)
)
dm.

(ii) Let fn(x) = n−11[0,n]. Clearly fn → 0 pointwise in x. On the other hand:∫
fn dm = 1

for every n. Hence,

lim
n→∞

∫
fn dm = 1 ̸= 0 =

∫ (
lim
n→∞

fn(x)
)
dm.
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(iii) Let hn(x) = n1[0,1/n]. Clearly hn → 0 a.e. in x. On the other hand:∫
hn dm = 1

for every n. Hence,

lim
n→∞

∫
hn dm = 1 ̸= 0 =

∫ (
lim
n→∞

hn(x)
)
dm.

So we have to ask ourselves... when can we move the limit under the integral?

Theorem 4.5.10 (Monotone convergence theorem). Fix any measure space (Ω,F , µ). Suppose that
fn is an a.e. non-decreasing sequence of a.e. nonnegative measurable functions: there is a set A ⊂ Ω
such that µ(Ω \A) = 0 and

0 ≤ f1 ≤ f2 ≤ · · · ≤ fn ≤ · · · on A.

Then, defining
f(x) = sup

n
fn(x) for all x ∈ Ω,

which is equal to lim fn for all x ∈ A, we have∫
f(x) dµ = lim

n→∞

∫
fn(x) dµ.

Proof. First, note that f is measurable by Proposition 4.4.8 and the last exercise in Section 4.4.2.
Next, we note that we may assume that A = Ω. Indeed, if not, let, for all n,

f̃n(x) = 1A(x)fn(x) and f̃(x) = 1Af(x).

Then 0 ≤ f̃1 ≤ f̃2 ≤ . . . holds everywhere and, by Exercise 4.4.14, we have, for all n,∫
f dµ =

∫
f̃ dµ and

∫
fn dµ =

∫
f̃n dµ.

The rest of the proof proceeds by Fatou’s lemma (Lemma 4.5.6). Indeed, by Fatou’s lemma∫
f dµ ≤ lim inf

n→∞

∫
fn dµ.

On the other hand, since f ≥ fn a.e., we have, for all n,∫
f dµ ≥

∫
fn dµ.

Thus, ∫
f dµ ≥ lim sup

n→∞

∫
fn dµ,

which concludes the proof.

Exercise 4.5.8. Use the monotone convergence theorem to compute the integral

lim
n→∞

∫ 1

0

[
1− x+ x2 − x3 + · · ·+ x2n − x2n+1

]
dm.
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Exercise 4.5.9. Show that the nonnegativity can not be ignored by constructing an increasing se-
quence of measurable functions whose integral does not converge to the integral of its limit.

The monotone convergence theorem is usually used when the functions fn are either of the form
fn = 1Anf with An an increasing sequence of sets and f nonnegative or fn(x) = max{αn, f(x)}
where αn → ∞.

Theorem 4.5.11 (Lebesgue dominated convergence theorem). Fix any measure space (Ω,F , µ).
Suppose that fn is a sequence of measurable functions such that

|fn(x)| ≤ g(x) for all x ∈ Ω,

where g is measurable function satisfying ∫
g(x) dµ <∞.

If fn → f a.e., then ∫
f(x) dµ = lim

n→∞

∫
fn(x) dµ.

Proof. We assume without loss of generality that fn ≥ 0. If not, one proceeds by arguing with
(fn)+ and (fn)−.

By Fatou’s lemma, ∫
f dµ ≤ lim inf

n→∞

∫
fn dµ.

and ∫
g dµ−

∫
f dµ =

∫
(g − f) dµ ≤ lim inf

n→∞

∫
(g − fn) dµ

=

∫
g dµ− lim sup

n→∞

∫
fn dµ.

Rearranging this, we find

lim sup
n→∞

∫
fn dµ ≤

∫
f dµ ≤ lim inf

n→∞

∫
fn dµ,

which completes the proof.

Example 4.5.12. (i) Let us revisit Example 4.5.9.(i). Let gn = n−21[0,n]. We know that gn → 0
everywhere and the conclusion of the MCT and DCT holds. Let us show that the conditions of
DCT holds as well (which would save us the computation done in Example 4.5.9.(i)!). Define
the dominating function

u(x) =
1

max{1, x2}
for any x ∈ R.

By elementary calculus, we know that u is integrable. Additionally, we immediately see that
|gn| ≤ u for every n. Hence, the conditions of the DCT are satisfied.
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(ii) We compute the value of

lim
n→∞

n3
∫ ∞

0
sin(x/n)e−(nx)2 dm(x).

First, we make the change y = nx to find

lim
n→∞

n2
∫ ∞

0
sin(y/n2)e−y2 dm(y).

We notice that

n2 sin(y/n2) ≤ y and n2 sin(y/n2) → y as n→ ∞.

for all y, n. Hence, we may apply the DCT if we let

fn(y) = n2 sin(y/n2)e−y2 and f(y) = g(y) = ye−y2 .

Since g is integrable, we conclude by the DCT that

lim
n→∞

n2
∫ ∞

0
sin(y/n2)e−y2 dm(y) =

∫ ∞

0
lim
n→∞

n2 sin(y/n2)e−y2 dm(y) =

∫ ∞

0
ye−y2dy =

1

2
.

(iii) Define, for each n and x ∈ R,
δn(x) = ne−2n|x|.

Let φ be any continuous and bounded function. Consider∫
δn(x)φ(x) dm(x).

Changing variables, we find ∫
e−2|y|φ(y/n) dm(y).

Clearly
hn(y) := e−2|y|φ(y/n) → φ(0)e−2|y| as n→ ∞.

We have, for every n and y,

|hn(y)| ≤ ∥φ∥∞e−2|y| =: g(y).

Since g is integrable, we may apply the DCT to find∫
hn(y) dm(y) →

∫
lim
n→∞

(
φ(y/n)e−2|y|

)
dm(y) =

∫
φ(0)e−2|y|) dm(y) = φ(0).

Rephrased, we have shown that

lim
n→∞

∫
δn(x)φ(x) dm(x) = φ(0).

We, thus, call δn an “approximation of a delta function” as the “delta function” δ is the (as yet
ill-defined) operator such that

∫
φδ dm = φ(0).
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Notice that Example 4.5.9 provides examples where the conditions of the monotonic convergence and
dominated convergence theorems are not met. Roughly, we may characterize these cases as “mass
escaping to infinity” (fn = n−11[0,n]) and “mass concentrating at a single point” (hn = n1[0,1/n]).

For the two examples above, let us point out why the DCT cannot apply. In general, the smallest
dominating function is defined by taking the supremum over all functions. Doing that here, we see:

sup
n
fn(x) = 1[0,∞)

1

max{1, x}
and sup

n
hn(x) = 1[0,∞)

1

min{1, x}
.

The former is not integrable because it is 1/x as x → ∞ and the latter is not integrable because it
is 1/x as x↘ 0.

The approach used in Example 4.5.12.(i) and (ii) is common in DCT problems. This usually arises
when analyzing multi-scale problems; i.e., problems where there are small and large structures
interaction27. Let us look at a few more examples.

Example 4.5.13. (i) Suppose that f is integrable, nonnegative and satisfies the following: there
exists C with

f(x) ≤ C/|x|3 for any |x| ≥ C

Find the value of α for which the following has a non-trivial, non-infinite limit:

lim
n→∞

nα
∫ ∞

0

3

1 + x2
f(n(x− n)) dm.

Roughly, the integrand will be centered at x ≈ O(n) and will be nontrivial only on a set of
width O(1/n) (otherwise f(n(x− n)) ≈ 0). Hence, we expect:

nα
∫ ∞

0

3

1 + x2
f(n(x− n)) dm ≈ nα

3

1 +O(n2)
O(1/n) ≈ nα−3.

We, thus, guess that α = 3 is the correct answer.

Let us take the quantity of interest and change variables with y = n(x − n) with the “guess”
α = 3:

nα−1

∫ ∞

−n2

3

1 +
(
n+ y

n

)2 f(y) dm = n2
∫ ∞

−n2

3

1 +
(
n+ y

n

)2 f(y) dm
=

∫ ∞

−n2

3
1
n2 +

(
1 + y

n2

)2 f(y) dm.
We would like to use the DCT; however, at y = −n2, the denominator is very small! To get
around this, let us decompose the integral into the “small part” and the part where we can apply
the DCT:∫ ∞

−n2

3
1
n2 +

(
1 + y

n2

)2 f(y) dm
=

∫
1[−n2/2,∞]

3
1
n2 +

(
1 + y

n2

)2 f(y) dm+

∫
1[−n2,−n2/2]

3
1
n2 +

(
1 + y

n2

)2 f(y) dm.
27For example, a classical problem in the area of “homoegenization” is to understand heat flow through a heterogeneous

object like concrete. In this case, the large scale is the “block” of concrete and the small scale is the mix of cement
and coarse aggregates that make up the concrete. Heat might move through each “piece” of the concrete at a
different rate, but, on the scale of building, we expect these fluctuations to be averaged out. But averaged out in
what sense? This is the fundamental problem in homogenization.
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Let us call the first integral on the right In and the second integral on the right Jn. Notice that
we can apply the DCT to In with the dominating function∣∣∣∣∣1[−n2/2,∞]

3
1
n2 +

(
1 + y

n2

)2 f(y)
∣∣∣∣∣ ≤ 12f(y).

Here, we used that y/n2 > −1/2. It follows, then, from the DCT that

lim
n→∞

In =

∫
lim
n→∞

1[−n2/2,∞]
3

1
n2 +

(
1 + y

n2

)2 f(y) dm =

∫
3f(y) dm.

On the other hand, when n is large enough, we have

Jn ≤
∫ −n2/2

−n2

3n2
C

|x|3
dm ≤

∫ −n2/2

−n2

3n2
8C

|n|6
dm =

12C

n2
.

We conclude that

lim
n→∞

n3
∫ ∞

0

3

1 + x2
f(n(x− n)) dm = lim

n→∞
(In + Jn) = 3

∫
f(y) dm.

(ii) Find θ so that the following has a nontrivial, non-infinite limit:

lim
n→∞

nθ
∫
e−n|x| cos

(x
n

)
dm.

x

y

e−n|x|

cos(x/n)

O(1/n)

Let us give a heuristic derivation for the value
of θ. The exponential function clearly local-
izes the integrand to a set of width O(1/n) – it
is non-zero O(1/n) away from the origin and
approximately zero more than O(1/n) away
from the origin. On this set, cos(x/n) is es-
sentially constant and equal to 1. Hence, we
expect that the integral itself will be O(1/n).
Let us guess θ = 1 and proceed from there.

The “localization” discussed above, suggests that we should change variables y = nx:

n

∫
e−n|x| cos

(x
n

)
dm =

∫
e−|y| cos

( y
n2

)
dm.

Because | cos | ≤ 1, we note that a good dominating function is∣∣∣e−|y| cos
( y
n2

)∣∣∣ ≤ e−|y|.

This is integrable. Hence, by the DCT,

lim
n→∞

n

∫
e−n|x| cos

(x
n

)
dm = lim

n→∞

∫
e−|y| cos

(y
n

)
dm =

∫
lim
n→∞

e−|y| cos
(y
n

)
dm

=

∫
e−|y| dm = 2.
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Let us make a small foray into antiderivatives or the “accumulation function.” An important con-
sequence of the DCT is that the antiderivatives of L1 functions are continuous.

Proposition 4.5.14. Let f be a measurable, absolutely integrable (i.e., L1) function. Define, for
any x ∈ R,

F (x) =

∫ x

−∞
f dm =

∫
f1(−∞,x) dm. (4.5.1)

Then F is a continuous function.

Exercise 4.5.10. Show that one cannot hope for a stronger theorem. Indeed, for each α ∈ (0, 1),
find an example f such that F , defined as in (4.5.1), satisfies

sup
x ̸=y

|F (x)− F (y)|
|x− y|α

= ∞.

Proof. Fix any x ∈ R and xn → x. For ease, we assume that xn > x for each n. Then

F (xn)− F (x) =

∫
f1(−∞,xn) dm−

∫
f1(−∞,xn) dm =

∫
f1(x,xn) dm.

Notice that |f1(x,xn)| ≤ |f |, so that we may apply the DCT to find

lim
n→∞

(F (xn)− F (x)) =

∫
lim
n→∞

f1(x,xn) dm =

∫
0 dm = 0.

4.6. Lp-spaces. Now that we have a notion of integral, it is tempting to define the Lp-spaces. We
are nearly there! First, let us investigate what it means for the Lp-norms to be small. Afterwards,
we use this to verify that (in a suitable sense) the Lp-norms are positive definite.

This result is called “Chebyshev’s inequality” in the analysis community and “Markov’s inequality”
in the probability community. The fact that it is named, despite having an exceedingly simple
proof, indicates that it is very useful.

Proposition 4.6.1 (Chebyshev’s inequality / Markov’s Inequality). Suppose that (Ω,F , µ) is a
measure space and f is a measurable function. Then, for any λ > 0, we have

µ ({x : |f(x)| ≥ λ}) ≤
∫
|f | dµ
λ

.

This inequality is used very often in probability.

Proof. Notice that
λ1{x:|f(x)|≥λ} ≤ |f |.

Hence, by the monotonicity of integration:

λµ({x : |f(x)| ≥ λ}) =
∫
λ1{x:|f(x)|≥λ} dµ ≤

∫
|f | dµ.

Rearranging this yields the claim.
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The upshot to this is that any function whose integral is zero is equal to zero almost everywhere.

Lemma 4.6.2. Let (Ω,F , µ) be a measure space and f a measurable function such that, for some
p ∈ [1,∞), ∫

|f |p dµ = 0.

Then f = 0 a.e.28

Exercise 4.6.1. Prove Lemma 4.6.2. You may find it helpful to apply Proposition 4.6.1 countably
many times with λ = 1/n, using countable subadditivity (Proposition 4.2.4), and the fact that:

{x : f = 0} =
∞⋃
n=1

{x : |f | ≥ 1/n}.

Let us note, however, that Lemma 4.6.2 is not helpful in the case of the L∞-norm. To this point,
we have been using the sup-norm. This is problematic because

sup
x
1{π}(x) = 1,

but 1{π} is not equal to zero a.e. We need a better definition.

Actually, one thing we see in Proposition 4.6.1 is that

µ ({x : |f(x)| = ∞}) ≤ lim inf
λ→∞

µ ({x : |f(x)| ≥ λ}) ≤ lim inf
λ→∞

∫
|f | dµ
λ

= 0.

In other words, f has to be finite a.e. It might be that there is a bound for f a.e. This motivates
the following definition:

Definition 4.6.3. If f is a measurable function on a measure space (Ω,F , µ) with29 µ(Ω) > 0, we
define

ess sup f = sup {B : µ ({x : f(x) > B}) > 0} .

Let us note that this is not the “standard” definition. Usually, it is defined by

ess sup f = inf {B : µ ({x : f(x) > B}) = 0} . (4.6.1)

One can check that these two definitions are equivalent. This is clear when ess sup f <∞. However,
if this is not the case, then, in (4.6.1),

{B : µ ({x : f(x) > B}) = 0} = ∅

and one must recall that, by definition, inf ∅ = +∞.

Exercise 4.6.2. Show that ess sup1{π} = 0.

Remark 4.6.4. It is easy to carry over our definitions of the Lp-spaces (see (1.5.1)-(1.5.2)) to our
“better” setting here when p ∈ [1,∞). When p = ∞, we see that the ess sup |f | is the correct notation
of L∞-norm.
28Not everywhere though! Indeed,

∫
1Q dm = 0 but 1Q is not the zero function.

29The essential supremum will always be −∞ when µ(Ω) = 0. Actually, such trivial measure spaces should probably
be analyzed via a different lens than that of this section. We, thus, do not lose generality in our discussions if we
always assume our measure spaces to have positive measure.
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Example 4.6.5. For these examples, we use the Lebesgue measure.

1. ess sup1Q = 0 – Notice that m ({x : 1Q(x) > a}) = 0 if and only if a ≥ 0.

2. ess sup 1/|x| = ∞ – Notice that, for any a > 0, m ({x : 1Q(x) > a}) = 2/a > 0.

The following definition is essentially that of (1.5.1)-(1.5.2), except that it is now phrased for
arbitrary measurable functions (and arbitrary measures), so that we do not require continuity. This
will be a very important point!

Definition 4.6.6. Fix a measure space (Ω,F , µ). When p ∈ [1,∞), we let

Lp =
{
f : Ω → R : f is measurable and

∫
|f |p dµ <∞

}
.

Additionally,
L∞ =

{
f : Ω → R : f is measurable and ess sup |f | dµ <∞

}
.

These spaces come with the norms:

∥f∥p =
(∫

|f |p dµ
) 1

p

when p ∈ [1,∞) and ∥f∥∞ = ess sup |f |.

Often, when we want to emphasize the set Ω or the measure µ, we denote Lp by one of the following:

Lp(µ), Lp( dµ), Lp
µ, or Lp(Ω).

That ∥ · ∥p is a norm and Lp a linear space follows by adapting the proofs from Section 1.5. We
summarize this in the following:

Proposition 4.6.7. The space Lp with the metric ∥ · ∥p is a normed linear space when p ∈ [1,∞].

Remark 4.6.8. Consider the measure space (N,PN, µ) where

µ(X) =

{
n if X has n ∈ N ∪ {0} elements,
∞ if X is infinite.

Then Lp(µ) = ℓp(N), where ℓp is defined in Section 1.5. Note that one can easily extend the measure
µ to (R,PR).

Our momentary goal is to show that the Lp-spaces are complete because this tells us that, roughly,
they will have nice “convergence properties.” Let us quick state a lemma that is useful in the proof
and can be proved easily using basic calculus.

Exercise 4.6.3. Show that there exists Cp > 0, depending only on p ∈ [1,∞), such that (a+ b)p ≤
2p−1(ap + bp) for any a, b ≥ 0.

We now state and prove the main step towards showing that the Lp-spaces are complete.
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Proposition 4.6.9. Fix any complete measure space (Ω,F , µ) and any p ∈ [1,∞]. Let fn ∈ Lp be
an absolutely summable sequence:

∞∑
n=1

∥fn∥p <∞.

Then there is a function F ∈ Lp such that

lim
n→∞

∥∥∥F −
n∑

k=1

fk

∥∥∥
p
= 0.

In other words,
n∑

k=1

fk → F in Lp.

Exercise 4.6.4. Prove the proposition when p = ∞.

Proof. We show the proof for p <∞. Let us first define a useful function. Let

hn(x) =
n∑

k=1

|fk(x)|.

Notice that this is a monotonic sequence of functions. By Chebyshev’s inequality, for any λ > 0,

µ ({x : hn(x) > λ}) = µ ({x : |hn(x)|p > λp}) ≤ ∥hn∥pp
λp

≤ C

λp
, (4.6.2)

where

C = sup
n

(∥f1∥p + · · ·+ ∥fn∥p) =
∞∑
k=1

∥fk∥p <∞.

Let
A =

{
x : lim

n→∞
hn(x) = ∞

}
.

Notice that

A ⊂
∞⋂
λ=1

∞⋃
n=1

An,λ (4.6.3)

where
An,λ = {x : hn(x) > λp} .

Since hn is an increasing sequence (it is the sum of nonnegative functions), An,λ is an increasing
sequence of sets:

A1,λ ⊂ A2,λ ⊂ A3,λ ⊂ · · · .

Then, using (4.6.2), we have

µ

( ∞⋃
n=1

An,λ

)
= lim

n→∞
µ(An,λ) ≤ lim inf

n→∞

∫
|hn|p dµ
λ

≤ C

λ
. (4.6.4)

Using (4.6.4) and similar reasoning, we then find

µ

( ∞⋂
λ=1

∞⋃
n=1

An,λ

)
= lim

λ→∞
µ

( ∞⋃
n=1

An,λ

)
= 0.
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By the completeness of (Ω,F , µ) and the inclusion (4.6.3), we deduce that A is measurable and
satisfies

µ(A) = 0. (4.6.5)

Let us note that, were A not measurable, the remainder of the proof would not work. This is the
only place in these notes where we use completeness of the measure space.

For each x ∈ Ac, we see that hn(x) is a bounded, increasing sequence, so it has a limit. For each
such x, we let

h(x) = lim
n→∞

hn(x).

We can define h to be +∞ on Ac. Due to (4.6.5), we see that hn → h a.e. By Fatou’s lemma (or
the Monotone Convergence Theorem), we see that∫

hp dµ ≤ lim inf
n

∫
hpn ≤ C.

In what follows, we use hp as our dominating function, and the above reassures us that it is inte-
grable.

Let us return to

Fn(x) :=
n∑

k=1

fn(x).

For all x ∈ Ac, this series is absolutely summable due to the work above. Hence, the series converges:
let

F (x) = lim
n→∞

Fn(x). (4.6.6)

We stress that this holds a.e. because µ(A) = 0. We can define F to be zero on Ac. Since
|Fn|p ≤ hpn ≤ hp, the DCT implies that∫

|F | dµ = lim
n→∞

∫
|Fn|p dµ ≤ C.

Using the DCT again, with the dominating function (see Exercise 4.6.3)

|F − Fn|p ≤ Cp(|F |p + |Fn|p) ≤ 2Cph
p,

we find
lim
n→∞

∥F − Fn∥pp = lim
n→∞

∫
|F − Fn|p dµ =

∫
lim
n→∞

|F − Fn|p dµ = 0.

The last equality holds because of (4.6.6).

Exercise 4.6.5. Use Proposition 4.6.9 to construct f ∈ L1(R) such that, for every q ∈ Q,

lim
x→q

f(x) = ∞.

We now establish the completeness of the Lp-spaces. Note that this is the reason why the Lebesgue
approach to integration is the correct one.

Theorem 4.6.10 (Riesz-Fischer theorem). Let (Ω,F , µ) be a complete measure space. For p ∈
[1,+∞], Lp is a complete normed linear space (i.e., it is a Banach space).
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Proof. The fact that Lp is a normed linear space follows from Proposition 4.6.7. We show complete-
ness here. Take fn to be a Cauchy sequence in Lp. Take any subsequence30 fnk

such that

∥fnk+1
− fnk

∥p ≤
1

2k
.

It is enough to show that fnk
converges31. Let us rewrite this as

fnk+1
= fn1 +

k∑
i=1

(fni+1 − fni) = fn1 +
k∑

i=1

hi,

where hi = fni+1 − fni . Since
k∑

i=1

∥hi∥p ≤
k∑

i=1

1

2k
< 1,

we may apply Proposition 4.6.9 to conclude that there is f such that

f = lim
k→∞

(
fn1 +

k∑
i=1

hi

)
.

This limit is taken with respect to ∥ · ∥p. Hence, we have

0 = lim
k→∞

∥∥∥f −
(
fn1 +

k∑
i=1

hi

)∥∥∥
p

= lim
k→∞

∥∥∥f −
(
fn1 +

k∑
i=1

(fni+1 − fni)
)∥∥∥

p
= lim

k→∞

∥∥∥f − fnk

∥∥∥
p
.

This concludes the proof.

4.7. One last notion of convergence. Let us consider an illustrative example.

Example 4.7.1. For any θ ∈ R, consider the sequence

fn = 2θk1[
n−2k

2k
,n−2k+1

2k

] where k is such that 2k ≤ n < 2k+1.

Especially when θ = 0, this is often called the typewriter sequence. In a sense, it is clear that fn
“tends to zero.” Indeed, the set on which fn is different from zero is O(1/n).

However, if θ ≥ 0, fn ̸→ 0 in an almost everywhere sense. Indeed, given any x and any N , there is
n ≥ N such that fn(x) ≥ 1! Moreover, if θ ≥ 1, then fn ̸→ 0 in any Lp-norm!

Exercise 4.7.1. Given p ∈ [1,∞], for which θ does fn → 0 in the Lp-norm?

So we introduce a new notion of convergence that is very important in the study of probability. We
note immediately that the typewriter sequence tends to zero in this sense.
30We showed this on a homework!
31We showed on a homework, that if a Cauchy sequence has a convergence subsequence, then the sequence is conver-

gent as well and has the same limit.
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Definition 4.7.2. Given a measure space (Ω,F , µ), a sequence of measurable functions fn converges
to a measurable function f in measure (equivalently, in probability) if, for all ε > 0,

lim
n→∞

µ ({x : |f(x)− fn(x)| > ε}) = 0.

We now have many notions of convergence, and it takes some practice to get used to how they
relate. The following shows some of them:

Exercise 4.7.2. Let (Ω,F , µ) be a measure space with measurable functions f , f1, f2, . . . .

(i) If fn → f in Lp then fn → f in measure.

(ii) If fn → f a.e. and µ(Ω) <∞ then fn → f in measure.

(iii) If fn → f in measure then there is a subsequence fnk
that converges to f a.e.

(iv) If fn → f in Lp then there is a subsequence fnk
that converges to f a.e.

(v) If fn → f a.e. and there is a dominating function then fn → f in Lp for any p ∈ [1,∞).

(vi) If fn → f in Lp and µ(Ω) <∞, then fn → f in Lq for every q < p.

Note that some directions are not represented here – find counterexamples for them!

We note that, in practice, one often chooses a notion of convergence to work with because it (i) pairs
well with the mathematical techniques associated to the problem, and (ii) it has physical relevance.
These two points are sometimes in conflict! The strongest notion of convergence that has the best
“real-world interpretation” might be very difficult to show, so one might instead compromise.

4.8. Product measures: Fubini’s theorem and Tonelli’s theorem. How might
we define a measure on R2? Or, more generally, given (Ω,F , µ) and (Σ,G, ν), how do we define a
measure “µ× ν on the product space Ω× Σ?

We first begin by defining the “rectangles”

R = {F ×G : F ∈ F , G ∈ G},

which make a natural basis for our product sigma algebra σ(R).
We can easily define the proto-measure of any rectangle F ×G ∈
R in the geometric natural way:

(µ× ν)(F ×G) = µ(F )ν(G). Ω

Σ

F

G
F ×G

One can extend then this to a measure on F ×G by our “outer measure” strategy from before. That
is, let (µ× ν)∗ be defined by, for all A ⊂ Ω× Σ,

(µ× ν)∗(A) = inf
{ ∞∑

i=1

µ(Fi)ν(Gi) : A ⊂
∞⋃
i=1

Fi ×Gi

}
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and then let F × G ⊃ σ(R) be the set of all sets A ⊂ Ω× Σ such that

(µ× ν)∗(E) = (µ× ν)∗(A ∩ E) + (µ× ν)∗(Ac ∩ E) for all E ⊂ Ω× Σ.

In practice, most sets will be in σ(R); however, we prefer F × G because it is complete (see Defi-
nition 4.4.18). Sifting through the details involved in constructing the product measure is a good
exercise for those that be confident in their knowledge. For the purposes of these notes, though,
we avoid the technical details as we only want access to the tools that are Fubini’s and Tonelli’s
theorems.

Exercise 4.8.1. Consider (R2, σ(R),m×m), where R is the set of products of Lebesgue measurable
sets. Show that this measure space is not complete.

Hint: if A is any set and B is a Lebesgue measurable set of measure zero, then what is (m×m)∗(A×
B)? Is A×B ∈ σ(R)?

We note that this gives the basis for the Lebesgue measure on Rn. In other words, we can now
safely define measurable functions on Rn and integrate them.

Although we will skip the proofs, we state two important results about integration with respect to
product measures.

Theorem 4.8.1 (Fubini’s theorem). Suppose that (Ω,F , µ) and (Σ,G, ν) are two complete32 mea-
sure spaces. If f is an integrable function on µ× ν then

(i) For a.e. x (resp. y) fx(·) = f(x, ·) is a µ-integrable function of y (resp. fy(·) = f(·, y) is a
ν-integrable function of x);

(ii) The function
∫
f dµ(x) is an ν-integrable function (resp.

∫
fdν(y) is a µ-integrable function);

(iii)
∫ (∫

f(x, y) dµ(x)
)
dν(y) =

∫
fd(µ× ν) =

∫ (∫
f(x, y) dν(y)

)
dµ(x).

Theorem 4.8.2 (Tonelli’s Theorem). The conclusion of Fubini’s theorem holds if f is nonnegative
and (Ω,F , µ) and (Σ,G, ν) are σ-finite33.

It is tempting not to check the hypotheses of these theorems, but one must be careful!

Example 4.8.3. Consider the function f(x, y) = x2−y2

(x2+y2)2
on the set [0, 1]2. Let us consider the

various integrals outlined in Fubini’s theorem part (iii).

(i) Consider
∫ (∫

f(x, y) dx
)
dy. An elementary argument yields∫

[0,1]

(∫
[0,1]

f(x, y) dx

)
dy =

∫
[0,1]

−1

1 + y2
dy < 0.

(ii) Consider
∫ (∫

f(x, y) dy
)
dx. An elementary argument yields∫

[0,1]

(∫
[0,1]

f(x, y) dy

)
dx =

∫
[0,1]

1

1 + x2
dx > 0.

32That is, every measure zero set is measurable
33That is, there exists An ∈ F (resp. Bn ∈ G) such that µ(An) < ∞ and ∪nAn = Ω (resp. ν(Bn) < ∞ and
∪nBn = Σ).
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(iii) Because f is odd with respect to reflection of y = x (that is, f(x, y) = −f(y, x)) and [0, 1]2 is
preserved by this reflection, it is “clear” that∫

[0,1]2
f(x, y) dm = 0.

Why do we get three different answers?!? Well, we never
checked the conditions of Fubini’s theorem or Tonelli’s Theo-
rem. Clearly Tonelli’s theorem does not apply because f is not
nonnegative. Let us check the condition of Fubini’s theorem;
that is, let us see if f is integrable. Indeed,∫

[0,1]2
|f(x, y)| dm ≥

∫
T
|f(x, y)| dm.

where T is the triangle defined by

T = {(x, y) ∈ [0, 1]2 : x >
√
2y}.

Notice that, for (x, y) ∈ T , we have

x2 − y2 =
x2

4
+

3x2

4
− y2 ≥ x2

4
+

3y2

2
− y2 ≥ x2 + y2

4
.

x

y

(1, 1√
2
)

(1, 0)

T

(0, 1)

The light red box is [0, 1]2

and the darker red box is T .

Hence ∫
T
|f(x, y)| dm ≥

∫
T

1

4

1

x2 + y2
dm.

An elementary argument using polar coordinates shows that:∫
T

1

4

1

x2 + y2
dm = ∞.

So f is not integrable! This is why we get three different answers in (i), (ii), and (iii).

Exercise 4.8.2. Compute
∫ ∞

0

sinx

x
dm. You may find it useful to use that

1

x
=

∫ ∞

0
e−xt dm(t).

5. Probability theory

One advantage to the generality in which we have studied measure theory is that we may now apply
it to the study of probability theory. In a sense, basic probability theory is applied measure theory,
although, as we shall see, it can quickly get significantly more complex as one begins to think about
random variables, processes, etc.

In this setting, we use E to denote the integral (expectation) and P to denote the probability measure.
We clarify this further below when discussing random variables (i.e., measurable functions).

5.1. Densities, distributions functions, and the Stieltjes measure. For a mo-
ment, let us play with a few different methods for obtaining measures and aspects of (finite) mea-
sures.
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5.1.1. Densities. One can construct new measures from existing ones by using any non-negative
measurable function: given a measure space (Ω,F , µ) and f ≥ 0 that is µ-measurable, let

µf (A) =

∫
A
f dµ. (5.1.1)

In this case, we often write dµf = f dµ. One can check that this is a measure defined on the same
σ-algebra F as µ. If f ∈ L1 and is non-zero we can “normalize” this to obtain a probability measure:

ν(A) =
1

Z

∫
A
f dµ where Z =

∫
f dµ.

In this case, we often write dµf = (f/Z) dµ. Let us point out that not all probability measures have
a density and that there is a general theory for how to know if your measure has a density34

Example 5.1.1. Perhaps the most widely used example of this is the normal distribution with mean
µ and variance σ2:

dP =
1√
2πσ2

exp

{
−(x− µ)2

2σ2

}
dm.

Roughly, an event has value in (a, b) if, for example,

P((a, b)) =
∫ b

a

1√
2πσ2

exp

{
−(x− µ)2

2σ2

}
dm.

This is used in a huge number of applications due to its “universality” – it arises any time a number
of “not too correlated” random variables are summed. This is the central limit theorem! For example,
exam scores!

5.1.2. Stieltjes measures. Suppose we have a function F : R → R that is non-decreasing that
is “nice enough” (to be defined momentarily). Then we can define an associated measure on Borel
sets by

µF ((a, b]) = F (b)− F (a).

If we want to assign a measure to an interval, then we should have, for any sequence xn ↗ b,

µF ((a, b)) = µF

( ∞⋃
n=1

(a, xn]

)
= lim

n→∞
µF ((a, xn]) = lim

n→∞
F (xn)− F (a). (5.1.2)

This will only be well defined if F has “limits on the left” (that is, limn→∞ F (xn) exists whenever
xn ↗ b for some b).

On the other hand, if we want µF to be a measure according to Definition 4.3.7, we must have the
following: given any sequence xn ↘ a,

F (x1)− F (a) = µF ((a, x1]) = µF

( ∞⋃
n=1

(xn+1, xn]

)

=

∞∑
n=1

(F (xn)− F (xn+1) = F (x1)− lim
n→∞

F (xn),

34see the Radon-Nikodym theorem.
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x

F

x

G

Figure 6: Two examples of càdlàg functions F and G.

where the last equality uses the definition of infinite series and the fact that this series is telescoping.
We must, thus, have a limit on the right, call it F (a+). Plugging this in above, we see that

F (a) = F (a+).

In other words, F must be “continuous on the right.”

Definition 5.1.2. A cadlàg function F : R → R is one that, for any x0, is continuous on the right
(continue à droite) and has a limit on the left (limite à gauche); that is,

lim
x↘x0

F (x) = F (x0) and lim
x↗x0

F (x) exists.

Any continuous function is càdlàg; however, we point out that F need not be continuous! Take a look
at the examples in Figure 6. In fact, one very important example of a càdlàg function is the paths of a
Lévy process (which exhibits “random jumps” to move around). These arise in mathematical biology
(e.g., modeling the movement of a bird or other animal that makes occasional large movements,
modeling genetic change in a population), mathematical finance, and the microscopic behavior of
any nonlocal PDE (e.g., the Boltzmann equation, modeling the density of particles in a diffuse gas).

We can create a measure space analogously to our construction of the Lebesgue measure. Let µ∗F
be the outer measure defined by

µ∗F (A) = inf
{ ∞∑

i=1

(F (bi)− F (ai)) :
∞⋃
i=1

(ai, bi] ⊃ A
}
, (5.1.3)

let FF be the σ-algebra

FF = {A : µ∗F (E) = µ∗F (A ∩ E) + µ∗F (A
c ∩ E) for all E ⊂ R} , (5.1.4)

and define µF (A) = µ∗F (A) for all A ∈ FF . Then (R,FF , µF ) is a measure space. Further, since we
have defined µF on intervals (a, b] and, by the work in (5.1.2), (a, b), it must be that FF ⊃ B.

Actually, if our function is “nice” enough, we can generalize this procedure to non-monotonic func-
tions F . In this case, we end up with a signed measure; that is, a measure that need not be positive.
Actually, without the condition of nonnegativity, linear combinations of measures are measures.
One can then define various norms on the linear spaces of measures and analyze these interesting
spaces. We do not pursue this further here.

Example 5.1.3. (i) F (x) = x: then µF = m. Indeed, we see that, by (5.1.2),

µF ((a, b)) = b− a

for all a < b. One can then check that the outer measures agree: µ∗F = m∗. It follows that
they generate the same σ-algebra and the same measure.
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(ii) F (x) = 1[0,∞): then µF = δ0. In other words, µF (A) = 0 if 0 /∈ A and µF (A) = 1 if 0 ∈ A.
Why? First, notice that, if b < 0, then

µF ((a, b]) = F (b)− F (a) = 0− 0 = 0,

and if a ≥ 0, then
µF ((a, b]) = F (b)− F (a) = 1− 1 = 0.

On the other hand, if a < 0 and b ≥ 0, we have

µF ((a, b]) = F (b)− F (a) = 1− 0 = 1.

Moreover,

µF ({0}) = lim
n→∞

µF ((−1, 1/n])+µF ({0}) = µF ((−1, 0))+µF ({0}) = µF ((−1, 0]) = 1. (5.1.5)

Hence, if 0 ∈ A,
1 = µF ({0}) ≤ µF (A) ≤ µF ((−∞,∞]) = 1.

On the other hand, arguing as in (5.1.5), we find that, if 0 /∈ A,

0 ≤ µF (A) ≤ µF ((−∞, 0)) + µF ((0,∞)) = 0 + 0 = 0.

Roughly, where F is continuous, we get something “like” the Lebesgue measure with a density, while
if F has a “jump” then we get a constant multiple of the δ-function at that location. This is not
quite true, see Exercise 5.2.3 and the discussion above it.

Remark 5.1.4. Suppose we are trying to identify µF as a measure µ that we can write down
explicitly. Ignoring the technical issues related to σ-algebras, we can deduce that µ = µF if

µF ((a, b]) = µ((a, b]) for every a < b.

This is, roughly, because we use intervals of this form to define the measure of arbitrary sets
via (5.1.3). The interested reader might hope for a rigorous statement. We include this in Ap-
pendix C.

5.1.3. Distribution functions. We can also start from a measure space (R,F , µ) and, roughly,
find the F that generates it. For this, we need F ⊃ B. If µ is a finite35 measure (i.e., µ(Ω) < ∞),
then we can define its distribution function:

Definition 5.1.5. The (cumulative) distribution function of µ is

Fµ(x) =

∫
1(−∞,x] dµ.

Let us underline that Fµ is well-defined by the assumption that F ⊃ B, which ensures that (−∞, x]
is measurable.

In fact, were one to put into action the procedure outlined in Section 5.1.2 that defines the Stieltjes
measure associated to Fµ, call it µ̃, one finds that µ̃ = µ on B. A subtle technical note is that the
σ-algebra of the measure space (R, F̃ , µ̃) generated by Fµ may differ from that of (R,F , µ); that is,
it may be that F = F̃ . See Exercise 5.1.1.
35If µ is not finite (e.g., the Lebesgue measure), one can define the distribution function from a particular point like
0: F (t) = µ((0, t]), taking care to define F appropriately for t < 0 as well.
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Exercise 5.1.1. Let F be the distribution function associated to (R,B,mf ), where 0 < f ∈ L1 and
mf has density f as in (5.1.1). Show that the Lebesgue-Stieltjes measure space generated by the
process outlined in Section 5.1.2 is (R,L,mf ). Note that this is not original measure space because
the σ-algebras of measurable set differ.

Recall that we showed in Proposition 4.5.14 that Fµ is continuous if dµ = f dm for some f ∈ L1.
However, Fµ need not be continuous if µ has a “δ component.”

Example 5.1.6. Given any nonnegative f ∈ L1, we can define, for any Lebesgue measurable set A,

µ(A) := δ0(A) +

∫
A
f dm.

One can check that
Fµ(x) = 1(−∞,0](x) +

∫
1(−∞,x]f dm,

which has a jump discontinuity at x = 0.

5.2. Random variables. At the highest level, a random variable on a probability space
(Ω,F ,P) is simply a measurable function:

Definition 5.2.1. If (Ω,F ,P) is a measure space and X : Ω → R, then X is a random variable if
X is P-measurable in the sense that X−1((α,∞)) is measurable for all α ∈ R.

We, however, think about them quite differently and use different notation, so let us rethink them
a bit.

The elements ω ∈ Ω are all the possible outcomes in an event. A random variable X : Ω → R is
an “observable” – it is a quantitative reading of the event. In this sense, X being a well-defined
function means we can quantify the outcome of the event and measurability of X with respect to
(Ω,F ,P) means that we can understand the likelihood of X’s value given a reasonable collection of
events.

Example 5.2.2. Let Ω = {0, 1}n be the outcome of n (independent) flips of a coin, where 1
represents heads and 0 represents tails. Here, (1, 0, 1, 1, . . . , 1) represents heads appearing on the
first, third, fourth, etc. flips with tails appearing on the second, etc. flips.

As discussed in Example 4.1.1.(iv), if the coin is fair, (Ω,PΩ,P1/2) is a probability space with

P1/2({ω}) = 2−n for any ω ∈ Ω.

We can then extend P1/2 to any set A in a straightforward way because the {0, 1}n is made up of
finitely many elements. Indeed:

P1/2(A) =
∑
ω∈A

P({ω}). (5.2.1)

We can make the coin biased by fixing p ∈ (0, 1) that is the probability of taking the value 1 (heads).
Then 1− p is the probability of the value 0 (tails) on each flip. In this case, we have

Pp({ω}) = p# of heads(1− p)# of tails =
n∏

i=1

pωi(1− p)1−ωi .
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We can then extend this to a measure on {0, 1}n as in (5.2.1).

For the rest of this example, we fix p ∈ (0, 1) and drop the p subscript in Pp. Define the random
variable Xn : Ω → R as

Xn(ω) =
n∑

i=1

ωi = the number of heads in a string.

Here we use the notation ω = (ω1, ω2, . . . , ωn). For example, when n = 2,

X2(0, 0) = 0, X2(1, 1) = 2, X2(1, 0) = 1, and X2(0, 1) = 2.

Let us note that we call X1 a Bernoulli random variable with parameter p. We denote this by
X1 ∼ Bernoulli(p).

5.2.1. Expectation and cumulative distribution functions. One main operation we perform
with random variables is to compute their expectation, as well as the expectation of their composi-
tion with Borel functions. The mean is

E[X] =

∫
X(ω) dP(ω).

The second moment is
E[X2] =

∫
X(ω)2 dP(ω),

and, more generally, the nth moment is

E[Xn] =

∫
X(ω)n dP(ω).

One can take the expectation using any Borel function f : R → R:

E[f(X)] =

∫
f(X(ω)) dP(ω). (5.2.2)

As above, we refer to quantities such as this as the statistics of X. Note that another important
statistic is the variance E[(X − E[X])2]. It measures the “spread” of a random variable.

Exercise 5.2.1. Show that the variance of a random variable X is given by E[X2]− E[X]2 if it is
finite.

Example 5.2.3. (i) Returning to our coin flipping example from above with the choice p = 1/2,
we have

E[Xn] =
∑
ω∈Ωn

Xn(ω)P({ω}) = 2−n
∑
ω∈Ωn

Xn(ω) = 2−n
n∑

k=0

∑
ω∈Ak

k

= 2−n
n∑

k=0

(
n

k

)
k = 2−n

n∑
k=1

(
n

k

)
k = 2−n

n∑
k=1

n · (n− 1)!

k · (k − 1)!((n− 1)− (k − 1))!
k

= 2−n
n∑

k=1

n

(
n− 1

k − 1

)
= n2−n

n∑
k=1

(
n− 1

k − 1

)
= n2−n

n−1∑
k=0

(
n− 1

k

)
= n2−n2n−1 =

n

2
,
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where
Ak = {ω : Xn(ω) = k} which has

(
n

k

)
=

n!

k!(n− k)!
elements.

Here we used that the sum36 over k of
(
m
k

)
= 2m.

(ii) A uniform random variable X on an interval [a, b] (denoted X ∼ Unif(a, b)) is one whose
probability of being any number in [a, b] is “equally likely.” This, of course, does not make
sense as there are infinitely many values in [a, b], so the probability of any one particular value
occurring is zero. Let us write this down rigorously. We take the probability space (R,L,P)
where

P(A) =
1

b− a
m(A ∩ [a, b]) for all A ∈ L,

and the random variable X : R → R by X(x) = x. One can easily check that

P(X ∈ [α, β]) =
β − α

b− a
, (5.2.3)

for any a ≤ α ≤ β ≤ b. Since
dµ = 1[a,b] dm,

we can easily compute the expected value of X:

E[X] =

∫
x dµ =

1

b− a

∫
x1[a,b](x) dm =

b+ a

2
.

This makes sense since it is the “average value” in [a, b].

At this point, we see that there are many “different” random variables ∼ Unif(a, b). Indeed,
let us present two more.

• Define the probability space
(
[a, b],L[a,b],PY

)
, where

L[a,b] = {A ∈ L : A ⊂ [a, b]} and PY (A) =
1

b− a
m(A) for all A ∈ L[a,b].

Then we define Y : [a, b] → [a, b] as Y (x) = x. It is easy to see that Y is measurable
and (5.2.4) holds for Y as well; that is,

PY (Y ∈ [α, β]) =
β − α

b− a
, (5.2.4)

for any a ≤ α ≤ β ≤ b. Hence, Y ∼ Unif(a, b), as well.
• Define the probability space

(
[2a, 2b],L[2a,2b],PZ

)
, where

L[2a,2b] = {A ∈ L : A ⊂ [2a, 2b]} and PZ(A) =
1

2(b− a)
m(A) for all A ∈ L[2a,2b].

Then we define Z : [2a, 2b] → R as Z(x) = x/2. It is easy to see that Z is measurable
and (5.2.4) holds for Z as well; that is,

PZ(Z ∈ [α, β]) = PZ([2α, 2β]) =
2β − 2α

2(b− a)
=
β − α

b− a
,

for any a ≤ α ≤ β ≤ b. Hence, Z ∼ Unif(a, b), as well.
36One can show this by using the binomial expansion of (1+1)n. Otherwise, one can also prove it by induction on n.
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We will see below that one can tell X, Y , and Z are the “same” because they have the same
“c.d.f. .” See Example 5.2.5.

(iii) An exponential random variable X ∼ Exp(λ) with rate λ > 0 is one where

P(X ≤ t) =

{
0 if t ≤ 0,

1− e−λt if t > 0.

A typical application of exponential random variables is to measure whether an event, which
occurs at rate λ, has taken place before some time t. For example, the event could be cell-
division – it happens at a “random” time that gets “much more likely” as time goes.

One can rigorously construct this by defining the probability space (R,L, µf ), where dµf = f dµ
with

f(x) = λe−λx1(0,∞)(x),

and letting X(x) = x. We then see that

E[X] =

∫
x dµf =

∫
xf(x) dm = λ

∫ ∞

0
xe−λx dm =

1

λ
.

Let us note that in this and the previous example, the random variable is the identity on R.
This is not a coincidence, and it is explored further in (5.2.5).

In practice, the definition of a probability space can be complicated or inconvenient for computa-
tions. Another approach is related to the theory we developed above in Section 5.1.2-Section 5.1.3.
Let us begin by defining the nondecreasing, càdlàg that will be the basis for this.

Definition 5.2.4. Let (Ω,F ,P) be a probability space and X be a random variable on it. The
cumulative distribution function (cf. Definition 5.1.5) of X is

FX(t) = P({ω : X(ω) ≤ t}) = P({X ≤ t}).

Notice the introduction of notation in the last equality above. In probability, we often suppress the
ω’s.

Before discussing exactly how we connect this to computations involving the expectation of f(X),
let us compute a few simple examples. We also show that, by computing the Stieltjes measure
associated to each c.d.f. , one obtains another probability space related to the random variable.

Example 5.2.5. The examples here are defined in Example 5.2.3 with the same numbering.

(i) Let us consider the coin flipping example with n = 1. We see that its cumulative distribution
function is

FX(t) = P(X ≤ t) =


0 if t < 0,

1− p if t ∈ [0, 1),

1 if t ≥ 1.

Let µX be the Stieltjes measure generated from FX . As in Example 5.1.3.((ii)), we see that

µX = (1− p)δ0 + pδ1.

It follows that (R,FX , µX) is a probability space, where FX is the σ-algebra generated by FX .

We see that we can then easily obtain Y ∼ Bernoulli(p) using the space (R,FX , µX). Indeed,
let Y : R → R be defined by Y (x) = x. One can check that Y ∼ Bernoulli(p).
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Figure 7: The c.d.f. ’s of, respectively, random variables X ∼ Bernoulli(p) and Y ∼
Unif(a, b).

(ii) One sees that the c.d.f. is

FX(t) =


0 if t < a,
t−a
b−a if a ≤ t ≤ b,

1 if t ≥ b.

(iii) An exponential random variable X ∼ Exp(λ) with rate λ > 0 is one where

FX(t) = P(X ≤ t) =

{
0 if t ≤ 0,

1− e−λt if t > 0.

A typical application of exponential random variables is to measure whether an event has
occurred before some time t. For example, the event could be cell-division – it happens at a
“random” time that gets “much more likely” as time goes.

We notice immediately that FX is a nondecreasing, càdlàg function on R. Indeed, we use Lemma 4.5.2
(see also the computation (5.1.2)) to obtain the “càd” part, while “làg” follows form its monotonicity).
It, thus, generates a measure space (R,FX , µX). Of course, since

µX(R) = FX(+∞)− FX(−∞) = P({X ≤ +∞})− P({X ≤ −∞}) = 1,

then (R,FX , µX) is, itself, a probability space.

What we see is that the c.d.f. of X will hold all of the information about X. Indeed, (5.2.2) can be
computed with respect to the Stieltjes measure µX defined purely by FX . This is the Law of the
unconscious statistician: if X is a random variable and g is a Borel function, then

E[g(X)] =

∫
g(x) dµFX

=

∫
g(x) dFX . (5.2.5)

Here we introduced the somewhat standard notation dFX for the integral with respect to the measure
µFX

generated by the c.d.f. of X. In general, we avoid this notation and use µFX
instead.

This law is so-named because it is tempting to think of the above as the definition of the expected
value; however, it is not! Indeed,

E[g(X)] =

∫
Ω
g(X(ω)) dP(ω).

So... why is (5.2.5) true? Let us look at the simple case where g = 1(a,b]. Then

E[g(X)] = E[1{X∈(a,b]}] = P ({X ∈ (a, b]})
= P ({X ∈ (−∞, b]})− P ({X ∈ (−∞, a]}) = FX(b)− FX(a).
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It may not be surprising that one can then “perform the usual routine” to get that this holds for any
Borel measurable function (i.e., do the above for simple functions and then use simple functions to
approximate Borel functions). This is an arduous process so we omit it here. See Appendix D for
the full explanation.

Remark 5.2.6. Suppose we have a nondecreasing càdlàg function F . If we wish to construct a
random variable X that has a particular c.d.f.FX = F , we can do so simply letting our probability
space be (R,FF , µFX

) and X(x) := x for all x ∈ R. One can easily check that this is a probability
space and FX = F .

5.2.2. Classifying random variables. It is not hard to show that FX , being monotonic, can be
decomposed as

FX = F
(d)
X + F

(c)
X , (5.2.6)

where F
(c)
X is continuous and F

(d)
X is constant apart from a discrete collection of jumps. This

decomposition is unique if we impose the condition

F
(d)
X (−∞) = F

(c)
X (−∞) = 0.

Here we use f(−∞) as shorthand for the limit of f(x) as x → −∞. We use this (5.2.6) to classify
random variables.

Definition 5.2.7. Let X be a random variable on a probability space (Ω,F ,P). We say that X is:

• discrete if FX = F
(d)
X ; that is, F is constant apart from a countable collection of jumps;

• continuous if FX = F
(c)
X ; that is, FX is continuous;

• absolutely continuous if there is a nonnegative f ∈ L1
m(R) such that dµFX

= f dm.

The most basic case, which is covered in most undergraduate probability courses, is the discrete
case. This is due to the fact that everything can be done without measure theory. On the other
hand, the continuous case is more complicated. In particular, there are continuous, but absolutely
continuous random variables. The interested reader should look at the Exercise 5.2.3 to see such an
example and should consult measure theory textbooks about the Lebesgue decomposition theorem.
In these notes, however, we will mainly avoid delving into the subtleties of this.

Exercise 5.2.2. (i) Show that if X is discrete, there is a finite or countable set A such that
P(X ∈ A) = 1 and P (X = a) > 0 for all a ∈ A.

(ii) Show that if X ∼ Bernoulli(p), then X is discrete. Find the set A from part (i).

(iii) Do the same for Xn as in Example 5.2.2.

Exercise 5.2.3. [The Cantor function] Define a function F : R → R as follows. If x ≤ 0, let
F (x) = 0. If x ≥ 1, let F (x) = 1. If x ∈ (0, 1), write

x =
∞∑
i=1

ti
3i
,
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where ti ∈ {0, 1, 2} and, for all N , there is n ≥ N such that tn ̸= 2. Then let

F (x) =

∞∑
i=1

f(t̄)i
2i

,

where, if t̄ contains no 1’s, f(t̄)i = ti/2, and, if the first 1 in t̄ is at index N , we let

f(t̄) = (t1/2, t2/2, . . . , tN−1/2, 1, 0, 0, . . . ).

Show that F is continuous and is constant on any interval (a, b) ⊂ Cc, where C is the Cantor set
of Exercise 4.2.7. Deduce that there is no such g ∈ L1

m such that dµF = g dm.

An example of this is our coin flipping example. In a sense, this is the simplest case. It corresponds
to the case where FX is constant apart from a discrete collection of jumps.

Example 5.2.8. (i) X ∼ Bernoulli(p) – Notice that FX is discrete. Each “jump” corresponds to
a new outcome becoming possible and is represented by a δ measure. Indeed, one can check
directly that, defining

dFX = (1− p)δ0 + pδ1,

then
FX(x) =

∫
1(−∞,x]dFX .

In particular, one sees that the Lebesgue-Stieltjes integral this defines is∫
g dFX = (1− p)g(0) + pg(1).

What does this give us as an expected value?∫
x dFX = (1− p) · 0 + p · 1 = p.

(ii) X ∼ Unif(a, b) – This is piecewise differentiable and is continuous, so we find

dFX =
1

|b− a|
1[a,b].

Hence ∫
g dFX =

1

|b− a|

∫
[a,b]

g dm.

What does this give us as an expected value?∫
x dFX =

1

|b− a|

∫
[a,b]

x dm =
1

|b− a|

(
b2

2
− a2

2

)
=
b+ a

2
.

(iii) X ∼ Exp(λ) – Just as in the previous example, we can simply differentiate to find

dFX = λe−λx1[0,∞).

Hence ∫
g dFX = λ

∫ ∞

0
ge−λx dm.

What does this give us as an expected value?∫
x dFX = λ

∫ ∞

0
xe−λx dm =

1

λ

∫ ∞

0
(λx)e−λx d(λx) =

1

λ
.
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5.2.3. Convergence results and inequalities for random variables. The usual results (in
this context) hold:

Lemma 5.2.9 (Fatou’s Lemma). Suppose that Xn is a sequence of nonnegative random variables
such that Xn → X almost surely37, then

E[X] ≤ lim inf
n→∞

E[Xn].

Theorem 5.2.10 (Monotone Convergence Theorem). Suppose that Xn is a sequence of nonnegative
random variables such that Xn → X almost surely and X1 ≤ X2 ≤ X3 ≤ · · · , then

E[X] = lim
n→∞

E[Xn].

Theorem 5.2.11 (Dominated Convergence Theorem). Suppose that Xn is a sequence of random
variables and Y be a random variable such that Xn → X almost surely, |Xn| ≤ Y almost surely,
and E[|Y |] <∞. Then

E[X] = lim
n→∞

E[Xn].

Theorem 5.2.12 (Hölder’s inequality). Suppose that X and Y are random variables and p, q ∈
(1,∞) are conjugate exponents. Then

E[XY ] ≤ (E[|X|p])
1
p (E[|Y |q])

1
q .

Also
E[XY ] ≤ E[|X|] ess supΩ |Y |.

Theorem 5.2.13 (Jensen’s inequality). Suppose that X is a random variables and φ : R → R is a
convex function. Then

φ (E[X]) ≤ E[φ(X)].

Theorem 5.2.14 (Markov’s inequality). Suppose that X is a random variables and λ > 0. Then

P(X ≥ λ) ≤ E[|X|]
λ

.

Let us comment mostly on Markov’s inequality. This is used to understand “tail probability” –
how often a random variable takes a large value. Additionally, it can be used with a function:
take an increasing function φ and apply Markov’s inequality with φ(X) to deduce the more general
inequality

P(X ≥ φ−1(λ)) = P(φ(X) ≥ λ) ≤ E[|φ(X)|]
λ

.

Example 5.2.15. Let us consider applying this to X ∼ Norm(0, 1). Note a “normal random variable
with mean µ and variance σ2,” denoted by Norm(µ, σ2) is one whose c.d.f. is given by the density

dFX =
1√
2πσ2

e−
(x−µ)2

2σ2 dm.

Then, by Markov’s inequality, we get for λ≫ 1

P(X ≥ λ) ≤ E[|X|]
λ

.

37This is the probabilistic equivalent of almost everywhere: there is a set A such that P(A) = 1 and, for all ω ∈ A,
Xn(ω) → X(ω).
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Notice that

E[|X|] =
∫

|x|√
2π
e−

x2

2 dm = 2

∫ ∞

0

x√
2π
e−

x2

2 dm =
2√
2π

=

√
2

π
.

Hence

P(X ≥ λ) ≤
√
2√
πλ
.

This is not great! The density for X decays like e−x2/2, which is much faster! We should expect a
better estimate on the tail probability. Let’s try something better:

P(X ≥ λ) = P(eX ≥ eλ) ≤ E[eX ]

eλ
.

Since38

E[eX ] =

∫
ex√
2π
e−

x2

2 dm = e
1
2 .

we deduce that

P(X ≥ λ) ≤ e1/2

eλ
.

This is much better!

Exercise 5.2.4. Get a better estimate by using etx for a different choice t.

Notice that this is especially helpful for estimating “rare” events like when λ≫ 1.

5.3. Joint distributions. Often, we have multiple random variables on the same probability
space. In this case, we can obtain their joint distribution.

Definition 5.3.1. Let X,Y be random variables on (Ω,F ,P). Their joint distribution FX,Y :
R× R → [0, 1] is defined by

FX,Y (x, y) = P{ω : X(ω) ≤ x, Y (ω) ≤ y} = P{X ≤ x, Y ≤ y}.

This can easily be extended analogously to any finite number of random variables: if X1, . . . , Xn are
random variables and t1, . . . , tn ∈ R, then the joint distribution FX1,...,Xn : R × · · · × R → [0, 1] is
defined as

FX1,...,Xn(t1, . . . , tn) = P(X1 ≤ t1, . . . , Xn ≤ tn).

We note that the joint distribution encodes what “type” of random variables X and Y are (e.g.,
uniform, normal, etc) and how “related” they are.

Example 5.3.2. (i) Independent coins – Let (Ω,F ,P) be the probability space of two coin flips
–see Example 4.4.9 with n = 2. Here Ω = {0, 1}2, F = PΩ, and P(ω) = 1/4 for all ω ∈ Ω.

Define two random variables X and Y by

X(ω) = a1 and Y (ω) = a2,

for any ω = (a1, a2) ∈ {0, 1}2. In other words, X gives 1 if the first flip is heads and Y gives 1
if the second flip is heads. Note that these do not interact – having knowledge about the value
of X does not impart any knowledge about the value of Y .

38This computation can be done by completing the square... try it!
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We now compute the joint distribution:

FX,Y (t, s) = P{X ≤ t, Y ≤ s} =



0 if t or s < 0,

1/4 if t, s ∈ [0, 1),

1/2 if t ∈ [0, 1) and s ≥ 1,

1/2 if s ∈ [0, 1) and t ≥ 1,

1 if t, s ≥ 1.

On the other hand, notice that

FX(t)FY (s) = P{X ≤ t}P{Y ≤ s} =



0 if t or s < 0,

1/4 if t, s ∈ [0, 1),

1/2 if t ∈ [0, 1) and s ≥ 1,

1/2 if s ∈ [0, 1) and t ≥ 1,

1 if t, s ≥ 1.

In other words, FX,Y (t, s) = FX(t)FY (s). In fact, this is the hallmark of independent ran-
dom variables. There are many equivalent definitions of “independence,” one of which is the
following:

Definition 5.3.3. Two random variables X and Y on a probability space (Ω,F ,P) are inde-
pendent if FX,Y (x, y) = FX(x)FY (y) for all x, y ∈ R.

This can easily be extended to finite sets of random variables analogously: X1, . . . , Xn are
independent if, for all t1, . . . , tn ∈ R,

FX1,...,Xn(t1, . . . , tn) = FX1(t1) · · ·FXn(tn).

Exercise 5.3.1. Show that the following definition is equivalent: P(X ∈ A, Y ∈ B) = P(X ∈
A)P(Y ∈ B) for all X,Y ∈ F .

Exercise 5.3.2. If X1, X2, and X3 are pairwise independent, is it true that X1 and X2+X3

are independent?

Exercise 5.3.3. If X and Y are independent and integrable, then E[XY ] = E[X]E[Y ].

(ii) Now define X(ω) = Y (ω) = a1. In other words, X and Y are both 1 if the first flip is
heads and are 0 if the first flip is tails. The second flip is ignored. Clearly, X and Y are not
“independent” (in the usual non-mathematical sense of the word). We can compute that

FX,Y (t, s) =


0 if min{t, s} < 0,

1/2 if min{t, s} ∈ [0, 1),

1 if min{t, s} ≥ 1.

In other words,
FX,Y (t, s) = min{FX(t), FY (s)}.

Actually, this is more apparent by just realizing that if X ≤ t and Y ≤ s then X ≤ min{t, s}.
Hence,

P{X ≤ t, Y ≤ s} = P{X ≤ min{t, s}} = FX(min{t, s})
= min{FX(t), FX(s)} = min{FX(t), FY (s)}.
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The second-to-last equality follows from the fact that FX is an increasing function, while the
last equality follows from the fact that X = Y .

Let us take two random variables, X and Y , on the same probability space. Assume that they their
joint distribution is given by a density fX,Y :

P((X,Y ) ∈ B) =

∫
B
fX,Y dm.

We can recover the density for each random variable by “forgetting” the other:

P(X ∈ A) = P((X,Y ) ∈ A× R) =
∫
A×R

fX,Y (x, y) dm(x, y).

After using Tonelli’s theorem, this is precisely the statement that

fX(x) =

∫
fX,Y (x, y) dm(y). (5.3.1)

A similar computation shows that

fY (y) =

∫
fX,Y (x, y) dm(x).

Exercise 5.3.4. Suppose that X and Y are absolutely continuous random variables. Is (X,Y )
absolutely continuous? In other words, is there a density fX,Y : R2 → R such that, for all A,B ∈ B,

P(X ∈ A, Y ∈ B) =

∫
A×B

fX,Y (x, y) d(m×m)?

Example 5.3.4. A general Gaussian random variable in n-dimensions is given by the following:
let Σ be a symmetric, positive definite39 n × n matrix and µ ∈ Rn, then define X̄ to be a random
variable with density

fX̄(x) =
1

(2π)n/2
√
detΣ

e−
1
2
(x−µ)·(Σ−1(x−µ)).

One can check that E[X̄] = µ. We call Σ the “covariance matrix” of the “multivariate normal random
variable” X̄.

When n = 2, Σ is diagonal

Σ =

(
σ21 0
0 σ22

)
,

and µ = 0, we get

fX,Y (x, y) =
1

2πσ1σ2
e
− x2

2σ2
1
− y2

2σ2
2 .

Here we are writing X̄ = (X,Y ). It is easy to check that

fX(x) =

∫
fX,Y (x, y) dm(y) =

1√
2πσ21

e
− x2

2σ2
1 ,

and

fY (y) =

∫
fX,Y (x, y) dm(x) =

1√
2πσ22

e
− y2

2σ2
2 ,

We observe that fX,Y (x, y) = fX(x)fY (y), which belies the independence of the two Guassian random
variables X,Y . In fact, this independence is really due to the fact that we chose a diagonal Σ.
39In other words, ΣT = Σ and x · (Σx) > 0 for all x ̸= 0. Equivalently, all of Σ’s eigenvalues are positive.
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Note that above we were considering a collection of random variables on a single probability space
and then “projecting” down to find the distribution of each random variable. We can always go in
the other direction: if we have two random variables X and Y on the probability spaces (Ω,F ,P)
and (Σ,G,Q), respectively, we can consider the product space (Ω×Σ,F×G,P×Q) on which X and
Y are (still) random variables with a joint distribution. In this case, X and Y will be independent.

Exercise 5.3.5. If Σ has row vectors [2, 1] and [1, 2], what are fX and fY ? Are X and Y indepen-
dent?

5.4. Functions of random variables. Given any Borel measurable g : R → R and random
variableX on (Ω,F ,P), we can compose them to find a new random variable on the same probability
space

Y = g(X) (that is, Y (ω) = g ◦X(ω) = g(X(ω)) for all ω ∈ Ω).

One can usually compute the c.d.f. for Y from that of X.

Example 5.4.1. (i) Let X be any random variable, and define

Y = X2.

This is composition with the continuous function g : R → R defined by g(x) = x2.

Let us first consider the case where FX is continuous (instead of just càdlàg). Then, if t < 0,
we have, since X2 ≥ 0,

FY (t) = P(Y ≤ t) = P(X2 ≤ t) = 0.

On the other hand, if t ≥ 0, we have

FY (t) = P(Y ≤ t) = P(X2 ≤ t) = P(−
√
t ≤ X ≤

√
t)

= P(X ≤
√
t)− P(X < −

√
t) = FX(

√
t)− FX(−

√
t).

Here we used the continuity of FX to get that

P(X < −
√
t) = lim

z↗−
√
t
P(X < z) = lim

z↗−
√
t
FX(z) = FX(−

√
t). (5.4.1)

If FX is only càdlàg, then the last step does not work, but we can still all but the last step
in (5.4.1) to conclude that

FY (t) = FX(
√
t)− lim

z↗−
√
t
FX(z).

If FX is given by a density fX (i.e., dFX = fX dm), then, for all t ≥ 0,

fY (t) := dFY = dFX(
√
t)− dFX(−

√
t) =

1

2
√
t
(fX(

√
t) + fX(−

√
t)).

Exercise 5.4.1. In the case where X ∼ Unif(−1, 1), work out what fY is.

(ii) Inverse transform sampling. Let Y = FX(X). A helpful way to process this is to remember
that we are really saying Y (ω) = FX(X(ω)) for ω ∈ Ω. Indeed, the subscript “X” in FX just
says that FX depends on the statistics of X (what kind of values it takes and how often it
takes them) while the input of FX is X(ω), the outcome/value of an event.

145



One thing that we see immediately is that Y must take values only in [0, 1]. Indeed, FX(t) =
P(X ≤ t) ∈ [0, 1]. Hence,

FY (t) =

{
0 if t < 0,

1 if t ≥ 1.

When t ∈ (0, 1), we perform the following computation:

FY (t) = P(Y ≤ t) = P(FX(X) ≤ t) = P(X ≤ F−1
X (t)) = FX(F−1

X (t)) = t.

The above is justified if FX is strictly increasing.

Exercise 5.4.2. ADD EXERCISE TO JUSTIFY THIS IF FX IS NOT STRICTLY IN-
CREASING.

This is exactly the distribution function of Unif(0, 1)! Hence, Y ∼ Unif(0, 1).

This is precisely why this is useful: if you develop a good sampling algorithm for U ∼ Unif(0, 1)
and you know the distribution FX of another random variable X, then you can sample X via
the formula:

X ∼ F−1
X (U).

5.4.1. Moment generating function. We defined above the moments:

E[Xn] is the nth moment of X.

The first moment is the mean (‘average value’) of the random variable, while the second moment is
related to variance, which measures the ‘spread’ of a random variable:

Var(X) = E
[
(X − E[X])2

]
= E

[
X2 − 2XE[X] + E[X]2

]
= E

[
X2
]
− 2E[X]2 + E[X]2 = E

[
X2
]
− E[X]2.

Additionally, moments can be useful when used with Markov’s inequality:

P(X ≥ λ) ≤ E[X2n]

λ2n
.

In general, moments hold a lot of information about a random variable. Let us then wrap them
into one quantity.

Definition 5.4.2. The moment generating function of a random variable is

MX(t) = E[etX ].

Notice that this is only finite if X is “not too large”.

Where does this name come from? Notice that

MX(t) = E

[ ∞∑
n=0

(tX)n

n!

]
=

∞∑
n=0

tn

n!
E[Xn].

Thus, the moments of X are the coefficients in the Taylor series (around 0) of MX(t). As a
consequence, knowing the moments of X and knowing MX are equivalent.
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It may not seem believable at this moment, but it can sometimes be easier to compute the moment
generating function than the moments themselves. Additionally, the moment generating function
can be useful to show convergence to a particular random variable.

Let us make note of a few asides. First, the interested reader may enjoy reading about ‘gener-
ating functions’ in general – they show up in number theory, combinatorics, ordinary and partial
differential equations, and many other fields. In other words, we have the following result:

Proposition 5.4.3. Let X and Y be two random variables such that, for some C > 0, we have

|E[Xn]|, |E[Y n]| ≤ Cnn!. (5.4.2)

Then MX(t) and MY (t) are well-defined on an interval (−R,R) for some R > 0, possibly infinite.

1. If MX(t) = MY (t) for all t ∈ (−R,R), then X and Y are identically distributed; that is,
FX = FY .

2. For every k ∈ N, M (k)
X (0) = E[Xk].

ADD PROOF IN AN APPENDIX AT A LATER DATE.

Remark 5.4.4. Reading Proposition 5.4.3, one might be tempted to say that if two random variables
X and Y have all of the same moments, i.e.,

E[Xn] = E[Y n] for all n ≥ 0,

then X ∼ Y . This, of course, is not true. There are counterexamples to this when (5.4.2) is does
not hold; see Exercise 5.4.4.

To give some perspective on this, let us consider an analogous problem. Fix a smooth function
f : R → R. Recall that if there are a constants R,C > 0 such that

|f (n)(x)| ≤ Cnn! for all |x| ≤ R, (5.4.3)

then, for all |x| < min{R, 1/C},

f(x) =

∞∑
n=0

xn

n!
f (n)(0).

Again, one might be tempted to remove the condition (5.4.3); however, one cannot. Let

f(x) =

{
0 if x ≤ 0,

e−1/x if x > 0.

It is easy to check that f is smooth and f (n)(0) = 0 for all n. Unfortunately, for any x > 0,

∞∑
n=0

xn

n!
f (n)(0) =

∞∑
n=0

xn

n!
· 0 = 0 ̸= f(x).

Exercise 5.4.3. Suppose that X1, X2, and X3 are independent random variables on the same
probability space (Ω,F ,P) and satisfy (5.4.2). Show that if FX1+X2 = FX1+X3 (in other words,
X1 + X2 and X1 + X3 are equal in distribution), then FX1 = FX2 (i.e., X1 and X2 are equal in
distribution.
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Exercise 5.4.4. Show that random variables X1 and X2, each with p.d.f.

f1(x) = 1R+(x)
1

x
√
2π
e−

(log x)2

2 and f2(x) = f1(x)

(
1 +

1

2
sin (2π log(x))

)
,

respectively, have the same moments. Deduce that two random variables with the same moments
need not be equal.

Roughly, Proposition 5.4.3 holds because the moment generating function is the Laplace transform of
the Stieltjes measure µX associated to X. This is particularly clear if X is an absolutely continuous
random variable with density fX , whence

MX(t) = E
[
etX
]
=

∫
etxfX(x) dm(x) = L(fX)(−t), (5.4.4)

where L is the Laplace transform. The Laplace transform is invertible, although we do not discuss
this further.

Finally, recall that the moment generating function was very useful in getting a good estimate (via
Markov’s inequality) on the tail of the normal distribution. See Example 5.2.15.

Example 5.4.5. (i) Let X ∼ Unif(0, 1). Then due to (5.4.4) and the fact that fX = 1[0,1], we
find

MX(t) =

∫
etx1[0,1] dm(x) =

1

t

[
etx
]1
0
=
et − 1

t
.

(ii) Let X ∼ Exp(λ). Again using (5.4.4) and the fact that fX = 1R+λe
−λx, we find, for t ∈ (0, λ),

MX(t) =

∫
etx1R+λe

−λx dm(x) =
λ

λ− t
.

(iii) Exercise 5.4.5. Compute MX(t) for X ∼ Norm(µ, σ2).

(iv) Note that the moment generating function need not be defined as random variables may not
have higher moments. The “most” pathological example of this is perhaps a Cauchy random
variable whose p.d.f. is

1

π(1 + x2)
.

We might be tempted to say the mean of this random variable is 0 because it is even; however,

E[X] =

∫
x

π(1 + x2)
dm,

and the integrand on the right is not L1. Hence X has no moments!

A typical usage of Markov’s inequality to estimate the rare events {X ≥ µ} for µ≫ 1. Indeed:

P(X ≥ µ) ≤ MX(t)

eµt
.

For example, returning to Example 5.4.5.(ii), we see that, for X ∼ Exp(λ),

P(X ≥ µ) ≤ eλ

(λ− t)
e−λµ.

Optimizing this estimate in t leads to

P(X ≥ µ) ≤ λµ

e
e−µλ

This is, of course, a silly example because we can compute P(X ≥ µ) directly using the density.
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5.4.2. Characteristic function.

Definition 5.4.6. The characteristic function of a random variable X is

ΦX(t) = E[eitX ].

Before continuing on, let us make note of the fact that we have not discussed complex variables
above. In these notes, we only use a few facts about them: (1) i2 = −1, (2) eiθ = cos(θ) + i sin(θ)
for all θ ∈ R, (3)

∫
if(x) dm = i

∫
f(x) dm, and (4) |a+ ib| = a2 + b2. We point out that

1

i
= −i because i

1

i
= 1 = i(−i).

Notice that, unlike MX , we do not require infinite moments to define ΦX . Indeed,

|ΦX(t)| ≤ E[|eitX |] = E[1] = 1.

In fact, if X has a p.d.f. fX , then

ΦX(t) =

∫
fX(x)eitx dx.

This is the Fourier transform of fX . If you have read about the Fourier transform, then you know
that it is unbelievably useful in a both pure and applied math. It should not come as a surprise,
then, that ΦX is very useful as well.

Actually, this leads to a simple and important observation: the Fourier transform is invertible.
Hence, if ΦX1 = ΦX2 then X1 and X2 must be equal in distribution. Actually, one does not need
X1 and X2 to have densities to come to this conclusion; however, we will not get into the ins and
outs of defining the Fourier transform of measures that do not correspond to densities.

Second, one might be tempted to think that ΦX(t) =MX(it). By that I mean, if we have a formula
for MX we can simply “plug in” it to obtain ΦX . This is true with a caveat – MX must be finite
for this two hold. We see this in Example 5.4.8 below.

Proposition 5.4.7. Let X be a random variable and n ∈ {0, 1, 2, . . . }. If X ∈ Ln then ΦX is
n-times differentiable and

Φ
(k)
X (t) = E[ikXkeitX ]. (5.4.5)

If, instead, n is even and ΦX ∈ Cn, that is, it is n-times continuously differentiable, then X ∈ Ln.

Proof. We complete this in two parts.

Step one: integrability of X implies differentiability of ΦX . Let us show the differentiability
by inducting on k ∈ {0, · · · , n} to establish (5.4.5). We first consider the case k = 0. In this case,
we must show that ΦX is continuous. We use the Dominated Convergence theorem for this. Note
that, for all t,

|eitX | ≤ 1 and 1 ∈ L1
P.

Then, we simply note that, for any t,

lim
s→t

|ΦX(t)− ΦX(s)| ≤ lim inf
s→t

E
[∣∣eitX − eisX

∣∣] ≤ lim inf
s→t

E
[∣∣∣ei(t−s)X − 1

∣∣∣]
≤ E

[
lim inf
s→t

∣∣∣ei(t−s)X − 1
∣∣∣] = 0.
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The last equality uses the continuity of the exponential function. Let us note that the above
argument actually establishes uniform continuity of ΦX . This completes the proof in the case
k = 0.

Now assume we have shown it for n and we show it for n+1. We focus only on establishing (5.4.5),
the continuity of which follows from exactly the argument as in the case n = 0. Indeed,

lim
h→0

Φ
(n)
X (t+ h)− Φ

(n)
X (t)− hE[in+1Xn+1eitX ]

h

= lim
h→0

E[inXn
(
ei(t+h)X − eitX

)
]− hE[in+1Xn+1eitX ]

h

= lim
h→0

E
[
Xn cos(hX) + i sin(hX)− 1− ihX

h

]
= lim

h→0
E
[
Xn+1 cos(hX)− 1

Xh

]
+ i lim

h→0
E
[
Xn+1 sin(hX)− hX

Xh

]
.

If X ∈ Lk+1, then the limit is zero by the dominated convergence theorem and the fact that

lim
h→0

Xk+1 cos(hX)− 1

Xh
, lim

h→0
Xk+1 sin(hX)− hX

Xh
= 0.

Step two: differentiability of ΦX implies integrability of X. Now we discuss why differen-
tiability yields integrability. Let us note that there is no content to the case n = 0. We show the
proof for n = 2 first, and then discuss how it can be generalized. By Fatou’s lemma, we have

E
[
X2
]
= 2E

[
lim
h→0

1− cos(hX)

h2

]
≤ 2 lim inf

h→0
E
[
1− cos(hX)

h2

]
= lim inf

h→0

ΦX(h)− 2ΦX(0) + ΦX(−h)
h2

= −Φ′′
X(0).

Hence X ∈ L2.

The main idea of the above proof is to approximate the second derivative by a symmetric finite
difference

∆2,hf(x) =
f(x+ h) + f(x− h)− 2f(x)

h2
.

This is symmetric because ∆2,h = ∆2,−h. Let us show that we can do this for all even n by induction.
The base case n = 2 is finished. In general, if we have ∆n,h defined so that, for all smooth f ,

lim
h→0

∆n,hf(x) = f (n)(x)

and ∆n,h = ∆n,−h, we define

∆n+2,hf(x) :=
∆n,hf(x+ h) + ∆n,hf(x− h)− 2∆n,hf(x)

h2
.

It is easy to check that, for all smooth f ,

lim
h→0

∆n+2,hf(x) = f (n+2)(x)

and ∆n+2,h = ∆n+2,−h. One can prove by induction that

∆n+2,hΦX(0) = in+2E
[
sin(hX/2)n+2

(h/2)n+2

]
.
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Since this integrand is nonnegative, we may apply Fatou’s lemma to obtain

E[Xn+2] = E
[
lim
h→0

sin(hX/2)n+2

(h/2)n+2

]
≤ lim inf

h→0
E
[
sin(hX/2)n+2

(h/2)n+2

]
=

1

in+2
lim inf
h→0

∆n+2,hΦ
(n+2)
X (0) = in+2Φ

(n+2)
X (0).

Here we also used that, since n is even, i−(n+2) = in+2.

Example 5.4.8. (i) Let X ∼ Unif(0, 1). From Example 5.4.5.(i), we expect that

ΦX(t) =MX(it) =
eit − 1

it
.

Let us check this honestly. Indeed,

ΦX(t) =

∫
1[0,1]e

itx dm =

∫
1[0,1](cos(tx) + i sin(tx)) dm

=

∫
1[0,1] cos(tx) dm+ i

∫
1[0,1] sin(tx) dm =

sin(t)

t
+ i

1− cos(t)

t

= i
1− cos(t)− i sin(t)

t
=

cos(t) + i sin(t)− 1

it
=
eit − 1

it
.

(ii) Let X ∼ Exp(λ). Again, from Example 5.4.5.(ii), we expect

ΦX(t) =MX(it) =
λ

λ− it
.

Note that
(λ− it)

1

λ− it
= 1 = (λ− it)

λ+ it

λ2 + t2
, (5.4.6)

so that
λ

λ− it
= λ

λ+ it

λ2 + t2
.

Let us compute this:

ΦX(t) =

∫
eitx1R+λe

−λx dm(x) = λ

∫ ∞

0
(cos(tx) + i sin(tx))e−λx dm(x)

= λ

(
t

t2 + λ2
+ i

λ

t2 + λ2

)
=

λ

λ− it
.

In the last equality, we used (5.4.6).

(iii) Exercise 5.4.6. Compute ΦX(t) for X ∼ Norm(µ, σ2).

(iv) Recall from Example 5.4.5 the Cauchy random variable X whose p.d.f. is given by
1

π(1 + x2)
.

Using complex analysis that is outside the scope of this course, one can show that

φX(t) = e−|t|.

Notice that ΦX is not even differentiable at t = 0, which is consistent with the fact that the
Cauchy random variable does not have any moments.
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In the multidimensional case, X̄ = (X1, . . . , Xn), we can defined the moment generating function
and characteristic function analogously: for any t̄ ∈ Rn, let

MX̄(t̄) = E
[
et̄·X̄

]
and ΦX̄(t̄) = E

[
eit̄·X̄

]
.

All of our results above generalize to this case.

If the coordinates are independent, then we have

MX̄(t̄) =MX1(t1)MX2(t2) · · ·MXn(tn) and ΦX̄(t̄) = ΦX1(t1)ΦX2(t2) · · ·ΦXn(tn). (5.4.7)

Actually, the fact that the moment generating function “splits” in such a way is equivalent to
independence.

Exercise 5.4.7. Show this!

5.5. Some further aspects of independence. We have introduced independence of ran-
dom variables before independence of events, which is backwards compared to standard courses.
We now fill in the gaps.

Definition 5.5.1. Two events A,B ∈ F are independent if P(A ∩B) = P(A)P(B).

In other words, the probability that A and B occur is simply the product of the probability that A
occurs and the probability that B occurs.

Notice that, by the exercise after Definition 5.3.3, two random variables are independent if they, for
any Borel sets A and B, the events X−1(A) and Y −1(B) are independent events in (Ω,F ,P).

Example 5.5.2. (i) Let us consider our favorite example: coin flipping. Let Ωn = {0, 1}n with
the σ-algebra PΩn and the probability measure Pn.

Consider any k ∈ {1, . . . , n − 1}. Let A = A × {0, 1}k and B = {0, 1}n−k × B for anyA ⊂
{0, 1}n−k and B ⊂ {0, 1}k. Plainly, A is an event depending only on the first n − k flips
while B is an event depending only on the last k flips. Intuitively, we know that A and B are
independent. Let us see that with the definition.

Exercise 5.5.1. Check that A ∩ B = A×B.

Then
Pn(A ∩ B) = Pn(A×B) = Pn−k(A)Pk(B) =

|A|
2n−k

|B|
2k
.

Here we use |K| to denote the number of elements in a set K. On the other hand,

Pn(A) =
∑
ω∈A

2−n =
∑
a∈A

∑
ω̃∈{0,1}k

2−n =
∑
a∈A

2−(n−k) =
|A|
2n−k

.

Similarly, Pn(B) = |B|/2k. We conclude that

Pn(A ∩ B) = Pn(A)Pn(B).

Hence, any event of the first n− k flips is independent of the last k flips.
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(ii) Let us look at a silly example by thinking of m as a probability measure on [0, 1] × [0, 1]. Fix
any measurable sets SA and SB. Take A = [0, 1] × SA and B = SB × [0, 1]. It is easy to see
that

m(A) = m([0, 1]× SA) = m(SA) and, similarly, m(B) = m(SB).

where we are abusing notation by letting m refer to both the one- and two-dimensional Lebesgue
measures. On the other hand, A ∩B = SB × SA, so

m(A ∩B) = m(SB × SA) = m(SB)m(SA),

since SB × SA is a rectangle.

1

1

SB

SA

1

1

B = [0, 1] × SB

A = SA × [0, 1]

1

1

SB

SA

A ∩ B = SA × SB

Why is this a useful example? Well, A essentially only has anything “interesting” in the
second coordinate and B essentially only has anything “interesting” in the first coordinate,
and the first and second coordinates are orthogonal and, in a heuristic sense, orthogonality is
“like” independence. If I tell you the first coordinate of a vector in [0, 1]× [0, 1], you have no
information about the second coordinate!

Contrast that with the situation where B is replaced by {(x, x) : dist(x, SB) < 1/2}. This is,
roughly, along (1, 1). Notice that, if tell you that a vector v satisfies v · (1, 1) ≈ 0, then you
know that the first coordinate of v is ≈ 0. Hence, in this case, we would not expect B to be
independent of A.

5.5.1. Independent σ-algebras. Let us mention an interpretation of a σ-algebra as containing
information. This will be especially useful for us in Section 5.8. Indeed, the events in a σ-algebra
are those that we can assess the probability of. This means that we have access to the information
in them (e.g., whether a coin is heads), and that we do not have information about events not in
the σ-algebra (e.g., whether I am wearing a blue shirt while flipping that coin).

Given this interpretation, we should be able to define a notion of sub-σ-algebras being independent;
that is, whether the information that one contains informs the other. This is what we do now.

Definition 5.5.3. Fix a probability space (Ω,F ,P). We say that two σ-algebras G1,G2 ⊂ F are
independent if, for every pair of random variables X1 that is G1-measurable and X2 that is G2-
measurable, X1 and X2 are independent.

Exercise 5.5.2. Show that this is equivalent to the following: for all A ∈ G1 and B ∈ G2, the events
A and B are independent.

Example 5.5.4. (i) Product space: Let (Ω,F ,P) and (Σ,G,Q) be probability spaces. Then take
(Ω× Σ,F × G,P×Q) to be the product space.
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Define
F1 = {A× Σ : A ∈ F} and F2 = {Ω×A : A ∈ G}.

One can readily see that, for A× Σ ∈ F1 and Ω×B ∈ F2,

P×Q ((A× Σ) ∩ (Ω×B)) = P×Q (A×B) = P(A)Q(B),

by definition of the product measure. See Example 5.5.2 for an explicit example of this.

To be more explicit take

(Ω,F ,P) = (Σ,G,Q) = ({H,T},P{H,T},P),

where P({ω}) = 1/2 for ω = H,T . Then F1 is the “information” about the first coin flip and
F2 is the information about the second coin flip. It is clear that they should be independent
(as long as our modeling is good), which is what we see mathematically.

(ii) σ-algebras generated by independent random variables: Let X and Y be independent random
variables on a probability space (Ω,F ,P). Then let

G1 = X−1(B) and G2 = Y −1(B)

where B is the set of Borel subsets of R. It is not difficult to show that Gi are σ-algebras and,
by the measurability of X and Y , these are subsets of F . The independence of G1 and G2

follows then from the definition of the independence of X and Y .

5.5.2. Independence of countably many sets, random variables, and σ-algebras. The
above concepts can easily be generalized to countable sets by requiring independence of any finite
subcollection. We show this definition below for events, but it is defined analogously for random
variables and σ-algebras.

Definition 5.5.5. Let (Ω,F ,P) be a probability space. A collection of events A1, A2, . . . are inde-
pendent if, for any finite collection n1, . . . , nk, we have

P

(
k⋂

i=1

Ani

)
=

k∏
i=1

P(Ani).

5.6. Convergence of random variables. Let us look at a simple, motivating question:
given independent identically distributed (“i.i.d. ”) random variables X1, . . . , Xn, say with mean µ
and variance σ2, what happens to the follow “average” quantities

X1 + · · ·+Xn

n
and

X1 + · · ·+Xn − µn√
n

? (5.6.1)

Let us mention that this is a natural question in any sort of repeated event (e.g., exam scores). It
also shows up in random walks (which are, then, used to model things like population dynamics,
genetic variation, heat flow, or really anything that “moves randomly”).

The first quantity in (5.6.1) is clearly an average, but why do we refer to the second as an average?
In a sense, the mean is a first moment average because

E
[
X1 + · · ·+Xn

n

]
=

E[X1] + · · ·+ E[Xn]

n
=
µ+ · · ·+ µ

n
= µ.

154



The second quantity in (5.6.1) is a second moment average because

E

[(
X1 + · · ·+Xn − µn√

n

)2
]
= E

( n∑
i=1

Xi − µ√
n

)2


=
1

n

 n∑
i=1

E
[
(Xi − µ)2

]
+
∑
i ̸=j

E [(Xi − µ)(Xj − µ)]


=

1

n

 n∑
i=1

σ2 +
∑
i ̸=j

0

 = σ2.

Here we used that, due to independence, if i ̸= j then

E[XiXj ] = E[Xi]E[Xj ] = µ2.

Let us point out that the two quantities in (5.6.1) are related in that, if we refer to X̄n as the former,
then

√
n(X̄n − µ) is the latter. In this sense, the latter measures the “fluctuations” of the former.

In order to evaluate these questions, we need to understand better what we mean by convergence.
As with Lp functions, there are several standard notions that one might use. Here are some other
notions of convergence.

5.6.1. Convergence in distribution (weak convergence).

Definition 5.6.1 (Convergence in distribution). A sequence of random variables Xn converges in
distribution to X if FXn(x) → FX(x) for every x at which FX is continuous.

This is also called weak convergence and convergence in law. It can be denoted in many ways,
including:

Xn
d→ X, Xn

D→ X, Xn
L→ X, L(Xn) → L(X), and Xn ⇒ X.

This is the weakest notion of convergence that we will cover.

Exercise 5.6.1. Show that if Xn → X in probability, then Xn → X in distribution.

Notice that it does not require that Xn and X are defined on the same probability space!

Example 5.6.2. (i) Let Xk be a sequence of random variables such that

P(Xk = y) =

{
1
k if y = j

k for j = 1, . . . , k,

0 otherwise.
(5.6.2)

Exercise 5.6.2. Explicitly write down a probability space (Ω,F ,P) and the function Xk such
that (5.6.2) holds.
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It is then clear that

FXk
(y) =


j
k if y ∈ [j/k, j/k + 1/k) for j = 1, . . . , k − 1,

1 if y ≥ 1,

0 if y < 1/k.

Hence, FXk
→ FX where X ∼ Unif(0, 1).

Let us point out that FXk
does not have a density, so there is no convergence of densities here.

(ii) Let Xk ∼ Unif(0, 1/k). Then

FXk
(y) =


yk if y ∈ [0, 1/k],

1 if y ≥ 1/k,

0 if y < 0.

x

FX12

Clearly FXk
(y) → 1[0,∞) for all y ̸= 0. This corresponds to Xk → X in distribution, where X

is the random variable X(ω) = 0 for all ω ∈ Ω. Notice that FXk
(0) = 0 and FX(0) = 1, so

that everywhere convergence of distribution functions cannot be expected.

(iii) Let ψn : [0, 1) → R be the random variable

ψn(x) =
2k∑
ℓ=0

(−1)ℓ1[
ℓ

2k
, ℓ+1

2k

) where k is such that 2k ≤ n < 2k+1.

on the probability space ([0, 1),B,m).

x

y
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/
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/
4
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0
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Notice that, for every k,

FXk
(t) = P(Xk ≤ t) =


0 if t < −1,

1/2 if t ∈ [−1, 1),

1 if t ≥ 1.

In other words, the Xk are identically distributed. Hence, for any fixed n0, we have Xn
d→ Xn0

as n→ ∞. This is a bit silly... but it reflects how weak of a notion of convergence this is.

Exercise 5.6.3. Show that convergence in distribution is equivalent to weak convergence: E[h(Xn)] →
E[h(X)] for any continuous bounded function h. Deduce that ΦXn(t) → ΦX(t) for any fixed t as
n→ ∞.

Note that the above exercise does not apply to computing moments! Why? Because h(x) = xp is
not a bounded function.

This leads to the key tool in proving the Central Limit Theorem.

Theorem 5.6.3 (Lévy’s continuity theorem). A sequence of random variables Xn (not necessarily
on the same probability space) converges in distribution if and only if ΦXn converges pointwise to a
function Φ that is continuous at t = 0.

Further, if X is the (weak) limit of the Xk, then ΦX = Φ.

Proof sketch. One direction is due to Exercise 5.6.3. The other direction is a bit more technical.
Let us discuss it in the case where Φ is assumed to be everywhere continuous.

Let Φ be the pointwise limit of ΦXn . The Fourier transform:

F : M → C(R)

is a bijection. Here M is the set of finite (signed) measures on R. By properties of the Fourier
transform (that we do not cover in these notes, unfortunately), F is a bijection with inverse F−1.
Thus, there is a measure

µ := F−1(Φ).

We then let X be the random variable on (R,B, µ) defined by X(t) = t. One can then check that
Xn

d→ X.

Let us show a major application of such a theorem.

Theorem 5.6.4 (Central Limit Theorem). Let X1, X2, . . . be i.i.d. random variables on a probability
space (Ω,F ,P) with mean µ and variance σ2. For any n, let

Sn =
X1 + · · ·+Xn − µn√

n
.

Then there is S ∼ Norm(0, σ2) such that Sn ⇒ S as n→ ∞.

Before continuing let us just mention that there is an enormous industry related to the Central Limit
Theorem. First, there are many proofs of it, and these show that the assumptions of “identically
distribution” and “independence” can be relaxed (although at the expense of strengthening other
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assumptions such as the number of moments). Second, the Central Limit Theorem is the most
basic example of the notion of universality, which is the idea that large, seemingly different classes
of random processes all have the same behavior at some larger scale. A very active field of research
related to this (and yielding a few Fields Medals in recent years).

Proof. Up to shifting (that is, changing to new random variables X̃n = Xn − µ), we may assume
that µ = 0. By Proposition 5.4.7, we thus have, for each k,

ΦXk
(0) = 1, Φ′

Xk
(0) = E[iXk] = 0, and Φ′′

Xk
(0) = E[i2X2

k ] = −σ2. (5.6.3)

Notice that, for each k and n,

ΦXk/
√

n(t) = E
[
exp

{
itXk√
n

}]
= E

[
exp

{
i
t√
n
Xk

}]
= ΦXk

(t/
√
n) .

Additionally, note that ΦXk
= ΦX1 for all k. Hence, using the independence of (X1, . . . , Xk), we

find

ΦSn(t) =
n∏

k=1

ΦXk
(t/

√
n) = ΦX1(t/

√
n)n. (5.6.4)

In the first step, we essentially used (5.4.7) with the choice t̄ = (t/
√
n, t/

√
n, · · · , t/√n).

It follows from (5.6.3) that40

ΦX1(t/
√
n) = ΦX1(0) +

t√
n
Φ′
X1

(0) +
1

2

(
t√
n

)2

Φ′′
X1

(0) + o(t2/n) = 1− t2σ2

2

1

n
+ o(t2/n). (5.6.5)

Putting (5.6.4) and (5.6.5) together, we find

ΦSn(t) =

(
1− t2σ2

2n
+ o

(
t2

n

))n

. (5.6.6)

Recall41 that, for all a,
lim
n→∞

(
1 +

a

n

)n
= ea,

Hence, (5.6.6) becomes

lim
n→∞

ΦSn(t) = e−
t2σ2

2 =: Φ(t).

Clearly Φ is continuous at t = 0. Thus, by Theorem 5.6.3, there is S with characteristic function Φ
such that Sn ⇒ S.

We note that Φ is the characteristic function of a random variable with distribution Norm(0, σ2).
By the uniqueness of characteristic functions, this implies that S ∼ Norm(0, σ2). This completes
the proof.

PERHAPS ADD EXAMPLE WITH ADDING INFINITE COIN FLIPS TO NORMAL AND RAN-
DOM WALK TO BROWNIAN MOTION
40We write o(t2/n) to mean a quantity satisfying lim

t2/n→0
(n/t2) o(t2/n) = 0 for any t.

41This can be shown by using Taylor polynomials with the remainder term to show that, for each a and n, there is ξ
between 0 and a such that n log(1 + a/n) = a− ξ2/2n. Hence, displaystyle limn→∞ n log(1 + a/n) = a.

158



5.6.2. Convergence in probability. We have already covered convergence in probability (con-
vergence in measures, see Definition 4.7.2). Recall Xk → X in probability if, for all ε > 0,

lim
n→∞

P(|Xn −X| > ε) = 0.

Also recall the exercise above that states that convergence in probability implies convergence in
distribution. The opposite is not true.

Exercise 5.6.4. Show that the sequences in Example 5.6.2.(i) and (ii) converge in probability as
well, but the sequence in Example 5.6.2.(iii) does not. Note that this is a little ill-defined because,
in (i) and (ii), the random variables are not explicitly defined on the same probability space, so do
this as well.

5.6.3. Almost sure convergence.

Definition 5.6.5. A sequence of random variables Xn and X defined on the same probability space
(Ω,F ,P) converges almost surely if

P({ω : lim sup
n→∞

|Xn(ω)−X| > 0}) = 0.

In other words, there is an event A such that P(A) = 1 and Xn → X on A.

This is the same as almost everywhere convergence. Hence, from above, we know that almost sure
convergence implies convergence in probability.

5.6.4. Convergence in the pth mean.

Definition 5.6.6. A sequence of random variables Xn and X defined on the same probability space
(Ω,F ,P) converges in the p-th mean if

E[|Xn −X|p] = 0.

In other words, there is an event A such that P(A) = 1 and Xn → X on A.

This is the same as Lp-convergence. Hence, from above, we know that convergence in the pth mean
implies convergence in the qth mean for any q ≤ p, convergence in probability, and convergence in
distribution.

5.6.5. Law of large numbers. Let us return to the motivating example at the beginning of
Section 5.6. We show that the first quantity in (5.6.1) converges to the mean of Xn.

Exercise 5.6.5. Show that if Xn are all defined on the same probability space and Xn converges in
distribution to a constant random variable, then Xn converges in probability as well.

Theorem 5.6.7 (Weak law of large numbers). If Xn is a sequence of i.i.d. random variables defined
on a probability space (Ω,F ,P) with mean µ and variance σ2, then

Sn :=
X1 + · · ·+Xn

n

converges in probability to µ.
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The proof is essentially a simpler version of Theorem 5.6.4, and, hence, is omitted. Let us suggest
that a more direct proof can be made using Markov’s inequality.

Exercise 5.6.6. Show both of these proofs.

We note that the assumption of independence is not necessary (we only need “uncorrelated,” that
is, E[XiXj ] = E[Xi]E[Xj ] when i ̸= j) as is the assumption of finite variance (we only need an
L1 bound). Finally, with significantly more work, we can deduce the Strong law of large numbers,
which states that Sn converges almost surely to µ. We do not cover that here.

5.6.6. Poisson convergence theorem and rare events. For next year!

5.7. Conditioning. In the aim of simplicity, we almost exclusively consider continuous random
variables in this section. For (purely) discrete random variables, it is clear how to to generalize
everything we cover. The general case is messier, so we omit it.

5.7.1. Conditional probability. Conditional probability allows us to quantify independence. In
the most basic example, where we have two events A and B on a probability space (Ω,F ,P), the
conditional probability of A given B is

P(A|B) :=
P(A,B)

P(B)
.

Note that this formula only makes sense if P(B) > 0. This lets us know how much “information” B
gives about A – is A more or less likely to occur given that we know B occurred? Notice that if A
and B are independent, we immediately have that

P(A|B) =
P(A,B)

P(B)
=

P(A)P(B)

P(B)
= P(A).

In other words, knowing that B occurred tells us nothing about whether A will occur.

Example 5.7.1. Let us take our three-coin flipping probability space ({0, 1}3,P{0,1}3 ,P), where
P(ω) = 1/8 for all ω. Let A = {(1, 1, 1), (1, 1, 0), (1, 0, 0)}, that is, the first flip is heads and each
flip after that is nonincreasing in value, and B = {(1, 1, 1), (0, 0, 0)}, that is, all flips have the same
outcome. Then

P(A|B) =
P(A,B)

P(B)
=

P({(1, 1, 1)}
1/2

=
1/8
1/4

=
1

2
.

In other words, if we are told that all flips are the same, then the probability that the first flip is
heads and the rest are nonincreasing jumps up to 1/2 from 3/8.

Let X and Y be two absolutely continuous random variables such that (X,Y ) is absolutely continuous
as well. Fix any A,B ∈ B, then

P(X ∈ A|Y ∈ B) =
P(X ∈ A, Y ∈ B)

P(Y ∈ B)
=

∫
A×B fX,Y (x, y) d(m×m)∫

B fY (y) dm
(5.7.1)
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5.7.2. Conditional expectation: conditioning on a random variable. In this and the next
section, we consider a random variable X on a probability space (Ω,F ,P). Let us first consider the
case where X is a continuous random variable. Suppose that Y is another absolutely continuous
random variable and that (X,Y ) is absolutely continuous as well.

If X and Y are continuous random variables with joint density fX,Y , then the density of Y given
that X = x is

fX|Y=y(y), fX|Y (x|y) :=
fX,Y (x, y)∫
fX,Y (x, y) dx

=
fX,Y (x, y)

fY (y)
.

Intuitively, one can motivate this definition by looking at (5.7.1) and “taking the limit” B → {y}.
Notice that this is a probability density because∫

fX|Y=y(x) dx =

∫
fX,Y (x, y)

fY (y)
dx =

1

fY (y)

∫
fX,Y (x, y) dx =

1

fY (y)
fX(x) = 1.

In the second-to-last inequality, we used (5.3.1). Note that, since Y is continuous, the event Y = y
has probability zero! So we are conditioning upon an event that “will never” occur, in a sense. This
may seem silly, but we will see its usefulness in a moment.

Then we define

E[X|Y = y] =

∫
xfX|Y=y(x) dm(x) =

∫
x
fX,Y (x, y)

fX(y)
dm(x).

This is, roughly, the average value of X given that we know Y = y; even more heuristically, it is
the “best guess” for X given that Y = y has occurred.

Let us point out that this is a function of y. In particular, we can define a function

Z : Ω → R

by

Z(ω) = E[X|Y = Y (ω)] =

∫
x
fX,Y (x, Y (ω))

fY (Y (ω))
dm(x). (5.7.2)

This will be measurable, making Z a random variable. Undoing this notation, we find that

E[X|Y ] := Z

is a random variable on our probability space!

We may also do the same in the discrete case. Let X,Y take values only in SX and SY , which are
countable subsets of R. Then

E[X|Y ](ω) =
∑
s∈SX

s
P(X = s, Y = Y (ω))

P(Y = Y (ω))
.

Example 5.7.2. Consider two independent coin flips, in which our probability space is (Ω,F ,P)
with

Ω = {H,T}2, F = PΩ, and P({ω}) = 1/4 for all ω ∈ Ω.

Let us consider three random variables

X = Y + Z, Y (ω) =

{
1 if ω1 = H,

0 if ω1 = T,
and Z(ω) =

{
1 if ω2 = H,

0 if ω2 = T.
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Roughly, X is the number of heads, while Y and Z tell us if we get heads on the first or second flips,
respectively.

First we compute E[X|Y ]. There are two cases. First consider the case where Y (ω) = 1; that is
ω1 = H. Then

E[X|Y ](ω) =
2∑

i=0

i
P(X = i, Y = 1)

P(Y = 1)
=

2∑
i=1

i
P(X = i, Y = 1)

1/2

= 2 (1P(X = 1, Y = 1) + 2P(X = 2, Y = 1)) = 2 (1 · 1/4 + 2 · 1/4) = 3

2
.

Above we used that P(X = 1, Y = 1) = P({(H,T )}) = 1/4 and P(X = 2, Y = 1) = P({(H,H)}) =
1/4.

The second case is when Y (ω) = 0; that is ω1 = T . Then

E[X|Y ](ω) =

2∑
i=0

i
P(X = i, Y = 0)

P(Y = 0)
=

2∑
i=1

i
P(X = i, Y = 0)

1/2

= 2 (1P(X = 1, Y = 0) + 2P(X = 2, Y = 0)) = 2 (1 · 1/4 + 2 · 0) = 1

2
.

Above we used that P(X = 1, Y = 0) = P({(T,H)}) = 1/4 and P(X = 2, Y = 0) = P(∅) = 0. Hence,
E[X|Y ] is the random variable such that

E[X|Y ](ω) =

{
3/2 if ω1 = H,

1/2 if ω1 = T.

Let us point out something important. The random variable E[X|Y ] is measurable with respect to

σ(Y ) := Y −1(B) = {A× {H,T} : A ⊂ {H,T}},

which is the smallest σ-algebra on which Y is measurable. In other words, once we “know” what
value Y takes, we know what value E[X|Y ] takes. This will factor into our general definition below.

Next we compute E[Z|Y ]. Let us notice that Z and Y are independent. Hence, for any ω,

E[Z|Y ](ω) =

2∑
i=0

i
P(Z = i, Y = Y (ω))

P(Y = Y (ω))
=

2∑
i=0

i
P(Z = i)P(Y = Y (ω))

P(Y = Y (ω))

=

2∑
i=0

iP(Z = i) = E[Z].

In the second equality, we used the independence of Z and Y .

Why does this happen? Recall the intuition that E[Z|Y ] is the best guess for Z once we know Y .
Because Z and Y are independent, knowing the value that Y takes does not change our guess for
the value Z should take. Hence, our best guess for Z remains E[Z], regardless of the knowledge of
Y .

How do we define conditional expectation in general? Unfortunately, when (X,Y ) is neither abso-
lutely continuous nor discrete, it becomes a slightly more technical question, one that we do not
have the tools to do properly. As such, we will give the definition, but do not worry too much about
the details, beyond the intuition.
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Definition 5.7.3. Fix a probability space (Ω,F ,P). If X,Y ∈ L2
P, we define

E[X|Y ] = argmin
g(Y ): g Borel measurable

E[(X − g(Y ))2]. (5.7.3)

Let us rephrase this in useful ways. Let

σ(Y ) = Y −1(B)

be the smallest σ-algebra on which Y is measurable. The only other random variables that are
σ(Y ) measurable are those of the form g(Y ). Let SY = {g(Y ) : g is Borel measurable}. Then SY
is a closed subspace of L2

P. Then E[X|Y ] is the closest element of SY to X. Another way to view
this is as the projection of the random variable X onto the subspace SY .

The technical issue with this definition, for us, is that we do not know that such a minimum exists!
On the other hand, this representation bakes-in the intuition that E[X|Y ] is the best guess for X
given information about Y . We do note that it is not hard to prove the uniqueness of the minimizer
using this definition. Indeed, g 7→ E[(X − g(Y ))2] is strictly convex in the sense that, for all g ̸= h
and θ ∈ (0, 1),

E[(X − θg(Y )− (1− θ)h(Y ))2] < θE[(X − g(Y ))2] + (1− θ)E[(X − h(Y ))2]. (5.7.4)

Exercise 5.7.1. Prove (5.7.4) and use it to show that there is a unique minimizer in Defini-
tion 5.7.3.

Definition 5.7.4. Fix a probability space (Ω,F ,P). Suppose that X,Y ∈ L1
P. Then E[X|Y ] is the

L1
P random variable such that

(i) E[X|Y ] ∈ L1
P;

(ii) E[X|Y ] is σ(Y )-measurable;

(iii) E[g(Y )E[X|Y ]] = E[g(Y )X] for all g that are Borel measurable.

Let us recall that σ(Y ) = Y −1(B) is the smallest σ-algebra on which Y is measurable.

Seeing a definition like this, one must worry that such an object exists. Let us justify it briefly. One
can check that the

µ±(A) =

∫
A
X± dP, for all A ∈ σ(Y ),

are measures. By the Radon-Nikodym theorem42, there is f± that is σ(Y ) measurable such that

µ±(A) =

∫
A
f± dP.

We define
E[X|Y ] = f+ − f−.

We obtain (iii) for the special case g = 1Y −1(A) immediately. The remaining g may be obtained by
approximation (although we skip this step). Clearly, (ii) follows immediately. To find (i), we define

g(y) = signE[X|Y = y],

42Not covered in these notes.
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and find
E[|E[X|Y ]|] = E[g(Y )E[X|Y ]] = E[g(Y )X] ≤ E[|X|] <∞. (5.7.5)

Obviously, the downside to this is that it requires the Radon-Nikodym theorem, which we have
not covered. The upside is that it requires less “regularity” than Definition 5.7.3: it is “easier” to
be in L1

P than L2
P since L2

P ⊂ L1
P. In these notes, we use both definitions, opting for whichever

is more convenient in the circumstances. The only difference that you should be aware of is that
Definition 5.7.3 is only available if the X,Y ∈ L2

P.

Let us say a few brief words about their equivalence.

Sketch of the proof of the equivalence of Definition 5.7.4 and Definition 5.7.3. Suppose that ḡ(Y ) :=
E[X|Y ] is given by Definition 5.7.3. Fix any σ(Y ) measurable set A. Fix any h, and let

Fh(t) = E[(X − (g(Y ) + th(Y )))2]. (5.7.6)

Since ḡ is the location of a minimum, we have

0 =
1

2
F ′
h(0) = −E[(X − (ḡ(Y ) + 0 · h(Y )))h(Y )] = −E[Xh(Y )] + E[ḡ(Y )h(Y )].

Rearranging this is exactly Definition 5.7.4.(iii). We omit (i) and (ii) since they are, respectively,
addressed in (5.7.5) and are true by construction (note that E[X|Y ] = ḡ(Y )).

Now let us suppose that E[X|Y ] is given by Definition 5.7.4. Since E[X|Y ] is σ(Y ) measurable,
there must exist ḡ such that ḡ(Y ) = E[X|Y ]. Fix any h and let Fh be as in (5.7.6). Then

1

2
F ′
h(0) = −E[Xh(Y )] + E[ḡ(Y )h(Y )] = 0.

The last inequality follows from Definition 5.7.3. Notice that the strict convexity of the functional
in (5.7.3) (see (5.7.4)) implies Fh is strictly convex as well. It follows that Fh has a strict minimum
at t = 0. Hence, for any g,

E[(X − ḡ(Y ))2] = Fg−ḡ(0) < Fg−ḡ(1) = E[(X − g(Y ))2].

Thus ḡ is the minimized in Definition 5.7.3, as desired.

Let us point out a few important properties:

(i) Suppose that X and Y are independent. Let us first compute assuming that all random
variables are absolutely continuous. Then, fX,Y (x, y) = fX(x)fY (y). It follows from (5.7.2)
that

E[X|Y ] =

∫
x
fX,Y (x, Y )

fY (Y )
dm(x) =

∫
x
fX(x)fY (Y )

fY (Y )
dm(x) = E[X].

In the general case, let us use Definition 5.7.3. Let us make a calculus style argument, in
which we identify E[X|Y ] by finding a critical point. Fix any Borel measurable g, h. Then, X
and g(Y ) are independent, as are X and h(Y ). Consider the function

F (t) = E[(X − (g(Y ) + th(Y )))2].

If g(Y ) = E[X|Y ], then

0 =
1

2
F ′(0) = −E[(X − (g(Y ) + 0 · h(Y )))h(Y )] = −E[X]E[h(Y )] + E[g(Y )h(Y )].

It is clear that this is satisfied with the choice g(Y ) = E[X]. By the convexity of F (see
Exercise 5.7.1), this “critical point” is the location of the minimum in Definition 5.7.3.
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(ii) Let us find the expected value of the random variable E[X|Y ]. Since E[X|Y ] is a function of Y ,
we know that its expectation is given by integrating against the density of Y (recall (5.2.5)):

E[E[X|Y ]] =

∫ (∫
x
fX,Y (x, y)

fY (y)
dm(x)

)
fY (y) dm(y) =

∫ ∫
xfX,Y (x, y) dm(x) dm(y)

=

∫ ∫
xfX,Y (x, y) dm(y) dm(x) =

∫ ∫
xfX(x) dm(x) = E[X].

Here we used Tonelli’s theorem and (5.3.1).

Now let us see this in general. We use Definition 5.7.4. We have that, for all A ∈ σ(Y ),∫
A
E[X|Y ] dP =

∫
A
X dP.

Applying this with the choice A = Ω, we have

E [E[X|Y ]] =

∫
A
E[X|Y ] dP =

∫
Ω
X dP = E[X].

(iii) Exercise 5.7.2. Show that E[E[X|Y,Z]|Y ] = E[X|Y ]. Here it is useful to think of E[X|Y,Z] =
E[X|(Y,Z)] in order to understand how to define fX|Y,Z(x|y, z).

5.7.3. Conditional expectation: conditioning on a σ-algebra. In an analogous way to the
above, we can also obtain a random variable E[X|F1] for any σ-algebra F1 ⊂ F . To begin, let us
observe that the only reasonable way to define this should allow

E[X|σ(Y )] = E[X|Y ].

What does this mean? Well, this represents the best guess for X if we knew Y . Thus, we should
have that

E[X|F1]

represents the best guess for X given all of the information in F1. Of course, we should think of this
as a random variable, as we did above. In this sense, we should think of it as follows. Once a trial
ω occurs, it gives us “information” according to F1 (although this does not tell us everything), and
then we make our best guess for X given this. To illustrate this, let us consider a simple example:

Example 5.7.5. Let us take ([0, 1]2,B × B,m×m) as a probability space, X(x, y) = x+ y, and

F1 = {B × [0, 1] : B ∈ B}.

We should roughly think of F1 as being the information about the first variable only. Then

E[X|F1]

should be the random variable expected value of X as a function of knowing the first variable. It
would only make sense to have:

E[X|F1] = x+
1

2

because we simply average over all possibilities for y. Hence, were we to “know” the “information”
contained in F1, then the best guess for X would be E[X|F1] = x+ 1/2.

We will check this rigorously below.
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Let us give the analogues of Definition 5.7.3 and Definition 5.7.4, from above.

Definition 5.7.6. Fix a probability space (Ω,F ,P) and a sub-σ-algebra F1 ⊂ F . If X ∈ L2
P, then

E[X|F1] = argmin
Z is F1-measurable

E[(X − Z)2].

In other words, if we

Definition 5.7.7. Let X be an L1 random variable and F1 ⊂ F . Then E[X|F1] is the random
variable such that

(i) E[X|F1] ∈ L1;

(ii) E[X|F1] is F1-measurable;

(iii) E[1AE[X|F1]] = E[1AX] for all A ∈ F1.

Note that (ii) says that, were we to know all of F1, then we would know the value of E[X|F1]. To
better understand (iii), let us consider the example F1 = σ(Y ) and A = {a ≤ Y ≤ b} and “guess”
that E[X|F1] = E[X|Y ]. Then, we verify (iii):

E[1AE[X|F1]] = E
[
1A

∫
x
fX,Y (x, Y )

fX(Y )
dm(x)

]
=

∫ b

a

(∫
x
fX,Y (x, y)

fY (y)
dm(x)

)
fY (y) dm(y)

=

∫ b

a

∫
xfX,Y dm(x) dm(y) = E[1AX].

Actually, notice that we used nothing here about the particular form of A; we simply used that A
is defined only by Y .

In general, one should think of E[X|F1] as being defined by the following process. Given ω, look at
the value Y (ω) for every random variable Y that is F1-measurable. Given this extra information
(which may not be complete!), E[X|F1] is the best guess for X.

Before we get into technical details about the existence and uniqueness of E[X|F1], let us look at a
few examples to get our bearings:

Example 5.7.8. (i) If F1 = {∅,Ω}, which is the trivial σ-algebra, then E[X|F1] = E[X]. Notice
that this is a constant random variable, so (i) and (ii) hold immediately. On the other hand,
we need only check (iii) for the choices A = ∅ and Ω:

E[1∅E[X]] = 0 = E[1∅X],

and
E[1ΩE[X]] = E[X] = E[1ΩX].

Hence E[X|F1] = E[X].

Roughly, this is saying that if we have “no information,” our best guess of X is just E[X].
Let’s draw this out a bit more. A random variable Y is F1-measurable if and only if it is
constant. How much “information” does a constant random variable contain? For example,
if we flip two coins and have a random variable Y that always returns π, does knowing that
Y (ω) = π tell us anything about whether ω = (H,H)? Of course not!
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(ii) If F1 = F , then E[X|F1] = X. Roughly, this is saying that if we have “all of the information,”
then we know X so our best guess of it is just X itself (since we already know it!). It is easy
to check that Definition 5.7.7.(i)-(iii) are satisfied.

(iii) Suppose that FX and F1 are independent σ-algebras, with X being FX-measurable. Roughly,
this tells us that FX has all of the information to determine X and F1 has none of it. In this
case, we expect

E[X|F1] = E[X];

that is, knowing F1 does not improve our best guess for X.

Again, (i) and (ii) follow immediately because E[X|F1] = E[X] is constant. As for (iii), notice
that, if A ∈ F1, then 1A and X are independent43 by the independence of F1 and FX . Hence,

E[1AE[X|F1]] = E[1AE[X]] = E[1A]E[X] = E[1AX].

(iv) Consider Example 5.7.5 again. We check that, for all ω = (x, y),

E[X|F1](ω) = x+
1

2
.

Let
g(ω) = g(x, y) = x+

1

2
.

Our goal, then, is to show that E[X|F1] = g.

It is easy to see that Definition 5.7.7.(i) is satisfied by g. To check (ii), notice that, for any
Borel set B,

g−1(B) = B̃ × [0, 1] where B̃ = {x ∈ [0, 1] : x+ 1/2 ∈ B}.

Clearly, g−1(B) ∈ F1. Finally, we check (iii). A set A ∈ F1 if and only if there is Ã ⊂ [0, 1]
such that A = Ã× [0, 1]. Then

E[1Ag] = E[1Ã×[0,1]g] =

∫
Ã×[0,1]

g(x, y) d(m×m)

=

∫
Ã

(∫ 1

0

(
x+

1

2

)
dm

)
dm =

∫
Ã

(
x+

∫ 1

0
y dm

)
dm

=

∫
Ã

(∫ 1

0
(x+ y) dm

)
dm =

∫
[0,1]2

1A(x, y)(x+ y) d(m×m)

= E[1AX].

In the third equality, we used Tonelli’s theorem.

(v) Let A,B ∈ F with P(B) > 0. Consider σ(B) = {∅, B,Bc,Ω}. This is the σ-algebra containing
the information of whether B has occurred or not. Then

E[1A|σ(B)] = P(A|B)1B + P(A|Bc)1Bc =
P(A,B)

P (B)
1B +

P(A,Bc)

P(Bc)
1Bc .

43Let us check this: given a Borel set B, 1−1
A (B) is either ∅, A, or Ω. It is clear that each of these events is

independent from X−1(B), the first and third trivially and the second by the independence of F1 and FX . Recall
the Definition 5.5.3.
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Exercise 5.7.3. Verify that this satisfies Definition 5.7.7.

By the definition of integration, any random variable can be approximated by simple functions,
which are linear combinations of indicator functions. Hence, after rewriting the above as

E[1A|σ(B)] =
E[1A1B]

P (B)
1B +

E[1A1Bc ]

P(Bc)
1Bc .

we see that
E[X|σ(B)] =

E[1BX]

P(B)
1B +

E[1BcX]

P(Bc)
1Bc .

Let us consider a simple case of this. Let X ∼ Norm(0, 1) and B = X−1(R+). Clearly
P(B) = P(Bc) = 1/2. We have

E[X|σ(B)] = 2E[1BX]1B + 2E[1BcX]1Bc .

Then, by symmetry and a direct computation,

−E[1BcX] = E[1BX] =
1√
2π

∫ ∞

0
xe−

x2

2 dx =
1√
2π
.

We thus have

E[X|σ(B)] =

√
2

π
(1B − 1Bc) .

(vi) Suppose that Ω can be partitioned by disjoint sets Ω1, . . . ,Ωn with P(Ωi) > 0 for all i = 1, . . . , n
and n ≥ 2. Then let F1 = σ(Ω1, . . . ,Ωn), which contains all of the information of whether Ωi

or Ωc
i have occurred. Recall Example 4.3.6.

Then, arguing exactly as in the previous example (where Ω1 = B and Ω2 = Bc), we find

E[1A|F1] =

n∑
i=1

P(A,Ωi)

P(Ωi)
1Ωi =

n∑
i=1

E[1A1Ωi ]

P(Ωi)
1Ωi

For random variables, this becomes

E[X|F1] =

n∑
i=1

E[1ΩiX]

P(Ωi)
1Ωi

It is not apparent from Definition 5.7.7, but conditional expectation is well-defined. We state this
in a proposition below, although we do not present the proof in its entirety. It is based on the
Radon-Nikodym theorem44, which is a kind of Fundamental Theorem of Calculus for measures.

Proposition 5.7.9. Given a probability space (Ω,F ,P), a random variable X ∈ L1, and a sub-σ-
algebra F1 ⊂ F , there is a random variable E[X|F1] satisfying Definition 5.7.7. Moreover, if Y is
another random variable satisfying Definition 5.7.7 then Y = E[X|F1] a.s.
44The statement of this theorem is roughly that if two σ-finite measures on the same measure space satisfy “ν ≪ µ”

then there is f ∈ L1
µ such that dν = fdµ. Here “ν ≪ µ” means that ν(B) = 0 whenever µ(B) = 0.
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Existence. Define the measure Q± : F1 → R+ by

Q±(A) =

∫
A
1±X>0XdP.

It is easy to check that Q± ≪ P so there exist Y±, which are F1 measurable, such that

dQ± = Y±dP.

Let E[X|F1] = Y+ − Y−. This is clearly F1 measurable and it satisfies Definition 5.7.7.(iii) by
construction. To see that it is L1, notice that

E[|E[X|F1]|] = E[1{E[X|F1]>0}E[X|F1]− 1{E[X|F1]<0}E[X|F1]]

= E[1{E[X|F1]>0}]− E[1{E[X|F1]<0}X]

≤ E[|X|].

as desired.

Uniqueness. For each n, let
An = {Y − E[X|F1] ≥ 1/n}.

Notice that, by Definition 5.7.7,

P(An)

n
≤ E[1An(Y − E[X|F1])] = E[1An(X −X)] = 0.

Since this holds for all n, we have

P(Y > E[X|F1]) = P

( ∞⋃
n=1

An

)
= 0.

Similarly, one can show that P(Y < E[X|F1]) = 0, which completes the proof.

Exercise 5.7.4. Show the following properties of conditional expectation:

(i) (Linearity) E[X + Y |F1] = E[X|F1] + E[Y |F1];

(ii) (Order preserving) E[X|F1] ≤ E[Y |F1] if X ≤ Y ;

(iii) (Monotone convergence) E[Xn|F1] → E[X|F1] if Xn ↗ X;

(iv) (Jensen’s inequality) φ(E[X|F1]) ≤ E[φ(X)|F1] if φ is convex45;

(v) (Tower property) E[X|F1] = E[E[X|F2]|F1] if F1 ⊂ F2 ⊂ F ;

(vi) (Stability) If X is F1-measurable, then E[X|F1] = X. Further, for any Borel measurable g,
we have E[g(X)|σ(X)] = g(X);

(vii) (Removing a “known” factor) If X is F1-measurable, then E[XY |F1] = XE[Y |F1].
45This gives Markov’s inequality for E[·|F1].
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Let us make a note about (iii) and (iv). The notation, which involves an E, makes this seems
obvious. Keep in mind, however, that notation is just suggestion and that E[X|F1] is a random
variable, so these are by no means obvious.

Let us also make a note about (v). The intuitive meaning of E[X|F1] is the best guess for X if you
are restricted to the information on F1. Hence E[E[X|F2]|F1] is the best guess for X restricted to
the information in F2 and then further restricting to the information in F1. Since F1 ⊂ F2, this
should just be the best guess for X restricted to the information in F1.

Exercise 5.7.5. Show that E[|E[X|F1]|p] ≤ E[|X|p] for any p ≥ 1. This shows that conditional
expectation is a (weak) contraction.

There is another perspective of E[X|F1] as the L2-projection of X onto the linear subspace of L2
P

spanned by random variables of the form 1A where A ∈ F1. One can see why that would be the case
from Definition 5.7.7.(iii). We point out that this lends credibility to our intuition about E[X|F1]
being the “best guess” for X given the information in F1. Indeed, recall that the projection of a
vector v onto a subspace S is the closest point in S to v.

Taking advantage of this perspective requires X to be L2. Note that we have not yet proved that
projections exist in L2, but this fact is obvious in finite dimensional inner product spaces so one
should not be too surprised it is true in the infinite dimensional case as well.

In this L2 setting, we get analogous versions of our usual inequalities (just like we did in L1):

Exercise 5.7.6. Show that Cauchy-Schwarz holds: E[XY |F1]
2 ≤ E[X2|F1]E[Y 2|F1] for all random

variables X and Y .

5.8. Information theory. Using our intuition of σ-algebras as “information,” we can think
of a scenario where our situation is “updating” step-by-step as one in which we have an infinite
increasing sequence of σ-algebras. This leads to the following:

Definition 5.8.1. Let (Ω,F) be a measurable space. A filtration on (Ω,F) is a sequence

F1 ⊂ F2 ⊂ · · · ⊂ F .

This is the discrete version, one can also have a filtration indexed by R+ or R, etc. In this case,
{Ft} is a filtration if Ft ⊂ Ft+s for all t and any s ≥ 0.

Example 5.8.2. Let us consider an infinite sequence of coin flips. Here Ω = {0, 1}N and F =
PΩ. Let Xi be the random variable that returns the value of the ith flip: Xi(ω) = ωi, where
ω = (ω1, ω2, . . . ). We define the filtration F1,F2, . . . by

Fi = σ(X1, . . . , Xi).

This is a bit abstract, and, luckily, that is usually good enough in practice. That said, what does Fi

look like? Recall that σ(X1) is the smallest σ-algebra on which X1 is measurable, which requires that
contains precisely those sets of the form X−1

1 (B) where B is a Borel set (recall Definition 4.4.2).

The smallest σ algebra generated by X1 is thus {∅,Ω, {0} × {0, 1}N, {1} × {0, 1}N} since X1 only
specifies the first coordinate. Similarly,

σ(X1, X2) = σ
(
{∅,Ω, {(0, 1)} × {0, 1}N, {(0, 1)} × {0, 0}N, {(0, 1)} × {1, 0}N, {(1, 1)} × {0, 1}N}

)
.

These are the events that only encode the information in the first two flips.
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Let us briefly have a high level discussion of what we expect in quantifying the “amount of infor-
mation.”

(i) The information in each independent coin toss is the same. More generally, if X and Y are
independent random variables, the information from knowing both X and Y should be the
sum of the informations from each of them separately. In some sense, this is saying we “take
products to sums” in our quantification.

(ii) Knowledge that a “rare” event occurred, say winning the lottery, is more informative than
knowing that a rare event did not occur. So the information gained from an experiment
should depend on the outcome, as well as the a priori expectation of the event actually
occurring. On the other hand, a probability one event should encode no information.

5.8.1. Information in a single random variable. These two principles suggest using logarithms,
which take products to sums and (up to sign) take probabilities close to zero to huge values.

Definition 5.8.3. Suppose that X is a discrete random variable (that is, takes values α1, α2, . . .
with P(X = αi) > 0. Then the self-information IX : Ω → R+, called the “surprisal,” is given by

IX(ω) = − logP(X = X(ω)).

This tells us how “surprised” we should be if ω occurs. In some sense, it tells us how much we
can restrict the set of ω that is consistent with the observed outcome. Notice that it is always
non-negative.

If we abuse notation briefly, we see why the log function is a good choice. Let A and B be
independent events. If both happens, we should deduce the “information” gained from A occurring
and the “information” gained from B occurring and this should be a sum (there is no overlap in
information because of independence). Sure enough:

IX(A ∩B) = − logP(A ∩B) = − log (P(A)P(B)) = − logP(A)− logP(B) = IX(A) + IX(B).

Definition 5.8.4. The entropy of a discrete random variable X taking the values α1, α2, . . . , αn

(where we allow n = ∞) is

H(X) = E[IX ] =

n∑
i=1

pi log(pi),

where pi = P(X = αi). This is sometimes called Shannon entropy, after Claude Shannon, the
founder of Information Theory.

It is somewhat instructive to pause and discuss the etymology of “entropy” as well as choice of H
(instead of a more reasonable E). The term “energy” has, as a root, “erg” which is a unit of work
and comes from “ergon” (εργoν). In analogy with this, Rudolph Clausius, coined “entropy” based
on the root “tropé” (τρoπη), meaning “transformation.” In gas dynamics, entropy measures how
ordered a system is and is a key aspect of its trend towards equilibrium (this is Ludwig Boltzmann’s
“H Theorem”). In this sense, high entropy means high order and low entropy means low order
(everything is “mixed” together).

Entropy was imported into information theory by its founder, Claude Shannon, who took inspiration
from the concept in gas dynamics. Roughly, H(X) is meant to represent how much information we
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expect to get from an experiment that measures X. The analogy works as follows. In gas dynamics,
high entropy means a gas with high order – someone or something arranged them – which means
that there is high “information” in experimentally testing the gas. If you check an area of a room
and find no gas particles there, you learn that something is affecting the room. On the other hand,
low entropy means things are well-mixed. any experimental measurement of a room will essentially
reveal the same thing (an essentially constant amount of gas particles in any area), which reveals
low information to the experimenter.

Returning to mathematical physics. Ludwig Boltzmann initially used E for entropy; however, over
time he and his contemporaries settled on H. Presumably this helps avoid a misunderstanding with
“energy,” often denoted by E. Why H? It is not totally clear, but the best guess given the limited
historical record is that the H is actually a capital η (eta), which corresponds to the short e sound
similar to the beginning of the word entropy.

Example 5.8.5. Let us look at coin flipping. Let Ωn = {0, 1}n, F = PΩn, and Pn({ω}) = 2−n for
every n.

(i) Case n = 1: let X : Ω1 → R be given by X(ω) = ω. In this case,

IX(ω) = − logP(X = X(ω)) = − log(1/2) = log 2,

and
H(X) =

∑
ω=0,1

P(X = ω)IX(ω) =
∑
ω=0,1

1

2
log 2 = log 2.

Actually, one has a choice in defining “which log” to use. The standard ones are log2, loge = ln,
or log10. If we use log2, then IX(ω) = 1 and we call this unit a “shannon.” (Think of this
as being analogous to a “bit,” the unit for the memory on your computer). The unit for ln is
“nat,” and the unit for log10 is “Hartley.”

(ii) General case: the information in n coin flips. Let X : Ωn → Rn be defined by X(ω) = ω.
Then

IX(ω) = − logP(X = ω) = − log(1/2n) = n log 2.

Hence,

H(X) =
∑
ω∈Ω

1

2n
IX(ω) =

∑
ω∈Ω

n log 2

2n
= n log 2.

Recall that Ω has 2n elements in it. This is n log 2 nats or n shannons.

Example 5.8.6. How much information is in a word? Let ΩA,n = {1, 2, . . . , NA}n and F = PΩA.
Roughly, we think of NA as being the number of letters in our alphabet. We encode each word with
n letters as a sequence of n integers between 1 and NA. For a first cartoon example, let us assume
every letter is equally likely in our alphabet

Pn({ω}) = N−n
a .

This is, of course, no reasonable: more t’s show up in English than q’s and the preceding letter skews
the probability of the letter (e.g., u is overwhelmingly likely to follow q); however, let us strive for
simplicity for the moment.

Exercise 5.8.1. Argue exactly as above to find

IX(ω) = H(X) = n logNa.
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Let L be a random variable that uniformly draws a random letter. Then X is made up by drawing
from n i.i.d. random variables distributed as L. It follows from the law of large numbers (Theo-
rem 5.6.7) that

IX(ω)

n
→ H(L).

One way to check if a word / sentence / book is “typical” is to check if the above asymptotics hold.

Exercise 5.8.2. Show that the procedure above provides an upper bound. In other words, giving the
ith letter probability pi of occurring at each location in a word, then H(X) ≤ n logNa.

5.8.2. Information in two random variables.

Definition 5.8.7. Suppose that X and Y are two, possibly dependent, discrete random variables.
We have the following quantities:

(i) (Joint entropy)
H(X,Y ) = −

∑
i,j

pij log pij ,

where i, j range over all possible values of X and Y , respectively. This is obtained via Defini-
tion 5.8.4 applied to the random variable (X,Y ).

(ii) (Conditional entropy) Using conditional probability, we see that

H(X|Y = βj) = E[IX |Y = αj ] = −
∑
i

P(X = αi|Y = αj) logP(X = αi|Y = αj)

= −
∑
i

pij
pj

log
pij
pj
.

Averaging over all βj, we obtain the conditional entropy:

H(X|Y ) = −
∑
j

pj
∑
i

pij
pj

log
pij
pj

= −
∑
ij

pij log
pij
pj
.

(iii) (Mutual information)

I(X;Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y ).

The heuristic meaning of (i) is analogous as in Definition 5.8.3 and Definition 5.8.4.

Exercise 5.8.3. Show that H(X|Y ) = H(X,Y ) − H(Y ). This leads to the interpretation that
H(X|Y ) is the extra information that X provides, beyond what Y provided.

Finally, (iii) is simply the total information of shared by both X and Y .

I(X;Y ) H(X|Y )H(Y |X)
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This is represented in the figure above. The blue and violet area is H(X) (the information provided
by X), the red and violet area is H(Y ) (the information provided by Y ), and the union of the blue
and red areas is H(X,Y ) (the information provided by both X and Y ). The blue area is H(X|Y )
while the red area is H(Y |X). Finally, the mutual information I(X;Y ), the violet area, is the
information provided by both X and Y .

5.9. Markov chains. Every random variable we have looked at so far is “static,” but many of
the phenomena in the world that we wish to understand through math are “dynamic.” To begin
to build up our intuition and theoretical foundations for this, let us consider the simplest possible
random process.

Suppose that a very confused person is walking along a long road. At each intersection, they flip a
coin, heading right if it comes up heads and left if it comes up tails. This is intuitively a very simple
process. How do we make it into rigorous mathematics? We focus on “discrete time” and “discrete
space” Markov chains here.

The key features that we want to encode are the fact that process is “homogeneous” and “memoryless”
– the next step in the chain depends only on the current state of the chain.

Definition 5.9.1. Let (Ω,F ,P) be a probability space, and let S be a finite “state space.” Then
an indexed set of random variables Xn : Ω → S is a Markov chain if, for every n ∈ N and
x0, . . . , xn+1 ∈ S, we have

P(Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, . . . , X0 = x0) = P(Xn+1 = xn+1|Xn = xn).

Let us make a few notes about this before jump into some examples.

1. Since S is countable, we may always consider it to be a finite or infinite subset of Z by
identifying each element of S with an integer through the bijection in the definition of countable
Definition 3.2.7.

2. The second condition encodes the “memoryless” quality discussed above. Indeed, it says that
knowing the first n − 1 values of the chain allows you no better guess of Xn+1 than just
knowing the current state Xn.

3. Actually the definition above does not encode the “time homogeneity” mentioned above, but,
for the remainder of these notes, let us take that as an assumption. To encode this, we further
assume that, for any i, j ∈ S,

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i).

In other words, the probability to step from i to j does not depend on the “time” n.

The last point above allows us to define, for any i, j ∈ S,

pij = P(X1 = i|X0 = j). (5.9.1)

and the N ×N matrix
P = (pij)ij , (5.9.2)

where N is the number of elements of S. Note that P need not be symmetric and that the order of
the indices ij reflects the order of the step from i to j.
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Definition 5.9.2. Let P be the matrix with entries defined by (5.9.1)-(5.9.2). We call this the
transition matrix of the Markov chain Xn.

In general, an n× n matrix P is called a stochastic matrix if Pi1 + Pi2 + · · ·+ Pin = 1 for each i.

We immediately notice that ∑
i∈S

pij = 1 that is, P1 = 1,

where 1 is the vector with all entries equal to one. Let us consider what happens when we apply
P . Suppose that X0 = i. We consider ēi (the vector of all zeros except a one in the ith entry) and,
for any j, notice that

(ēiP )j = Pij = P(X1 = j|X0 = i).

Next

(ēiP
2)j =

n∑
k=1

PikPkj =
n∑

k=1

P(X2 = j|X1 = k)P(X1 = k|X0 = i)

= P(X2 = j|X0 = i).

By induction, we get that, for every m,

(ēiP
m)j = P(Xm = j|X0 = i).

Exercise 5.9.1. Show this!

This is because the matrix multiplication encodes all paths with which the Markov chain X· can
traverse to make it from i to j in m steps.

More generally, one can randomly pick a start location according to the distribution π(0), a vector
where π(0)i = P(X0 = i), and

π(k) := π(0)P k = (P(Xk = 1),P(Xk = 2), . . . ,P(Xk = n)).

Example 5.9.3. (Bernoulli process) Fix p ∈ (0, 1) and S = {1, 2}. A cartoon picture to get you
started is of a javelina that has two trash cans that it likes to eat from. Every day, it wakes up
and decides which trash can it wants to eat from: with probability p, it eats from trash can 1 and
with probability 1 − p, it eats from trash can 2. Notice that its past does not influence its decision.
Actually, in this silly model, even its current state (location) does not affect its decision!

Define

pij =

{
p if j = 1,

1− p if j = 2.

1 2

1− p

p 1− p

p
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Let us point out two related things. First, notice that, if we let π̄ = (p, 1− p), then

πP = [p · p+ (1− p) · p, p · (1− p) + (1− p) · (1− p)] = π.

Additionally, for any distribution π(0),

lim
n→∞

π(0)Pn = π̄. (5.9.3)

Actually π(0)P = π̄.

In general, any process where the columns of P are constant is called a Bernoulli process. This is
a special property that makes for a exceptionally simple Markov chain – as we saw above, we reach
the stationary distribution in one step! This is because Bernoulli processes do not depend on the
current state.

Definition 5.9.4. A vector π̄ is an stationary distribution if
∑

i π̄i = 1 and π̄P = π̄.

As we will see, stationary distributions need not be unique, but often we work in settings where they
are. When they exist they help us understand the “long-time” dynamics of the Markov chain; that
is, what happens to Xn as n → ∞. We call the stationary distribution an equilibrium distribution
in such a case.

In Example 5.9.3, the interpretation of the stationary distribution and the fact that (5.9.3) is the
following. For “long-times,” we have probability p of finding the javelina at trash can 1 and we
have probability 1 − p of finding the javelina at trash can 2. We see below that this can get more
complicated.

Example 5.9.5. (i) (Random walk on the 3-cycle) Let us consider Xn to be the Markov chain
defined on S = {1, 2, 3}. Here, we take steps to the left with probability p ∈ (0, 1) and steps to
the right with probability 1− p. Think of 3 as being to the “left” of 1 so that we have a closed
loop.

1 2

3

1− p

p

1− p

p

p

1− p

In this case, we have the transition matrix

P =

 0 1− p p
p 0 1− p

1− p p 0

 .

Notice that, letting π̄ = [1/3, 1/3, 1/3],
π̄P = π̄,
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that is, π̄ is an stationary distribution of X·. Moreover, one can show that, for any distribution
π(0),

lim
n→∞

π(0)Pn = π̄.

In other words, after a large number of steps n, we are (approximately) equally likely to find
Xn at any spot {1, 2, 3}. We will discuss this at greater length in the future.

(ii) (Random walk on the 4-cycle) Let us consider Xn to be the Markov chain defined on S =
{1, 2, 3, 4}. Here, we take steps to the left with probability p ∈ (0, 1) and steps to the right with
probability 1− p. Think of 4 as being to the “left” of 1 so that we have a closed loop.

1 2

34

1− p

p 1− p

p

p

1− p

p

1− p

In this case, we have the transition matrix

P =


0 1− p 0 p
p 0 1− p 0
0 p 0 1− p

1− p 0 p 0

 . (5.9.4)

In analogy with the last example, we might guess that π̄ = [1/4, 1/4, 1/4, 1/4]. Indeed, this is an
stationary distribution:

π̄P = π̄.

Does this mean that after n steps, our process is equally likely to be at any location? Let us
consider the specific case where X0 = 2. Then, after one step, we can go “left” to 1 or “right”
to 3. Notice that these are both odd so X1 is odd. Given another step, we find that X2 is even.

Iterating this, we see that Xn is odd if n is odd and even if n is even. This means, that after
n steps we are not equally likely to be at any step – certain states are impossible depending on
the parity of n.

Exercise 5.9.2. Let π(0) = [1, 0, 0, 0]. Show that π(0)P 2n → [0, 1/2, 0, 1/2] and π(0)P 2n+1 →
[1/2, 0, 1/2, 0].

On the other hand, if we choose our initial state randomly according to π̄ we do not have such
a problem.

The issues in Example 5.9.5.(ii) are related to periodicity:

Definition 5.9.6. A state i has period d if whenever (Pn)ii > 0 then n is divisible by d. A Markov
chain is called aperiodic if all states are not d-periodic for any d > 0.
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Roughly, this means that, after enough steps, there is always a positive probability that the Markov
chain has made it back to where it started.

Exercise 5.9.3. Check that our 4-cycle random walk above is 2-periodic and the 3-cycle random
walk is aperiodic.

There is a standard way to “fix” periodicity – modifying the Markov chain to give it a 1
2 probability

to stay in its current state. In other words, we consider the related “lazy” Markov chain defined by
the transition matrix

P̃ =
1

2
id+

1

2
P.

Example 5.9.7. (i) (Absorbing boundaries) For any N , let S = {1, 2, 3} with the transition
matrix

P =

 1 0 0
1/2 0 1/2
0 0 1

 .

In other words, if the process is at one of the endpoints, it is “trapped” there forever. If it is
in the middle, it chooses an endpoint at which to be trapped with equal probability.

1 2 31
1/21/2

1

Heuristically, there should be three equilibrium distrbutions – one each for starting from an
endpoint and being stuck there forever and one for starting in the middle and ending up stuck at
an endpoint with 1/2 probability each. Indeed, [1, 0, 0], [1/2, 0, 1/2], and [0, 0, 1] are all stationary
distributions.

Exercise 5.9.4. Generalize this to {1, 2, . . . , N} and find all stationary distributions.

(ii) (Two disjoints 3-cycles) Let S = {1, 2, 3, 4, 5, 6} and define

P =

(
Q 0
0 Q

)
where Q is the 3 × 3 matrix defined in (5.9.4) with p = 1/2 and 0 stands for a 3 × 3 block
of zeros. This block diagonal form reflects the fact that our state space is separated: if the
random walk starts in {1, 2, 3} it can never make it to {4, 5, 6} and vice versa.

1 2

3

1/2

1/2

1/2

1/2

1/2

1/2
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4 5

6

1/2

1/2

1/2

1/2

1/2

1/2

It should come as no surprise at this point that there are stationary distributions

[1/3, 1/3, 1/3, 0, 0, 0], [0, 0, 0, 1/3, 1/3, 1/3], and [1/6, 1/6, 1/6, 1/6, 1/6, 1/6].

The issues with the two above examples are that a process starting at certain states cannot make
it to all other states. This motivates the following definition:

Definition 5.9.8. A Markov chain is irreducible if, for every i, j ∈ S, there is nij such that
P

nij

ij > 0.

Exercise 5.9.5. If a Markov chain X· with finite state space S is aperiodic and irreducible, then
there is N such that Pn has all positive entries when n ≥ N . In other words, P(Xn = j|X0 = i) > 0
for every i, j ∈ S and every n ≥ N .

The importance of this is that these properties allow us to understand the stationary distribution
and the long-time dynamics of X·.

Theorem 5.9.9. Suppose that X· is a Markov chain with a finite state space S. Then:

(i) there exists an stationary distribution π̄;

(ii) it is unique;

(iii) for any π(0), we have π(0)Pn → π̄ as n→ ∞.

Actually, aperiodicity is only need for (iii).

Proof sketch.

Exercise 5.9.6. Fill in the details here to make a complete proof.

For any fixed k ∈ S, define

Vj,k = # of time Xn visits j before returning to k.

One can check that the following is a stationary distribution:

π̄j =
1∑N

i=1 E[Vi,k]
E[Vj,k],
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where N is the number of states in S. Note that this yields a nice interpretation of the stationary
distribution: π̄i is the fraction of time that the Markov chain spends at the location i.

One can check that, by irreducibility, π̄ > 0 in all entries. Suppose that π̃ is another stationary
distribution. Let

A0 = min{A ∈ R : Aπ̄ ≥ π̃}.

Exercise 5.9.7. If A0 = 1 then π̄ = π̃.

Then A0π̄ “touches” π̃ from above at some ℓ0; that is A0π̄ ⪰ π̃, and A0π̄ℓ0 = π̃ℓ0 . It follows that

((A0π̄ − π̃)(id−P ))ℓ0 = −
∑
j

(A0π̄j − π̃j)Pjℓ0 ≤ 0. (5.9.5)

The inequality is strict if A0π̄ > π̃ at any “neighbor” k such that Pℓ0k > 0.

On the other hand,

(id−P )(A0π̄ − π̃) = A0(id−P )π̄ − (id−P )π̃ = 0− 0 = 0

since π̄ and π̃ are stationary distributions. Hence, (5.9.5) must be equality, meaning that A0π̄ − π̃
must be the same at all of ℓ0’s neighbors. One can repeat this argument at each neighbor to see
that A0π̄ and π̃ agree at its subsequent neighbors. By irreducibility, this argument will exhaust all
elements of S and yield A0π̄ = π̃. Since these are probability distributions (and, thus, the entries
of π̄ and π̃ = A0π̄ must sum to 1), it must be that A0 = 1, showing that π̄ = π̃.

We now show convergence by essentially the same argument. Take any π(0) and consider n suffi-
ciently large that π(0)Pn ≻ 0 (by the exercise above). Defining

A1 = min{A ∈ R : Aπ(0)Pn ⪰ π̄}.

Then, for every ℓ
0 ≤

∑
j

(A1π
(0)Pn − π̄)jP

n
jℓ = A1π

(0)P 2n − π̄.

On the other hand, P 2n has all positive entries so the inequality above is strict unless π(0)Pn = π̄.
If this occurs, we are finished. If not, define

A2 = min{A ∈ R : Aπ(0)P 2n ⪰ π̄}.

It follows that A2 < A1. Iterating this argument yields A1, A2, . . . . It must be that Akπ
(0)P kn → π̄

(otherwise we would have been able to take a “smaller” A at some intermediate step). One can then
upgrade this to

lim
n→∞

π(0)P kn = lim
n→∞

Anπ
(0)P kn = π̄.

One can repeat this argument for every ℓ ∈ {1, . . . , k− 1} to get the convergence of π(0)Pnk+ℓ to π̄,
which completes the proof.

Remark 5.9.10. There is a whole field of quantifying the convergence in Theorem 5.9.9.(iii); that
is, finding the “mixing time” for a Markov chains. Given the importance of Markov chains and their
mixing in applications across virtually all “STEM” fields, this is extremely important work!

The argument above, with a tiny bit more work, can yield an exponential rate of convergence.

Exercise 5.9.8. Think about this!
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Example 5.9.11. An important application of this Google’s PageRank algorithm. Here is a cartoon
version of it. Suppose there are N websites. Fix website j and let Nj be the number of websites that
contain a link to it. Then

pij =

{
0 if i has no link to j,
1/Nj if i has a link to j.

Then P is a transition matrix. Roughly, this is a Markov chain that randomly traverses the internet
without

If we restrict to a slightly smaller subset of websites (ignoring isolated ones), we might suspect that
this Markov chain is irreducible and aperiodic46. Then, by Theorem 5.9.9, there is an stationary
distribution π̄.

The larger π̄i is, the more time our random internet walker spends on website i because more links
coming into it, at least in a broad sense47. Hence, we should think of π̄i as giving an ranking of the
webpages: the most important website is the website i such that π̄i is greatest and the least important
website is the website j such that π̄j is smallest.

5.9.1. Duality and the beginnings of connections to partial differential equations. There
is an obvious dual pairing between bounded, continuous functions f and measures µ given by

⟨µ, f⟩ =
∫
f(x) dµ(x). (5.9.6)

It is a fact, that we will not clearly state here or prove, that the dual space of bounded continuous
function is the space of “nice” “signed” measures with the dual pairing (5.9.6).

For the Markov chains above, which have a discrete state space, we can take f to be a vector
f = (f1, . . . , fN ) and we end up with the pairing

⟨π(n), f⟩ = ⟨π(0)Pn, f⟩ = π(0)Pnf =
∑
ij

π
(0)
i Pn

ijfj .

On the other hand, it seems fruitful to think of P as defining an evolution on f

f
(n)
i :=

N∑
j=1

Pn
ijfj .

While π(n) is the forward evolution of π(0), fn is the backward evolution of f . Why? The above
becomes

⟨π(n), f (0)⟩ = ⟨π(0), f (n)⟩.

Hence, evaluating f against a measure after n steps of the Markov chain (forward-in-time) is equiv-
alent to computing f (n) and then evaluating it at the initial time (backward-in-time).

It turns out that this dual pairing is very useful. Let us consider a simple example to illustrate the
idea.
46We can, of course, just make the Markov chain “lazy” if periodicity becomes a problem.
47We need to be careful here. There is a subtle point. Suppose there is one “mega-website” k that has a link from

every website. But its only link out is to a small website ℓ that has no other incoming links. We might, at first,
suspect that website ℓ is not important (it only has one incoming link; however, this is incorrect since it will get
all of the traffic from mega-website k.
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Example 5.9.12. Consider the “lazy” random walk on an N -cycle with N ≫ 1: for i, j ∈ {1, 2, . . . , N},
let

Pij =


1
4 if |i− j| = 1,
1
2 if i = j,

0 otherwise.

Here, we take the convention that |1−N | = 1 with

1− 1 = N and N + 1 = 1. (5.9.7)

1

2

3

4

· · ·

. . .

N-1

N 1/4

1/4

1/2

1/4

1/4
1/2

1/4

1/4

1/2

1/4

1/4

1/2

1/4

1/4

1/2

1/4

1/4

1/2

1/4

1/4

Fix any continuous function f : [0, 1] → R and define

fN = (f(1/N), f(2/N), . . . , f(1)).

Then define, for any i ∈ {1, 2, . . . , N},

UN (n, i) = ei (P
nfN ) .

Here we have begun a random walk at i and evolved it for n steps (this is represented by the eiPn

term) and then evaluated fN at that point. Let us write this in an equivalent, but perhaps more
straightforward, way:

UN (n, i) = E [f(Xn)|X0 = i] =
N∑
j=1

Pn
ij(fN )j ,

where X is the random walk associated to P . Let us note that

UN (0, i) = f (i/N) . (5.9.8)

Let us see how u evolves in time. First, notice that

UN (n+ 1, i) =

N∑
j=1

N∑
k=1

PikP
n
kj(fN )j =

N∑
j=1

N∑
|k−j|≤1

PikP
n
kj(fN )j

=
1

4

N∑
j=1

Pn
(i+1)j(fN )j +

1

4

N∑
j=1

Pn
(i−1)j(fN )j +

1

2

N∑
j=1

Pn
ij(fN )j

=
UN (n, i+ 1) + UN (n, i− 1) + 2UN (n, i)

4
.
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Roughly this represents the fact that the chain can arrive at i after n+ 1 steps only if it is at i+ 1,
i− 1, or i after n steps and the occur with probability 1/4, 1/4, and 1/2, respectively. Rewriting this,
we see that

UN (n+ 1, i)− UN (n, i) =
1

4
∆discUN (n, i),

where we have defined the discrete Laplacian (second derivative) as

∆discφ(i) = φ(i+ 1) + φ(i− 1)− 2φ(i).

Of course, the left hand side looks like a discrete time derivative, so we have arrived at a discrete
heat equation.

Let us now shrink this down to a common domain. For any t ∈ {0, 1/N2, 2/N2, . . . } and any x ∈
{1/N, 2/N, . . . , 1}, we let

uN (t, x) = UN (tN2, xN), (5.9.9)

where UN is defined above. Then, from the above, we see that

uN (t+N−2, x)− uN (t, x)

N−2
=

1

4

uN (t, x+N) + uN (t, x−N)− 2uN (t, x)

N−2
.

At least formally, we see that the limit N → ∞ should lead to a limiting function u that solves
∂tu = 1

4∆u on [0, 1],

u(t, 0) = u(t, 1),

u(0, x) = f(x).

(5.9.10)

The last equality follows from (5.9.8) with the change of variables (5.9.9). The second-to-last equality
follows from the identification of 1 and N as neighbors (5.9.7).

With a bit more work, one can make this limit make sense. Additionally, if one assumes that by
scaling the random walk in the way we did above (time like n/N2 and space like i/N) then we should
arrive at a Brownian motion (up to a time scaling factor of 1/2 due to the “laziness”), one arrives
at a basic version of the famous Feynman-Kac formula: the solution of (5.9.10) is given by

u(t, x) = E[f(Bt/2)|B0 = x],

where B· is a standard Brownian motion. That Xn, scaled as above, is an approximation of Brownian
motion is Donsker’s theorem, which we have run out of time to cover.

6. Convex Analysis

6.1. Some basic objects.

6.1.1. Affine, conic, and convex combinations and sets.

Definition 6.1.1. Given a vector space V , vectors v1, . . . , vk, and scalars θ1, . . . , θk ∈ R, a linear
combination θ1v1 + · · · θkvk is:

1. an affine combination if θ1 + θ2 + · · ·+ θk = 1;
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2. a conic combination if θi ≥ 0, for all i,;

3. a convex combination if it is an affine combination and a conic combination.

Exercise 6.1.1. Take three non-colinear points v1, v2, v3 in R3, these define a cone (with a vertex
at the origin). Convince yourself that any conic combination θ1v1+θ2v2+θ3v3 lies inside this cone.
These three points also define a triangle. Convince yourself that any convex combination lies inside
this triangle. How does this latter example generalize to more points?

Definition 6.1.2. A set C ⊂ V is:

1. affine if it is closed under affine combinations (that is, if v1, . . . , vk ∈ C, then so is θ1v1 +
· · · θkvk if θ1 + θ2 + · · ·+ θk = 1);

2. conic if it is closed under conic combinations (that is, if v1, . . . , vk ∈ C, then so is θ1v1+· · · θkvk
if θi ≥ 0, for all i);

3. convex if it is closed under convex combinations (that is, if v1, . . . , vk ∈ C, then so is θ1v1 +
· · · θkvk if θ1 + · · ·+ θk = 1 and θi ≥ 0 for all i).

We point out that the arbitrary intersection of affine sets is affine, the arbitrary intersection of conic
sets is conic, and the arbitrary intersection of convex sets is convex.

Let’s characterize these a bit.

Proposition 6.1.3. A nonempty set A ⊂ V is affine if and only if A = W + x0 for some x0 ∈ V
and some subspace W ⊂ V .

Before proving this, let us note that this allows us to assign dimension so an affine space: the affine
dimension of an affine set A is the dimension of the subspace W given by Proposition 6.1.3.

Proof. We prove each part one at a time.

Proof of =⇒: Take any point x0 ∈ V . We need only show that the set

W := A− x0 = {w ∈ V : w = a− x0 for some a ∈ A}

is a subspace. To that end, we first note that 0 ∈ W since 0 = x0 − x0 ∈ A − x0. Next, we show
that W is closed under addition and scalar multiplication: take w1, w2 ∈W , with wi = ai−x0, and
α, β ∈ R, then

αw1 + βw2 + x0 = α(a1 − x0) + β(a2 − x0) + x0 = αa1 + βa2 − (α+ β − 1)x0.

Let θ1 = α, θ2 = β, and θ3 = 1− α− β. Then

αw1 + βw2 + x0 = θ1a1 + θ2a2 + θ3x0 ∈ A,

where the inclusion follows from the fact that the above is an affine combination of vectors in the
affine set A. Hence, we have that

αw1 + β2w ∈ A− x0 =W.

It follows that W is a subspace.
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Proof of ⇐=: This is somewhat straightforward. We check it anyways. Fix an affine combination
θ1v1 + · · · + θnvn where v1, . . . , vn ∈ A = x0 +W . For each i, let wi = vi − x0 ∈ W , where the
inclusion follows by assumption. Then

θ1v1 + · · ·+ θnvn = θ1(x0 + w1) + · · ·+ θn(x0 + wn)

= (θ1 + · · ·+ θn)︸ ︷︷ ︸
=1

x0 + θ1w1 + · · ·+ θnwn︸ ︷︷ ︸
∈W

∈ x0 +W = A.

What does this tell us? Let’s work with A ⊂ Rn, for simplicity. Proposition 6.1.3 shows that an
affine space A corresponds to the solution space of a matrix M . Let’s work with A ⊂ Rn, for
simplicity. Let m1, . . . ,mk be a basis for the space W as in Proposition 6.1.3. Let M be the matrix
whose row vectors are m1, . . . ,mk and let b = Mx0 (where x0 is as in Proposition 6.1.3), then we
can characterize A as

A = {v ∈ Rn :Mv = b}.

Useful intuition:

• An affine set A is the translation of a linear subspace. This is the primal viewpoint.

• An affine set A is the solution set for a system of linear equations. This is the dual viewpoint.

A useful thing to try is to switch between these viewpoints – use the perspective that makes your
problem easiest.

Example 6.1.4. (i) The closed unit ball Br = {x ∈ C : ∥x∥ ≤ r} of radius r > 0 is convex.

(ii) Take the vector space V × R and consider the set C = {(v, t) ∈ V × R+ : ∥v∥ ≤ t} is both
conic and convex.
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From here one, we specialize to Rn, although it is clear that many of the arguments, ideas, strategies,
etc, extend to infinite dimensions.

Definition 6.1.5 (Half-space). A set of the form {x ∈ Rn : x · a ≤ b} for some fixed a ∈ Rn and
b ∈ R is a half-space.

Definition 6.1.6 (Hyperplane). A set of the form H = {x ∈ Rn : x · a = b} for some fixed a ∈ Rn

and b ∈ R is a hyperplane.

We point out two things:

• A hyperplane is an affine set (it is also convex!).

• A half-space is all points to one side of a hyperplane. This why we call it a half-space! The
hyperplane cuts Rn in half, and the half-space is one of the two pieces resulting from this cut.

Let’s look at two examples.

Example 6.1.7. (i) The set H = {x̄ ∈ Rn : −xn ≤ 0} is the traditional half-space. Notice that
it sits above the affine space

(ii) The set {(x1, x2) ∈ R2 : −2x1 +3x2 ≥ 6} = {(x1, x2) ∈ R2 : 2x1 − 3x2 ≤ 6} is a half-space. It
is the space of points above the affine space (2,−3)⊥ + (3, 0).
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We point out that the half space {(x1, x2) ∈ R2 : 2x1 − 3x2 ≥ 6}

How does one define these concepts in an arbitrary space? Well, a dot product is the quintessential
bounded linear functional (in fact, in ‘certain’ normed vector spaces, it is the only bounded linear
functional), so we should use that in place. If V is an infinite dimensional normed linear space, a
hyperplane takes the form

{v ∈ V : λv = 0}

and a half-space takes the form
{v ∈ V : λv ≤ 0}

for some fixed λ ∈ V ∗.

Returning to the concepts of affine, conic, and convex, we can, given a collection of points, find the
“smallest” set of each type that contains all such points. Let us define these here and then check
their properties.

Definition 6.1.8 (Affine hull). Given P ⊂ V , let

aff(P ) =

{
v ∈ V : v =

n∑
i=1

θipi for some n ∈ N, p1, . . . , pn ∈ P, θ1, . . . , θn ∈ R such that
n∑

i=1

θi = 1

}
.

We point out that, by definition, if A is an affine set and P ⊂ A, then aff(P ) ⊂ A. Hence, our
characterization of aff(P ) as the smallest affine set containing P is accurate once we show that
aff(P ) is actually affine!

Proposition 6.1.9. Given any P ⊂ V , the set aff(P ) is affine. Hence, aff(P ) is the smallest affine
set containing P , and

aff(P ) =
⋂

A⊃P,A is affine

A. (6.1.1)

Proof. We only show that aff(P ) is affine. The equality (6.1.1) follows from this without too much
extra work.

Exercise 6.1.2. Show this!
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Fix any collection of points v1, . . . , vn ∈ aff(P ) and let θ1, . . . , θn ∈ R be such that θ1+ · · ·+θn = 1.
By definition of aff(P ), there are, for each k, nk, pk,1, . . . , pk,nk

, θk,1, . . . , θk,nk
such that

vk = θk,1pk,1 + · · ·+ θk,nk
pk,nk

and 1 = θk,1 + · · ·+ θk,nk
.

Then

θ1v1 + · · ·+ θnvn =

n∑
k=1

θk

 nk∑
j=1

θk,jpk,j

 =

n∑
k=1

nk∑
j=1

θkθk,jpk,j .

Thus, the right hand side is a linear combination of vectors in P with coefficients θiθk,j . Hence, we
are finished if we show that these coefficients sum to one. We do that here to conclude the proof:

n∑
k=1

nk∑
j=1

θkθk,j =

n∑
k=1

θk

nk∑
j=1

θk,j =

n∑
k=1

θk(θk,1 + · · ·+ θk,nk
) =

n∑
k=1

θk = θ1 + · · ·+ θn = 1.

Definition 6.1.10 (Conic hull). Given P ⊂ V , let

conic(P ) =
{
v ∈ V : v =

n∑
i=1

θipi for some n ∈ N, p1, . . . , pn ∈ P,

θ1, . . . , θn ∈ R such that, for all i, θi ≥ 0
}
.

We point out that, by definition, if C is a conic set and P ⊂ C, then conic(P ) ⊂ C. Hence, our
characterization of conic(P ) as the smallest conic set containing P is accurate once we show that
conic(P ) is actually conic!

Proposition 6.1.11. Given any P ⊂ V , the set conic(P ) is conic. Hence, conic(P ) is the smallest
conic set containing P , and

conic(P ) =
⋂

C⊃P,C is conic

C.

Exercise 6.1.3. Prove this!

Example 6.1.12. Let P = {(1, 0), (0, 1)}. Then conic(P ) = [0,∞)2.

Definition 6.1.13 (Convex hull). Given P ⊂ V , let

conv(P ) =
{
v ∈ V : v =

n∑
i=1

θipi for some n ∈ N, p1, . . . , pn ∈ P,

θ1, . . . , θn ∈ R such that
n∑

i=1

θi = 1 and θi ≥ 0 for all i
}
.

We point out that, by definition, if C is a convex set and P ⊂ C, then conv(P ) ⊂ C. Hence, our
characterization of conv(P ) as the smallest convex set containing P is accurate once we show that
conv(P ) is actually convex!

Proposition 6.1.14. Given any P ⊂ V , the set conv(P ) is convex. Hence, conv(P ) is the smallest
convex set containing P , and

conv(P ) =
⋂

C⊃P,C is convex

C.

Exercise 6.1.4. Prove this!

Example 6.1.15. Let P = {−1, 1}3. Then conv(P ) is the cube [−1, 1]3.
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6.1.2. Polyhedra.

Definition 6.1.16. A set P ⊂ V is a polyhedron if there are vectors a1, . . . , an, c1, . . . , cm, and
scalars b1, . . . , bn, d1, . . . , dm such that

P = {x ∈ V : ai · x ≤ bi ∀i = 1, . . . ,m, and ci · x = di ∀i = 1, . . . , k}.

In other words, P is the intersection of a finite number of half-spaces and hyperplanes (or, equiva-
lently, the space between a finite number of hyperplanes intersected with a finite number of hyper-
planes).

A more compact way to write this is:

P = {x ∈ V : Ax ⪯ b, Cx = d},

where A ∈ Rm×n, b ∈ Rm, C ∈ Rk×n, d ∈ Rk, and we define

v ⪯ w if and only if vi ≤ wi for all i.

Exercise 6.1.5. Any polyhedron is convex.

One can see that polyhedra are not necessarily bounded. When they are we call them polytopes.

Example 6.1.17. The unit cube [−1, 1]3 is a polytope defined by the choice n = 6, m = 0, ai = ei
when i = 1, 2, 3, ai = −ei−3 when i = 4, 5, 6, and bi = 1 for all i.

We point out that Definition 6.1.16 is dual. What is the primal characterization of a polytope?

Proposition 6.1.18. A set P is a polytope if and only if there are n ∈ N and v1, . . . , vn ∈ V such
that

P = {v̄ ∈ V : v is a convex combination of v1, . . . , vn}.

Exercise 6.1.6. Prove this! Heuristically, the vectors v1, . . . , vn are the vertices of the polyhedron.
The “meat” of the proof is then determining the vertices and making this heuristic rigorous.

Exercise 6.1.7. Every polyhedron is of the form

P = Q+ C = {v ∈ V : v = q + c for some q ∈ Q, c ∈ C},

where Q = conv(q1, . . . , qk) is a convex set and C = conic(c1, . . . , cm) is a conic set. The polyhedron
P is a polytope if C = ∅.
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Example 6.1.19. P = {(x, y) ∈ R2 : y ≥ 0, y ≥ x− 1, y ≥ −x− 1}
Notice that P = Q+ C = [−1, 1]× {0}+ {|y| ≥ x}.

6.2. Operations preserving convexity.

Notation 6.2.1. To be consistent with the book by Boyd and Vandenberghe, we adopt the following
notation. Some of it is standard (R, R+), some of it is nonstandard (R++), and some conflicts48

with standard notation (Sn, Sn+).

• R = the real numbers;

• R+ = [0,∞);

• R++ = (0,∞);

• Rn
+ = [0,∞)n = {x̄ ∈ Rn : xi ≥

0 for all i = 1, . . . , n};

• Rn
++ = (0,∞)n = {x̄ ∈ Rn : xi >

0 for all i = 1, . . . , n};

• Mm×n = the set of m× n matrices;

• Sn = the set of symmetric n× n matrices;

• Sn+ = the set of symmetric, non-negative
definite n× n matrices;

• Sn++ = the set of symmetric, positive defi-
nite n× n matrices.

Recall 6.2.2. A matrix M ∈ Sn if M = MT . It is in M ∈ Sn+ if, additionally, x ·Mx ≥ 0 for all
x ∈ Rn. Finally, M ∈ Sn

++ if, additionally, x ·Mx > 0 for all x ∈ Rn \ {0}.
The last inequality can also be written as xTMx if we think of x as an n× 1 matrix.

Exercise 6.2.1. Show that Sn+ is conic.

What operations preserve convexity?

• Intersections: Intuitively this is somewhat clear – if two sets have no “holes” or “indents,”
then their intersection cannot as well. More precisely, suppose that I is an indexing set and,
for each ι ∈ I, the set Aι ∈ Rn is convex. Then

A = ∩ι∈IAι

is convex as well.
48Usually Sn = {x̄ ∈ Rn+1 : ∥x̄∥ = 1}; that is, Sn is the unit sphere in n + 1 dimensions. We use n because it is an
n-dimensional manifold. (Think about this carefully, a circle, in two dimensions, is a line “wrapped up,” so it is
essentially a one dimensional object living in two dimensions. Hence, we call it S1.)
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• Images of an affine transformation: A map f : Rn → Rm is affine if f(x) = Ax+ b where
A ∈Mm×n. Then, if C ⊂ Rn is convex, so is

f(C) = {y ∈ Rm : y = f(x) for some x ∈ Rn}.

Why should this be true? Affine maps preserve linear combinations! Note: affine transforma-
tions also take affine sets to affine set.

Exercise 6.2.2. Show that this is not true for conic sets. What conditions can you place on
f that make the image of a conic set conic?

• Inverse image of an affine transformation: If C ⊂ Rm is convex and f is affine, then

f−1(C) = {x ∈ Rn : f(x) ∈ C}

is convex. Why should this be true? Affine maps preserve linear combinations! Note: affine
transformations also take affine sets to affine set.

Exercise 6.2.3. Show that this is not true for conic sets. What conditions can you place on
f that make the image of a conic set conic?

• Perspective function: Let f : Rn × R++ → Rn be defined by f(x, t) = x/t. This function
takes line segments to line segments. Roughly, this is what you do when you are trying to
draw a three dimensional picture on a two dimensional piece of paper – you scale the far away
objects (t≫ 1) to be smaller and the close objects (t≪ 1) to be larger.

If C ⊂ Rn × R++ and K ⊂ Rn are convex, then so are f(C) and f−1(K).

Exercise 6.2.4. Prove all of the claims above!

6.2.1. Separating hyperplanes. Often it is useful to separate sets C and D by a hyperplane P .
We see in the below examples that this is not always possible.

C

DP

C

D

C

D

191



It turns out that convexity is enough to guarantee this separation.

Proposition 6.2.3. If C,D ⊂ Rn are nonempty disjoint convex sets, then there exists a hyperplane
P = {x ∈ Rn : a · x = b} such that C ⊂ {x ∈ Rn : a · x ≤ b} and D ⊂ {x ∈ Rn : a · x ≥ b}.

We call P the separating hyperplane. We note that the inequalities are non-strict (they are only
strict with stronger assumptions like compactness). We show the proof only in this stronger case,
but it is not hard to deduce the full result by a limiting argument (try it!).

Proof. If C,D are compact, then there are c0 ∈ C and d0 ∈ D such that

|c0 − d0| = dist(C,D).

(One can see this, e.g., by applying the extreme value theorem applied to ρ : C ×D → R+ defined
by ρ(c, d) = |c− d|.)
We then take a = d− c and b = (|d|2 − |c|2)/2, so that

P =
{
x ∈ Rn : (d0 − c0) · x =

1

2
(|d0|2 − |c0|2)

}
.

This is a hyperplane perpendicular to the line connecting c0 and d0 that is centered at c0+d0
2 . This

can, perhaps, be seen more clearly by rewriting:

f(x) := a · x− b = (d0 − c0)
(
x− 1

2
(d0 + c0)

)
.

We point out one other useful rewriting:

f(x) = a · x− b = (d0 − c0) · (x− d0) +
1

2
|d0 − c0|2. (6.2.1)

C

D

c0

d0

P

c0+d0
2

We show the inclusion D ⊂ {x ∈ Rn : a · x > b} only. The other inclusion is proved similarly since
the roles of C and D are essentially symmetric.

Suppose that minD f ≤ 0. By the extreme value theorem applied to f |D, we can find d1 ∈ f such
that f(d1) ≤ 0. Parametrize the line segment connecting d0 and d1 by

dt = d0 + t(d1 − d0) = (1− t)d0 + td1 ∈ D for t ∈ [0, 1].
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The inclusion in D follows by the convexity of D. Then

d

dt
|dt − c0|2

∣∣∣
t=0

= 2(d0 − c0) · (d1 − d0) = 2f(d1)− |d0 − c0|2 < 0,

where the last equality uses (6.2.1) and the last inequality follows from the fact that f(d1) ≤ 0 and
d0 ̸= c0. We conclude that there is some t small but positive such that

|dt − c0|2 < |d0 − c0|2 = dist(C,D)2.

This is a contradiction because dt ∈ D and, hence, |dt − c0| ≥ dist(C,D).

Example 6.2.4. (i) (Inequalities do not have to be strict):

C
D

P

C = {(x, y) : x2 + y2 < 1} and D = {(1, 0)}.

Since there is no “separation” between them, the best we can do is the
hyperplane

P = {1} × R = {(x, y) : x = y}.

Then

C ⊂ {(x, y) : x ≤ 1} and D ⊂ {(x, y) : x ≥ 1}.

Notice that the ≤ and ≥ cannot be replaced by < and >, respectively.
Notice that this also shows that C and D do not need to be disjoint
to be separated by a hyperplane.

(ii) Two sets do not need to be convex to be separated by a hyperplane: This is
somewhat obvious, because one can easily draw many examples. A simple example is:

C = {(x, y) : (x− 10)2 + y2 = 1}, D = {(x, y) : (x+ 10)2 + y2 = 1}, and P = {0} ×R.

Above we see some limitations to an appropriate converse to Proposition 6.2.3. Let us try to find
a partial converse.

Definition 6.2.5. The boundary of a set C in a metric space (X, d) is:

∂C = C̄ \ IntC.

Example 6.2.6. In the metric space R:

∂(a, b) = ∂[a, b] = {a, b}, ∂{x1, . . . , xn} = {x1, . . . , xn}, and ∂Q = R.

In the metric space Rn

∂Br(ā) = {x̄ ∈ Rn : |x̄− ā| = r}.

Definition 6.2.7. Given a set C ⊂ Rn and a point x0 ∈ ∂C, P is a supporting hyperplane of C
at x0 if P is a separating hyperplane of C and {x0}.

Example 6.2.8. • The separating hyperplane P in Example 6.2.4 is a supporting hyperplane
of C = B1(0) at (1, 0).
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• Supporting hyperplanes need not exists: When C is not convex, we may not have a
supporting hyperplane. Indeed, let

C =

{
(x, y) ∈ R2 :

1

2
≤ x2 + y2 ≤ 1

}
Then x̄0 = (1/2, 0) ∈ ∂C, but the hyperplane tangent to x2+ y2 = 1/2 (the only possibility for
a supporting hyperplane) is P = {(1/2, y) : y ∈ R}. Clearly P is not a separating hyperplane!

C

x̄0

P

• Non-uniqueness of supporting hyperplanes: Let

C = [−1, 1]× [−1, 1]

and consider x0 = (1, 1) ∈ ∂C. Then, for any r ≤ 0, the hyperplane

P = {(1, 1) + (x, rx) : x ∈ R} = {(x, y) : rx− y = r − 1}

is a supporting hyperplane at x0. Hence, there are infinitely many supporting hyperplanes.

Proposition 6.2.9. If C ⊂ Rn is a convex set and x0 ∈ ∂C, then a supporting hyperplane exists.

Proof. We assume without loss of generality that x0 = 0. Indeed, were this not the case, we can
simply shift all arguments by x0.

The easy case is when IntC ̸= ∅. Then the proof is finished by applying Proposition 6.2.3 to IntC
(which is convex) and {0}.
Now let us consider the case when IntC = ∅. First, we claim that, in this case, there is a hyperplane
P such that C ⊂ P . Notice that P would be a separating hyperplane, so, were we to show this
inclusion, our proof would be finished.

We argue by contradiction assuming that C is not contained in any hyperplane. By the contradictory
assumption, C is not contained in a proper subspace of Rn. Hence, Span(C) = Rn; that is, there
are n linearly independence vectors c1, . . . , cn ∈ C. We claim that

cmean :=
1

2
0 +

1

2n
(c1 + · · ·+ cn) ∈ IntC. (6.2.2)
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Let M be the matrix whose columns are c1, . . . , cn. Then M is invertible by the linear independence
of its columns. To establish (6.2.2), we show that

Bε(cmean) ⊂ C where ε =
1

100n∥M−1∥
. (6.2.3)

for ε > 0 to be chosen. Fix x ∈ Bε(Cmean), and note that

|M−1(x− cmean)| ≤ ∥M−1∥|x− cmean| ≤ ∥M−1∥ε < 1

100n
. (6.2.4)

Clearly,

M−1cmean =

(
1

2n
,
1

2n
, . . . ,

1

2n

)
.

Hence, by (6.2.4), we have
M−1x = (θ1, . . . , θn)

where
0 < θi <

1

n
. (6.2.5)

Hence, we can write
x = (1− θ1 − · · · − θn)0 + θ1c1 + · · ·+ θncn.

We deduce from the above (keeping in mind (6.2.5)) that x ∈ C, which implies that (6.2.3), as
desired. This concludes the proof.

6.3. Convex functions. The standard second order characterization, that is, that D2f is
non-negative definite, for convexity is too restrictive, as we see in the plots below. Let us go over
two simpler conditions.

6.3.1. Zeroth order condition. Recall that a convex function f : V → [−∞,∞] satisfies

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) for all θ ∈ (0, 1), x ̸= y ∈ R.

We showed this in one dimension on a homework. On the other hand, this is a perfectly good
definition of a function being convex, so let us use it as one! It essentially captures the fact that
the set of points above the graph of f is a convex set.

We say that f is strictly convex if the above is true with “<” in place of “≤.”

Let us illustrate this definition in some figures:
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An advantage to this definition is that it does not require that f is smooth. Indeed, in the second
figure above, we see that f need not be everywhere differentiable to satisfy the definition of convexity.

If the domain of f is K ⊂ V then we additionally require that K be convex. On the other hand,
we say that f is concave if −f is convex.

We allow f to take infinite values under the convention that θ ·(±∞) = ±∞ if θ > 0, θ ·(±∞) = ∓∞
if θ < 0, and 0 · (±∞) = 0. We have to avoid situations with expressions like ∞ − ∞. We also
consider inequalities of the form ∞ ≤ ∞ to be valid; for example, this allows ∞ ≤ (1/2)∞, although
this is not normally valid.

Example 6.3.1. (i) Fix a set C ⊂ Rn. Define the function

IC(x) =

{
0 if x ∈ C,

∞ if x /∈ C.
(6.3.1)

Exercise 6.3.1. Show that IC is convex if and only if C is convex.

(ii) The function

f(x) =

{
1

1−x2 if x ∈ (−1, 1),

∞ if |x| ≥ 1

is convex.

Exercise 6.3.2. Show this!

(iii) In general, if fC is a convex function on a set C, then

f(x) =

{
fC(x) if x ∈ C,

∞ if x /∈ C.

is convex.

Exercise 6.3.3. Show this!

6.3.2. First order condition. Another way to characterize a convex function f is that the tangent
plane to the graph of f at any point x0 sits below the graph of f . Mathematically, we write this as:
fix f : K → R, with K open49 and convex, then f is convex if, for every x0 ∈ K,

f(y) ≥ f(x0) +∇f(x0) · (y − x0) for all y ∈ K. (6.3.2)

Let us illustrate this in a figure, where the dotted, dashed, and dot dashed lines are various tangent
lines.
49We require open so that we can easily make sense of derivatives.
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x

f(x)

f(0) + f ′(0)(x− 0)

f(.75) + f ′(.75)(x− .75)

f(−2) + f ′(−2)(x+ 2)

Let us show that this characterization of f jibes with the zeroth order definition of convex.

Proposition 6.3.2. Suppose that f ∈ C1. Then f is a convex function if and only if (6.3.2) holds
for all x0, y ∈ K.

Proof. We first show the forwards direction. Suppose that f is convex. We use a standard trick:
let F : [0, 1] → R be defined by

F (t) = f(x+ t(y − x)). (6.3.3)

Notice that
F ′(0) = ∇f(x) · (y − x).

Using the convexity of f , we have, for all t ∈ (0, 1),

F (t)− F (0)

t
=
f((1− t)x+ ty)− f(x)

t
≤ (1− t)f(x) + tf(y)− f(x)

t
= f(y)− f(x).

Taking the limit t→ 0 and using (6.3.3), we find

∇f(x) · (y − x) = F ′(0) ≤ f(y)− f(x),

which completes the proof of the claim.

Now we show the backwards direction. Suppose that f satisfies (6.3.2). Then applying (6.3.2) twice,
we find

f(x) ≥ f(θx+ (1− θ)y) +∇f(θx+ (1− θ)y) · (θx+ (1− θ)y − x)

= f(θx+ (1− θ)y) +∇f(θx+ (1− θ)y) · (−(1− θ)x+ (1− θ)y)

and

f(y) ≥ f(θx+ (1− θ)y) +∇f(θx+ (1− θ)y) · (θx+ (1− θ)y − y)

= f(θx+ (1− θ)y) +∇f(θx+ (1− θ)y) · (θx− θy).

Multiplying the first inequality by θ and the second inequality by 1− θ and then adding them, we
find

θf(x) + (1− θ)f(y) ≥ f(θx+ (1− θ)y).

This concludes the proof.
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6.4. Epigraphs, hypographs sublevel sets, and superlevel sets. Recall that the
graph of a function f : Rn → R is the set {(x, f(x)) : x ∈ Rn}.

Definition 6.4.1. Fix f : Rn → R and α ∈ R.

• The α-sublevel set is {x ∈ Rn : f(x) ≤ α}.

• The α-superlevel set is {x ∈ Rn : f(x) ≥ α}.

Proposition 6.4.2. If a function f : Rn → R is convex, then its α-sublevel set is convex for every
α.

Proof. This is nearly a tautology when using the zeroth order definition of convexity.

Exercise 6.4.1. Prove this!

Exercise 6.4.2. Find an example of f that is not convex but whose α-sublevel sets are all convex.

Definition 6.4.3. Let f : Rn → R be a function.

• The epigraph of f is the set epi f = {(x, t) : t ≥ f(x)}.

• The hypograph of f is the set hypo f = {(x, t) : t ≤ f(x)}.
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Proposition 6.4.4. A function f : Rn → R is convex if and only if its epigraph set is convex.

Proof. This is nearly a tautology when using the zeroth order definition of convexity.

Exercise 6.4.3. Prove this!

Notice that Proposition 6.4.2 and Proposition 6.4.4 give a nice connection between sets and func-
tions. This way of looking at things lends itself to easy proofs of useful theorems. We cover one
(very important consequence!) here:

Proposition 6.4.5. Suppose that I is an indexing set and that, for every ι ∈ I, the function fι is
convex. Then the function defined by

f(x) = sup
ι∈I

fι(x)

is convex as well.

Before proving this, let us point out that this is a possibly terrible function! In fact, there is not
reason to believe that f has any form of continuity at all!

Proof. We claim that the epigraph of f is the intersection of the epigraphs of the fι’s:

{(x, t) : t ≥ f(x)} =
⋂
ι∈I

{(x, t) : t ≥ fι(x)}. (6.4.1)

Note that, were this true, we would be finished because the lefthand side is the intersection of convex
sets and is, thus, convex.

Let us now establish (6.4.1).
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6.4.1. A useful characterization of convex functions.

Proposition 6.4.6. Let f : Rn → R. The function f is convex if and only if there is an indexing
set I such that, for every x,

f(x) = sup
ι∈I

(mι · x+ bι).

Note: mι ∈ Rn and bι ∈ R for each ι ∈ I.

Proof. For simplicity, we prove it only in the case where f does not take infinite values; however,
an analogue holds in the case where f takes infinite values.

=⇒ This direction is straightforward. For each x, let λx, bx be such that {(y,mx ·y+ bx) : y ∈ Rn}
is a supporting hyperplane50 of the epigraph of f . It follows that, for all y,

f(y) ≥ mx · y + bx.

We are then finished after choosing the indexing set I = Rn. Indeed,

f(x) = λx · x+ bx and f(x) ≥ λy · x+ by for all y.

Hence,
f(x) = sup

y∈I
(my · x+ by).

⇐= We showed above that the supremum of convex functions remains convex (Proposition 6.4.5).
Linear functions are convex. The result follows.

Exercise 6.4.4. Using that, for any symmetric n×n matrix M , the principal eigenvalue51 satisfies

λ1(M) = sup
x∈Rn,∥x∥2=1

x ·Mx,

show that λ1 is a convex function of M .

Exercise 6.4.5. Show that λ2(M) is not necessarily convex, and that λn(M) is concave.

6.4.2. Subgradients. Given a function f : V → R, we may define a weak notion of gradient even
in the cases where f is not differentiable.

Definition 6.4.7. Fix x0 ∈ V . We say that λ ∈ V ∗ is a subgradient of f at x0 if, for all x ∈ V ,

λ(x− x0) + f(x0) ≤ f(x). (6.4.2)

We denote by ∂f(x0) the set of all subgradients. This is called the subdifferential.

Proposition 6.4.8. Suppose that f : Rn → R is convex.

(i) If f is differentiable at x0 then ∂f(x0) = {∇f(x0)}.
50Here we are using that f is not infinite. Otherwise, it could be that the hyperplane is vertical and, thus, not of this

form.
51i.e., the largest eigenvalue
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(ii) If ∂f(x0) has at least two points in it, then it is infinite.

Proof. (i) First we observe that ∇f(x0) ∈ ∂f(x0) by (6.3.2), the first order condition for convex-
ity. Next, we show that if a ∈ ∂f(x0), then

a = ∇f(x0).

We argue by contradiction assuming that a ̸= ∇f(x0). By definition52, we know that there is
a function g : R → R+ such that g(x) → 0 as x→ 0 and

f(y) ≤ f(x0) +∇f(x0) · (y − x0) + g(|x0 − y|)|x0 − y|.

Then, since a ∈ ∂f(x0), we have

a · (y − x0) + f(x0) ≤ f(y) ≤ f(x0) +∇f(x0) · (y − x0) + g(|x0 − y|)|x0 − y|.

Rearranging this, we have

0 ≤ (∇f(x0)− a) · (y − x0)

|y − x0|
+ g(|y − x0|).

Crucially, we may take any choice of y here. For any ε > 0, let us choose yε = −ε(∇f(x0)−a),
and the above becomes

0 ≤ −|∇f(x0)− a|2 + g(ε|∇f(x0)− a|).

Taking ε↘ 0, we find 0 ≤ −|∇f(x0)− a|2, which is a contradiction. The proof is finished.

(ii) This follows from the homework exercise showing that ∂f(x0) is a convex set. Hence, if
a0, a1 ∈ ∂f(x0), so is θa0 + (1− θ)a1 for every θ ∈ [0, 1]. This completes the proof.

Note that Proposition 6.4.6 shows that, if f is convex, the subdifferential is nonempty.

Example 6.4.9. Let abs : Rn → R be defined by abs(x) = |x|. We claim that, if x0 ̸= 0,

∂ abs(x0) = {x0}

and
∂ abs(0) = {y ∈ Rn : |y| ≤ 1}.

We note that the claim about x0 ̸= 0 follows from the fact that abs is smooth away from 0,
∇ abs(x0) = x0/|x0|, and, D2 abs is nonnegative definite53. Indeed, by Taylor’s approximation,
there is θ ∈ [0, 1] such that

abs(x) = abs(x0) +D abs(x0) · (x− x0) +
1

2
(x− x0) ·D2 abs(θx+ (1− θ)x0))(x− x0)

≥ abs(x0) +D abs(x0) · (x− x0).

52Recall that ∇f(x0) is defined as a vector such that lim
y→x0

|f(y)−f(x0)−∇f(x0)·(y−x0)|
|x0−y| = 0.

53Recall that a symmetric matrix M is nonnegative definite if x ·Mx ≥ 0 for all x. Equivalently, this means that M
has all nonnegative eigenvalues.
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Hence, (6.4.2) is satisfied with the choice λ = D abs(x0)·.
We now consider the case x0 = 0. First we check that anyy ∈ Rn is an element of the subdifferential,
we see that

abs(0) + y · (x− 0) = y · x ≤ |y| |x| ≤ abs(x).

Hence, (6.4.2) holds for λ = y·. Next, we finish by checking that any y ∈ Rn with |y| > 1 is not in
the subdifferential. Indeed,

abs(0) + y · (y − 0) = y · y = |y|2 > |y| = abs(y).

Hence, (6.4.2) does not hold with x = y, x0 = 0, and λ = y·.

Exercise 6.4.6. The subdifferential of a convex function is a closed, convex set.

6.4.3. Operations preserving convexity.

Exercise 6.4.7. Prove the following:

• Suprema/Max: We have already showed that f(x) = supι∈I fι(x) is convex if fι is convex
for every ι ∈ I.

• Convex combinations: If f1, . . . , fn are convex, θ1, . . . , θn ≥ 0, and θ1 + · · ·+ θn = 1, then

f(x) = θ1f1(x) + · · ·+ θnfn(x)

is also convex. Why? One can check that epi f = θ1 epi f1 + · · · + θn epi fn. The convex
combination of combination of convex sets is comvex.

• Composition of affine and convex functions: Suppose that g : W → V is affine and
f : V → R is convex. Then f ◦g :W → R is convex. Why? The linearity of g preserves sums.

• Restriction to lower dimensional convex sets: Let f : Rm×Rn → R be a convex function
and C ⊂ Rm a convex set. Then

g(x) = inf
y∈C

f(y, x)

is a convex set.

Let us prove the last point:

Proof. Fix any x1, x2 ∈ Rn and θ ∈ [0, 1]. Fix ε > 0 and find y1, y2 ∈ C such that, for each i = 1, 2,

f(yi, xi) ≤ g(xi) +
ε

100
. (6.4.3)

Then

g(θx1 + (1− θ)x2) ≤ f(θy1 + (1− θ)y2, θx1 + (1− θ)x2) = f(θ(y1, x1) + (1− θ)(y2, x2))

≤ θf(y1, x1) + (1− θ)f(y2, x2) ≤ θ
(
g(x1) +

ε

100

)
+ (1− θ)

(
g(x2) +

ε

100

)
≤ θg(x1) + (1− θ)g(x2) + ε.

In the first step, we used that g is an infimum over all choices of y (so we may choose any convenient
y), while in the following steps we used (6.4.3) and the definition of convexity. Since this holds for
every ε, it follows that

g(θx1 + (1− θ)x2) ≤ θg(x1) + (1− θ)x2).
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Example 6.4.10. If C ⊂ Rn and
dC(x) = inf

y∈C
∥x− y∥,

then dC is convex if and only if C is convex. We show two simple examples of this below: the one
on the left for the set C = {−1, 1} (not convex) and the one on the right for the set C = [−1, 1]
(convex).

+1−1 C

f

+1−1 C

f

6.5. Conjugate functions and duality.

6.6. Fenchel conjugate. Many of the ideas above center on the idea of duality (e.g., Propo-
sition 1.4.7). We can use this idea of optimizing over all ‘test’ points to define a new functions:
given F : Rn → R, let

F ∗(x) = sup
y∈Rn

(x · y − F (y)) . (6.6.1)

This is called the Fenchel conjugate (or it can be called the convex conjugate or the Legendre
transformation, although the latter is usually only used when F is convex). The output may be
infinite for certain values of x, depending on the shape of F .

Notice that (6.6.1) immediately yields an inequality, the Fenchel inequality:

x · y ≤ F (y) + F ∗(x) for all x, y ∈ Rn. (6.6.2)

We see below that Young’s inequality (Lemma 1.4.5) is a particular case of the Fenchel inequality.

Another consequence of (6.6.2) is a nice geometric interpretation of F ∗: we have

x · y − F ∗(x) ≤ F (y) for all y ∈ R

and, due to (6.6.1), for any ε > 0, there is yε such that

x · yε − F ∗(x) + ε > F (yε).

In other words, x · y − F ∗(x) is the largest plane at angle x that sits below the graph of F . In
one dimension, this is perhaps easier to envision: xy − F ∗(x) is the largest line with slope x that
sits below the graph of F . To really drive this home, let us rephrase it in the following way: start
the graph of xy with intercept −∞ and then “slide” it up until it “touches” the graph of F . The
intercept of this is F ∗(x). Here are some pictures showing this: Let us rephrase this one last time.
F ∗(x0) is the smallest vertical shift of a plane defined by x0 so that the resulting plane (the graph
of x0 · y − F ∗(y)) sits underneath the graph of F .

Another thing to note is that, when the supremum is a maximum, it is attained at some x∗ satisfying

0 = ∇y (x · y − F (y))
∣∣∣
y=x∗

= x−∇F (x∗) –or– x = ∇F (x∗).
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Figure 8: Here we show the geometric meaning of F ∗(1) when F (x) = 1
2x

2. In each frame,
we slide a line with slope 1 up until it “touches” the graph of F in the last frame. Since this
“touching” line’s y-intercept is −.5, then F ∗(1) = .5.

Example 6.6.1. Let F : R → R and F (x) = ax for some a > 0. Then

F ∗(x) = sup
y

(
xy − ay2

)
.

Since
lim

y→±∞

(
xy − ay2

)
= ∞

the supremum is actually a maximum. It must, thus, be attained at a critical point:

0 =
(
xy − ay2

)′
= x− 2ay =⇒ y =

x

2a
.

Thus,

F ∗(x) = x
x

2a
− a
( x
2a

)2
=
x2

2a
− x2

4a
=
x2

4a
.

Exercise 6.6.1. Let p, q be conjugate exponents with p, q ∈ (1,∞). Let F (x) = |x|p/p. Show that
F ∗(x) = |x|q/q. Use this to deduce Young’s inequality (Lemma 1.4.5) via Fenchel’s inequality.
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Note: the above can also be extended to infinite dimensional spaces using bounded linear functionals
in place of x · y. Note that f∗ is the supremum of convex (affine) functions so it is itself convex by
Proposition 6.4.6.

When f is continuously differentiable, grows fast enough54 (as |x| → ∞), and is strictly convex,
there is a unique solution yx ∈ Rn to

x = ∇f(yx)

and then
f∗(x) = x · yx − f(yx).

The procedure of finding this yx and then using it to compute f∗ is sometimes called the Legendre
transform of f55.

What does one do in the case where f is not be smooth? If f is convex we can replace (6.3.2) with
the subdifferential: take any yx ∈ Rn such that

x ∈ ∂f(yx). (6.6.3)

Are we sure this works? What if there are many different elements in the subdifferential? Suppose
we have two elements y1 and y2 satisfying (6.6.3). Can we compare the two potential values of
f∗(x):

x · y1 − f(y1) and x · y2 − f(y2)?

Using the definition of subdifferential (6.4.7), we find

x · (y2 − y1) + f(y1) ≤ f(y2) and x · (y1 − y2) + f(y2) ≤ f(y1).

Rearranging these, we find

x · y2 − f(y2) ≤ x · y1 − f(y1) ≤ x · y2 − f(y2).

In other words,
x · y2 − f(y2) = x · y1 − f(y1),

so the choice does not matter!

Exercise 6.6.2. Work this out in the case of abs : Rn → R.

Warning: there may not be a subgradient satisfying (6.6.3). In this case, one has to approach the
problem in an ad-hoc manner, but usually it is not too difficult to compute in these cases.

Exercise 6.6.3. (i) Let C ⊂ Rn be a convex set. Define IC as in (6.3.1). Show that I∗C is the
support function56 of C. Is there a subgradient for every x ∈ Rn?

(ii) Suppose that f is given by the sum of independent functions:

f(x̄) = f(x1, . . . , xn) = f1(x1) + · · ·+ fn(xn).

Then f∗ = f∗1 + · · ·+ f∗n.

54That is, that lim inf
|x|→∞

f(x)
|x| = ∞.

55Actually, in my experience, people often refer to the Fenchel conjugate as the Legendre transform, but this is
probably field specific.

56see HW1, Spring 2023

205



(iii) Take the soft-max function
f(x̄) = log (ex1 + · · ·+ exn) .

Let p ∈ ∆n, which is the probability57 simplex

∆n = {p̄ ∈ [0, 1]n : p1 + · · ·+ pn = 1}.

Show that its conjugate is the negative entropy function

f∗(p̄) = p1 log p1 + · · ·+ pn log pn,

where we use the convention that 0 log 0 = 0. What happens if p̄ ̸∈ ∆n?

Proposition 6.6.2. Let f : Ω → R and x ∈ Ω. Then:

(i) f∗∗(x) ≤ f(x);

(ii) f∗∗(x) = f(x) if f is convex.

Proof.

Exercise 6.6.4. Prove (i).

If f is convex, take a supporting hyperplane of epi f ; that is, find w ∈ Rn such that

w · (y − x) + f(x) ≤ f(y) for all y ∈ Rn.

Rearranging this, we see that

f∗(w) = sup
y∈Rn

(w · y − f(y)) = w · x− f(x).

Hence,
f∗∗(x) = sup

u∈Rn
(x · u− f∗(u)) ≥ (x · w − f∗(w)) = f(x).

Since f∗∗(x) ≤ f(x) by part (i), it follows that f∗∗(x) = f(x).

Note that, in general, f∗∗ will be the “largest” convex function smaller than f . This is illustrated
in the images below.

f f∗∗

57So named because pi can be the probability of i different events, one of which has to happen (e.g., p1 = the
probability of heads on a coin flip and p2 = the probability of tails on that coin flip.
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6.7. Jensen’s inequality. A fundamental inequality that is especially useful in probability is
Jensen’s inequality. We begin with the discrete version of the inequality

Proposition 6.7.1. Suppose that f : Rn → R is a convex function. Suppose that θ1, . . . , θk ∈ [0, 1]
with θ1 + · · ·+ θk = 1. Then

f
( k∑

i=1

θixi

)
≤

k∑
i=1

θif(xi). (6.7.1)

Before proving this, let us make a quick note above how this relates to probability. Let us say
that a random event with k different possible outcomes x1, . . . , xn occurs and each has probability
θ1, . . . , θn. Suppose that f is some “payout” function. Then

k∑
i=1

θixi

is the mean outcome. Thus, the left hand side of (6.7.1) is the payout function evaluated at the
mean outcome. On the other hand, the right hand side of (6.7.1) is the expected value of the payout.
In other words, the payout of the mean value is less than the expected payout.

Proof. If k = 1, then θ1 = 1 and the result is obvious. If k = 2, the inequality (6.7.1) is exactly the
one appearing in the definition of convexity and are finished. Let us now prove it for k > 2.

By definition, (xi, f(xi)) ∈ epi f for each i. Since f is convex, so is epi f . It follows that(
k∑

i=1

θixi,

k∑
i=1

θif(xi)

)
=

k∑
i=1

θi(xi, f(xi)) ∈ epi f.

This is equivalent to (6.7.1), which finishes the proof.

The continuous version of the inequality is the one perhaps used more often in practice.

Proposition 6.7.2. Let f : K → R be a convex function on a convex set K, and let g : K → R+

be a Riemann integrable function such that∫
K
g(x)dx = 1. (6.7.2)

Then
f
(∫

K
xg(x)dx

)
≤
∫
K
f(x)g(x)dx.

Two comments are in order before we begin our proof. First, g(x) here plays the role of θi in
Proposition 6.7.1. Second, we can integrate against arbitrary “measures” instead of just measures of
the form g(x)dx. This will make sense later in the notes, but its importance is related to integrating
against an arbitrary probability measure dP . In this case, we obtain the following version of Jensen’s
inequality:

f(E[X]) ≤ E[f(X)]

when E is an expectation, X is a random variable (e.g., the value of a roll of dice), and f is a convex
function. In this sense, we find

E[X]2 ≤ E[X2],

by using f(x) = x2, which yields

Var(X) := E[X2]− E[X]2.
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Proof. For notational simplicity, let

x̄ =

∫
K
xg(x)dx. (6.7.3)

Exercise 6.7.1. Show that x̄ ∈ K.

Then, by convexity of f , there is a subgradient a ∈ ∂f(x̄). Hence, we have, for every x ∈ K,

a · (x− x̄) + f(x̄) ≤ f(x). (6.7.4)

Notice that ∫
K
a · (x− x̄)g(x)dx = a ·

(∫
K
xg(x)dx−

∫
K
x̄g(x)dx

)
= a ·

(
x̄− x̄

)
= 0.

Above, we used (6.7.3) and that ∫
K
x̄g(x)dx = x̄

due to (6.7.2). Similarly, ∫
K
f(x̄)g(x)dx = f(x̄)

Hence, integrating (6.7.4) with respect to g(x)dx, we find

f(x̄) =

∫
K
(a · (x̄− x̄) + f(x̄)) g(x)dx ≤

∫
K
f(x)g(x)dx,

which is exactly the desired conclusion.

One application of this is the Kullback-Liebler Divergence

DKL(p∥q) := −
∫

log

(
q

p

)
p dx,

that is a kind of relative entropy that describes the distance between two probability measures58.
Since − log is a convex function, we have

DKL(p∥q) ≥ − log

(∫ (
q

p

)
p dx

)
= − log

(∫
q(x)dx

)
= − log(1) = 0.

Moreover, it is easy to check that log is strictly convex and this, along with the proof of Proposi-
tion 6.7.2 indicates that

DKL(p∥q) = 0 ⇐⇒ p = q.

Hence, DKL is a reasonable measure of the alikeness of two measures.
58That is, p, q ≥ 0 and

∫
p(x)dx =

∫
q(x)dx = 1.
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7. Optimization

7.1. Linear Programming. A linear program is a convex optimization problem in which all
functions are affine:

maximize c · x+ d

subject to Mx ⪯ t
Ax = b.

where we say that
v ⪯ w if vi ≤ wi for all i.

Here x, c ∈ Rn, t ∈ R, M ∈ Rm×n, t ∈ Rm, A ∈ Rk×n, and b ∈ Rk.

Clearly the choice of d does not affect the identification of the minimizing x so we may omit it if our
goal is only to find the location of the maximum. We opt to do this in these notes. We call those
x satisfying Mx ⪯ t and Ax = b the feasible set. We note that the feasible set is a polyhedron.

A linear program is bounded if the objective function c · x + d is bounded on the feasible set. The
value of an unbounded linear program is +∞.

We note that there is no algorithm to exactly solve a linear program, although the field is mature. On
the other hand, there are a number of good strategies to try and algorithms that give approximate
solutions.

7.1.1. Standard and inequality forms. We say that a linear program is in standard form if it
is of the form:

maximize c · x
subject to x ⪰ 0

Ax = b.

In other words, the componentwise inequality involves only nonnegativity constraints x ⪰ 0.

We can convert a linear program

maximize c · x
subject to Mx ⪯ t

Ax = b

to standard form in the following way. Let us introduce the “slack variable” s ⪰ 0 such that
Mx+ s = t. Additionally, let us write

x = x+ − x−

for two new vectors x+, x− ⪰ 0. Then, the above becomes

maximize c · x+ − c · x−
subject to Mx+ −Mx− + s = t

Ax+ −Ax− = b
x+ ⪰ 0, x− ⪰ 0, s ⪰ 0.
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Thought of properly, this is a linear program in standard form. Indeed, let

x̃ = (x+1 , . . . , x
+
n , x

−
1 , . . . , x

−
n , s1, . . . , sn)

c̃ = (c1, . . . , cn,−c1, . . . ,−cn, 0, . . . , 0), b̃ = (t1, . . . , tm, b1, . . . , bk),

and Ã =

[
M −M id
A −A 0

]
,

then

maximize c̃ · x̃
subject to x̃ ⪰ 0

Ãx̃ = b̃.

This last step is really quite awkward, so it is perfectly fine to use the more reasonable form

maximize c · x+ − c · x−
subject to x+ ⪰ 0, x− ⪰ 0, s ⪰ 0

Mx+ −Mx− + s = t
Ax+ −Ax− = b.

On the other hand, it is in inequality form if it is of the form:

maximize c · x
subject to Mx ⪯ t.

A linear program inequality form can be solved in O(n2m) steps to a given accuracy (recall that
M ∈ Rm×n).

7.1.2. The dual problem: an extended example. Let us consider the following linear program:

maximize 2x1 + 3x2
subject to 4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3
3x1 + 2x2 ≤ 4
(x1, x2) ⪰ 0.

We refer to this as the primal problem, for reasons that become clear below.

The first question that one might ask is if the problem is feasible; that is, are there any x that
satisfy the constraints? Here it is easy to see that x = (0, 0) is in the feasible set.

Next, we check that the maximum is bounded:

2x1 + 3x2 ≤ 4x1 + 8x2 ≤ 12.

A slightly better argument is

2x1 + 3x2 ≤
1

2
(4x1 + 8x2) ≤ 6.

Refining this further, we find

2x1 + 3x2 =
1

3
(4x1 + 8x2 + 2x1 + x2) ≤

1

3
(12 + 3) = 5.
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What are we doing in each case? What is this strategy? We are choosing λ ⪰ 0 and writing

2x1 + 3x2 ≤ λ1(4x1 + 8x2) + λ2(2x1 + x2) + λ3(3x1 + 2x2) ≤ λ · [12 3 4]. (7.1.1)

The first inequality only works if

λ

4 8
2 1
3 2

 ⪰ [2 3]. (7.1.2)

To get the “best” inequality in (7.1.1) (that is, the smallest upper bound), we should choose λ that
minimizes λ · [12 3 4] subject to the constraint (7.1.2).

This leads to the dual problem

minimize 12λ1 + 3λ2 + 4λ3
subject to 4λ1 + 2λ2 + 3λ3 ≥ 2

8λ1 + λ2 + 2λ3 ≥ 3
λ ⪰ 0.

It perhaps “feels” like this should lead us to the solution of the primal problem, even if that is not
mathematically clear yet. What we do have is weak duality: the value of the primal problem is less
than or equal to that of the dual problem. Let us call P the value of the primal problem and D the
value of the dual problem. The above is summarized as

P ≤ D. (7.1.3)

This leads to the following strategy: if we can find candidate feasible points x = (x1, x2) to the
primal problem and λ = (λ1, λ2, λ3) to the dual problem such that the primal problem at x is larger
than the value of the dual problem at λ, then we have solved both the dual and the primal problems!

Here, let us try x = (1/2, 5/4) and λ = (5/16, 0, 1/4).

• Primal problem: We check that x is feasible:

4x1 + 8x2 = 2 + 10 ≤ 12, 2x1 + x2 = 1 + 5/4 ≤ 3,

3x1 + 2x2 = 3/2 + 5/2 ≤ 4, x1, x2 ≥ 0.

We deduce that the value of the primal problem satisfies:

P ≥ 2x1 + 3x2 = 1 + 15/4 = 19/4. (7.1.4)

• Dual problem: We check that λ is feasible:

4λ1 + 2λ2 + 3λ3 = 5/4 + 0 + 3/4 ≥ 2, 8λ1 + λ2 + 2λ3 = 5/2 + 0 + 1/2 ≥ 3,

λ1, λ2, λ3 ≥ 0.

We deduce that the value of the dual problem satisfies

D ≤ 12λ1 + 3λ2 + 4λ3 = 15/4 + 0 + 1 = 19/4. (7.1.5)
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Putting together (7.1.3), (7.1.4), and (7.1.5), we find

19/4 ≤ P ≤ D ≤ 19/4;

that is, P = D = 19/4.

Let us look further into the problem of finding these “good” points. Here is a contour plot of
2x1 + 3x2:

The feasible sets imposed by 2x1 + x2 ≤ 3 and 4x1 + 8x2 ≤ 12 lead to the figure on the left below,
while adding the constraint 3x1 + 2x2 ≤ 4 leads to the the right on the right below. The feasible
sets are those “below” the red lines.

We immediately notice that the second condition (2x1 + x2 ≤ 3) plays no role. Instead, it is
heuristically clear that the “best” point is where the lines 3x1 + 2x2 = 4 and 4x1 + 8x2 = 12 meet.
This is exactly how we have found the point (1/2, 5/4).

What about the dual problem? Since the inequality associated to λ2 is “inactive” (cf. (7.1.1) and
recall that 2x1 + x2 ≤ 3 plays no role in determining the feasible set in the primal problem), we set
λ2 = 0. Then we find λ1 and λ3 by solving the constraint equations with the choice λ2 = 0:

4λ1 + 3λ3 = 2 and 8λ1 + 2λ3 = 3.

This yields exactly the choice λ = (5/16, 0, 1/4) above.

7.1.3. Finding the dual problem: another example. Consider the following primal problem:

maximize 2x1 + 3x2 − x3
subject to 2x1 + x2 ≤ 3

x1 + x2 + x3 ≥ 4
x1 − x3 = 1

(x1, x2) ⪰ 0, x3 ∈ R.
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Notice that the second inequality is a bit weird: it is a ≥ not a ≤! So let us be very careful with
this. As we did before, we use λ = (λ1, λ2, λ3) to find a linear combination that may be useful:

2x1 + 3x2 − x3 ≤ λ1(2x1 + x2) + λ2(x1 + x2 + x3) + λ3(x1 − x3)

≤ 3λ1 + 4λ2 + λ3.
(7.1.6)

The first inequality can only hold if

2 ≤ 2λ1 + λ2 + λ3

3 ≤ λ1 + λ2,

because x1, x2 ≥ 0. On the other hand, x3 is not necessarily positive! So we require −x3 =
λ2x3 − λ3x3; that is,

−1 = λ2 − λ3.

On the other hand, the second inequality in (7.1.6) holds only if

λ1 ≥ 0, λ2 ≤ 0, and λ3 ∈ R.

Why? Because x1 + x2 + x3 ≥ 4, so λ2(x1 + x2 + x3) ≤ 4λ2 holds only if λ2 ≤ 0. Additionally,
x1 − x3 = 1, so λ3(x1 − x3) ≤ λ3 for any λ3 ∈ R. As before, the “best” choice of λ will minimize
the right hand side in (7.1.6). We end up with the dual problem

minimize 3λ1 + 4λ2 + λ3
subject to 2λ1 + λ2 + λ3 ≥ 2

λ1 + λ2 ≥ 3
λ2 − λ3 = −1

λ1 ≥ 0, λ2 ≤ 0, λ3 ∈ R.

Pulling back for a moment notice that the coefficients in the objective function for the dual problem
(3, 4, 1) are precisely the right hand side of the constraints in the primal problem and vice versa.
Additionally, the matrix making up the constraints in the primal problem and dual problem are,
respectively, 2 1 0

1 1 1
1 0 −1

 and

2 1 1
1 1 0
0 1 −1


Notice that these are the transpose of each other! Additionally, every constraint involving a ≤ in
the primal problem became a ≥ in the dual problem (similarly with ≥ and ≤). Finally, an equality
in the primal problem, lead to any real-value in the dual problem.

7.1.4. The duality theorem. In general, we get the following summary for finding the dual
problem: Again we stress that the value of the primal problem is no more than the value of the
dual problem. When are they equal? We have a handy theorem for this:

Theorem 7.1.1 (Duality Theorem). Let c ∈ Rn, A ∈Mm×n, and b ∈ Rm. For the linear programs

maximize c · x subject to Ax ⪯ b and x ⪰ 0 (P)

and
minimize b · y subject to AT y ⪰ c and y ⪰ 0, (D)

there are the following alternatives, exactly one of which occurs:
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Figure 9: Credit to Matoušek-Gärtner, 2007

(i) Neither (P) nor (D) is feasible;

(ii) (P) is unbounded and (D) is not feasible;

(iii) (P) is not feasible and (D) is unbounded;

(iv) Both (P) and (D) are feasible, have an optimal solution x∗ and y∗ (respectively), and

c · x∗ = b · y∗. (7.1.7)

We note, critically, that if (iv) occurs, (7.1.10) guarantees that the value of (P) is equal to the value
of (D).

The key step in our proof is Farkas’s Lemma:

Lemma 7.1.2 (Farkas’s Lemma). Let A ∈ Mm×n and b ∈ Rm. Then exactly one of the two
alternatives holds:

(i) Ax = b has a solution x ∈ Rn with x ⪰ 0;

(ii) there is λ ∈ Rm such that ATλ ⪰ 0 and b · λ < 0.

Before proving this lemma, we show it in two examples Let us look at an example before we try to
prove Lemma 7.1.2.

Example 7.1.3. (i) The conditions x1 + x2 = 1, x1 ≥ 0, and x2 ≥ 0. This is feasible since
x1 = x2 = 1/2 satisfies these conditions. This corresponds to Lemma 7.1.2.(i) holding with

A =

[
1
1

]
and b = 1. (7.1.8)

What does Lemma 7.1.2.(ii) correspond to? We would need [λ, λ]T = ATλ ⪰ 0 and λ = bλ < 0.
These are clearly not consistent! Hence, (ii) cannot hold as Farkas’s lemma predicts.
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(ii) Let us look at a similar problem. Let A be as in (7.1.8) and b = −1. Notice that, for λ = πe,
we get ATλ ⪰ 0 and bλ = −3 < 0. Hence, (i) cannot hold. In other words, because we could
find a single solution to (ii), we conclude that

if x ⪰ 0, Ax ̸= b,

which is a statement for all x ⪰ 0!

Proof. While at first the reason such an alternative exists is mysterious, it is somewhat “obvious”
once the claim is translated into geometric objects. Let a1, . . . , an ∈ Rm be the column vectors of
A:

A =

 | | |
a1 a2 · · · an
| | |

 .
Let

C = conic{a1, . . . an}
= {y ∈ Rm : y = x1a1 + · · ·+ xnan, such that xi ≥ 0 for all i = 1, . . . , n}
= {Ax : x ⪰ 0}.

From this, we see that the case (i) is exactly when b ∈ C.

Let us then consider the case b /∈ C. We first give a “fake” proof that is simple and contains the
major points. Take H to be a separating hyperplane of b and C. It is “obvious” that, since b is a
point and C is a cone, we can take H to go through the origin and not contain b. In this case, let λ
be the normla vector defining H; that is, y ∈ H if and only if y · λ = 0. By definition of separating
hyperplane, λ · ai ≥ 0 for all i (which implies that Ay ⪰ 0) and λ · b < 0 (indeed, b · λ ≥ 0, but
b /∈ H implies that b · λ > 0). This completes the proof that we are in case (ii).

The proof above does not work because the “obvious” part is actually nontrivial to prove. Let us
show the “real” proof. Since C is closed, then Rm \ C is open and contains b, there is ε > 0 such
that59

Bε(b) ∩ C = ∅.

Let H be the separating hyperplane of C and Bε(b). There there is λ ∈ Rm and r ∈ R such that

H = {y ∈ Rm : λ · y = r},

with
C ⊂ {y ∈ Rm : λ · y ≥ r},

and z · λ ≤ r for all z ∈ Bε(b). We claim that we may assume without loss of generality60 that
r = 0. We justify this in the final paragraph of the proof. Then,

H = {y ∈ Rm : λ · y = 0},
59The use of ε and Bε(b) is purely technical. We need to do it to get the strict inequality in b ·λ < 0. On a first read,

it might be useful to think about just showing b · λ ≤ 0. In this case, one can take the hyperplane separating b and
C, which is much simpler.

60Intuitively, one just takes a hyperplane the hits the “point” of the cone tangently and has a “good” angle to not hit
b. While this is heuristically clear, it is annoying to show. I suggest ignoring the technical point about r on a first
read and just take for granted that we can take r = 0.
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and, by definition of separating hyperplane,

C ⊂ {y ∈ Rm : λ · y ≥ 0}.

Then this means precisely that ai · λ ≥ 0 for each i; that is, ATλ ⪰ 0. On the other hand, since H
is a separating hyperplane of C and Bε(b). In particular, we have

0 ≥ λ ·
(
b+ ε

λ

2|λ|

)
= λ · b+ ε

2
.

Thus, b · λ < 0. This completes the proof under the assumption that r = 0.

All that remains to complete the proof is to justify that we may take r = 0 without loss of generality.
This is a purely technical First, we note that 0 ∈ C so that 0 = 0 · λ ≥ r. Hence,

Bε(b) ⊂ {y ∈ Rm : y · λ ≤ 0}. (7.1.9)

Now, consider any c ∈ C. Then, αc ∈ C for any α ≥ 0 by the definition of a cone. We deduce that

r

α
≤ 1

α
(αc) · λ = c · λ.

Taking α→ ∞, we deduce that c · λ ≥ 0. We conclude that

C ⊂ {y ∈ Rm : λ · y ≥ 0},

which, along with (7.1.9), implies that

H̃ := {y ∈ Rm : λ · y = 0}

is a separating hyperplane of Bε(b) and C.

Using slack variables as we did in Section 7.1.1, we can translate this to two equivalent forms of
Farkas’s lemma:

Lemma 7.1.4 (Farkas’s Lemma II). Let A ∈ Mm×n and b ∈ Rm. Then exactly one of the two
alternatives holds:

(i) Ax ⪯ b has a solution x ⪰ 0;

(ii) there is λ ⪰ 0 such that ATλ ⪰ 0 and b · λ < 0.

Lemma 7.1.5 (Farkas’s Lemma III). Let A ∈ Mm×n and b ∈ Rm. Then exactly one of the two
alternatives holds:

(i) Ax ⪯ b has a solution x ∈ Rn;

(ii) there is λ ⪰ 0 such that ATλ = 0 and b · λ < 0.

We are now in a position to prove Theorem 7.1.1. Before doing so, let us “translate” it to standard
form, where Farkas’s lemma is more useful. The following is equivalent to Theorem 7.1.1.

216



Theorem 7.1.6 (Duality Theorem). Let c ∈ Rn, A ∈Mm×n, and b ∈ Rm. For the linear programs

maximize c · x subject to Ax = b and x ⪰ 0 (P)

and
minimize b · y subject to AT y ⪰ c and y ∈ Rm, (D)

there are the following alternatives, exactly one of which occurs:

(i) Neither (P) nor (D) is feasible;

(ii) (P) is unbounded and (D) is not feasible;

(iii) (P) is not feasible and (D) is unbounded;

(iv) Both (P) and (D) are feasible, have an optimal solution x∗ and y∗ (respectively), and

c · x∗ = b · y∗. (7.1.10)

Proof of Theorem 7.1.1. If neither (P) nor (D) is feasible, we are finished because clearly (ii), (iii),
and (iv) cannot occur.

Let us first assume that (P ) is feasible and (D) is not. If (P) is unbounded, then we are done. If it
is bounded, then take x∗ in the feasible set such that P = c · x∗. Since x∗ is the optimizer, we find
that, for any ε > 0,

Ax ≤ b c · x ≥ c · x∗ + ε, x ⪰ 0

is not feasible. Let, for any ε ≥ 0,

Ã =

[
A

−cT
]

and b̃ε =

[
b

−c · x∗ − ε

]
.

Then, when ε > 0,
Ãx ≤ b̃ε with x ⪰ 0, (7.1.11)

is infeasible. Hence, by Lemma 7.1.4, there is λ̃ ∈ Rm+1 with ÃT λ̃ ⪰ 0 and b̃ε · λ < 0.

When ε = 0, (7.1.11) is feasible. Hence, Lemma 7.1.4 implies that b0 · λ̃ ≥ 0 (since λ̃ ⪰ 0 and
ÃTλ ⪰ 0, by above).

Writing λ̃ = (y, z) with z ∈ R, the above means that

AT y ⪰ zc, y ⪰ 0, z ≥ 0, and zc · x∗ ≤ b · y < z(c · x∗ + ε). (7.1.12)

The last two inequalities give us that z > 0. Let

ȳ =
1

z
y. (7.1.13)

It follows that ȳ is in the feasible set of (D), which contradicts that assumption that (D) is not
feasible. This is exactly case (ii).

Next let us assume that (P) and (D) are feasible. Then, we argue exactly as above to obtain x∗ and
ȳ. Then (7.1.12) and (7.1.13) and

b · ȳ ≤ c · x∗ + ε.

This yields D ≤ c · x∗ + ε. As this is true for every ε, we conclude that D ≤ c · x∗. In other words

P = D,

which concludes the proof of case (iv).

The proof of case (iii) is exactly that the same as case (ii), so we omit it.
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7.2. Fourier-Motzkin elimination. Similar in spirit to Gaussian elimination, Fourier-
Motzkin elimination allows us to rewrite our constraints in a way that removes a variable. We
see this through a few examples.

Consider the trivial problem

maximize 0

subject to 2x1 + x2 ≤ 3
4x1 + 8x2 ≤ 12
x1, x2 ≥ 0.

Our goal is to check if this is feasible.

Let us “solve” these inequalities for x2:

x2 ≤ 3− 2x1 and x2 ≤
3

2
− x1

2
.

Since x2 ≥ 0, we can summarize this as

0 ≤ 3− 2x1 and 0 ≤ 3

2
− x1

2
.

In other words,

x1 ≤
3

2
and x1 ≤ 3.

Since x1 ≥ 0, we see that the allowed range of x1 is

0 ≤ x1 ≤
3

2
. (7.2.1)

For each x1, we can also find the allowed range of x2’s. Regardless, since (7.2.1) is feasible, then so
is the original program!

Let us consider another trivial problem:

maximize 0

subject to 2x1 + x2 ≤ 3
x1 − x2 ≥ 3
x1, x2 ≥ 0.

We again “solve” for x2:
x2 ≤ 3− 2x1 and x2 ≤ x1 − 3,

which, along with x2 ≥ 0, yields

0 ≤ 3− 2x1 and 0 ≤ x1 − 3,

which yields

3 ≤ x1 ≤
3

2
.

This is clearly not feasible! Hence, the original program is not feasible.
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The general procedure: Suppose that we have r variables x1, . . . , xr and n constraints. Let m
of our constraints are upper bounds on xr and n −m are lower bounds on xr. In other words, we
have n affine maps U1, . . . , Um, L1, . . . , Ln−m such that

xr ≤ Ui(x1, . . . , xr−1) and xr ≥ Lj(x1, . . . , xr−1) for all i = 1, . . . ,m and j = 1, . . . , n−m.

For each i and j, we get a new constraint on just x1, . . . , xn−1 given by:

Lj(x1, . . . , xr−1) ≤ Ui(x1, . . . , xr−1).

Notice that we now have m(n−m) constraints on r − 1 variables.

A word of warning: in the two simple examples above, we ended up with essentially the same
number of constraints as we had initially. This is atypical. In general, if you begin with n constraints,
you can end up with as many as n2/4 constraints after eliminating a variable! Why is this? Suppose
that half of our constraints are upper bounds on xn and half are lower bounds on xn (i.e., m = n/2)
. This leads to exactly (n/2)(n/2) = n2/4 constraints on x1, . . . , xr−1. The upside, though, is we
have reduce the number of variables by one.

7.3. Constrained Optimization. A more general optimization problem is one of the form

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m
hj(x) = 0 j = 1, . . . , p.

This is a convex problem if each f0, f1, . . . , fm are convex and h1, . . . , hp are affine. Of course, this
is a special setting and need not be true in general.

Letting

D =

(
m⋂
i=0

dom fi

)
∩

 p⋂
j=1

domhj

 .

The primal feasible set is

F = D ∩

(
m⋂
i=1

{x ∈ dom fi : fi(x) ≤ 0}

)
∩

 p⋂
j=1

{x ∈ domhj : hj(x) = 0}

 .

Letting
p∗ = inf

x∈F
f0(x),

we call x∗ ∈ F an optimal point if f0(x∗) = p∗, although this is not guaranteed to exist.

To access the dual problem, first we define the Lagrangian

L : D × Rm
+ × Rp → R

for this optimization problem by

L(x, λ, µ) = f0(x) +

m∑
i=1

λifi(x) +

p∑
j=1

µjhj(x).
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The dual variables are (λ, µ) with the constraint λ ⪰ 0. The dual function is

g(λ, µ) = inf
x∈D

L(x, λ, µ).

Since g is the infimum of a family of linear functions then it is always concave (which is good for
finding a maximum!).

Notice that we still have weak duality:
g(λ, µ) ≤ p∗ (7.3.1)

for every λ ⪰ 0 and µ ∈ Rp, and, hence,

d∗ = sup
λ⪰0,µ∈Rp

g(λ, µ) ≤ p∗.

We check (7.3.1) now. Take any feasible point x ∈ F and λ ⪰ 0. Then

g(λ, µ) ≤ L(x, λ, µ) = f0(x) +

m∑
i=1

λifi(x) +

p∑
j=1

µjhj(x) ≤ f0(x), (7.3.2)

where the inequality follows from the fact that fi(x) ≤ 0, λi ≥ 0, and hj(x) = 0. Taking the
infimum of both sides in (7.3.2), we find

g(λ, µ) ≤ inf
x∈F

f0(x) = p∗.

In general, unfortunately, it will not be that d∗ = p∗. We call p∗ − d∗ the duality gap.

Example 7.3.1. (i) Linear least squares:

minimize |x|2
subject to Ax = b.

We begin by writing the Lagrangian:

L(x, µ) = |x|2 + µ · (Ax− b).

To compute the dual function, we notice that

∇xL(x, µ) = 2x+ATµ,

so that

g(µ) =
1

4
|ATµ|2 + µ ·

(
A

(
−1

2
ATµ

)
− b

)
=

1

4
|ATµ|2 − 1

2
|ATµ|2 − µ · b

= −1

4
|ATµ|2 − µ · b

We will see, later, that the duality gap for this problem is zero; that is, d∗ = p∗. The reason
for this is because the problem is convex and has no non-affine constraints. In this case, it
can be easily checked. In fact, this is exactly the strategy of finding an extremum via Lagrange
multipliers.

Exercise 7.3.1. Think about this!
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(ii) Linear programming:

minimize c · x
subject to Ax = b, x ⪰ 0.

To put this into the form of the general constrained optimization problem above, we “switch”
the inequality x ⪰ 0:

minimize c · x
subject to Ax = b, −x ⪯ 0.

We begin by writing the Lagrangian:

L(x, λ, µ) = c · x− λ · x+ µ · (Ax− b).

To compute the dual function, we notice that, if c− λ+ATµ = 0, then

L(x, λ, µ) = −µ · b,

while, if c− λ+ATµ ̸= 0, we can take x = −r(c− λ+ATµ) with r → ∞ to find

inf
x
L(x, λ, µ) ≤ lim inf

r→∞

(
−r|c− λ+ µTA|2 − µ · b

)
= −∞.

Hence

g(λ, µ) =

{
−µ · b if c− λ+ATµ = 0,

−∞ if c− λ+ATµ ̸= 0.
(7.3.3)

Notice that, c− λ+ATµ = 0 is equivalent to ATµ = −c+ λ, which is equivalent to

ATµ ⪯ −c.

in view of the restriction λ ⪰ 0. Since µ can be any vector, we may swap µ 7→ −µ to find

ATµ ⪰ c.

Hence, maximizing (7.3.3) amounts to solving the problem

maximize b · y
subject to AT y ⪰ c.

which is exactly the dual problem we would have found by our old duality method.

(iii) Linear constraints:

minimize f0(x)

subject to Ax ≤ b
Cx = d.
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We begin by writing the Lagrangian:

L(x, λ, µ) = f0(x) + λ · (Ax− b) + µ · (Cx− d).

Let us compute the dual function:

g(λ, µ) = inf
x
L(x, λ, µ) = inf

x
(f0(x) + λ · (Ax− b) + µ · (Cx− d))

= − sup
x

(
(−λTA− µTC) · x− f0(x)

)
− λ · b− µ · d

= −f∗0 (−λTA− µTC)− λ · b− µ · d.

The dual problem is thus to maximize −f∗0 (−λTA−µTC)−λ·b−µ·d, or, equivalently, minimize
f∗0 (−λTA − µTC) + λ · b + µ · d. Hence, the dual problem is exactly a convex optimization
problem! (Even if f0 is not convex.)

7.4. Conditions for optimality: constraint qualifications.

7.4.1. Karush–Kuhn–Tucker (KKT) condition. Suppose that fi, hj are differentiable, and
that the duality gap is zero. Let x∗ is a primal optimal point and (λ∗, µ∗) is a dual optimal point.
Then, we have

f0(x
∗) = g(λ∗, µ∗) = inf

x
(f0(x) + λ∗ · F (x) + µ∗ ·H(x))

≤ f0(x
∗) + λ∗ · F (x∗) + µ∗ ·H(x∗) ≤ f0(x

∗).

where we let F and H be the vector of fi’s and hj ’s, respectively. Hence, all above inequalities must
actually be equalities. This tell us a few things:

• (Complementary slackness): λ∗i fi(x
∗) = 0 – note the above gives λ ·F (x∗) = 0, but recall that

all terms in the two vectors are nonnegative, so the stronger claim holds;

• (Stationarity in x): x∗ is the location of a minimum of L(x, λ∗, µ∗). This yields

0 = ∇xL(x∗, λ∗, µ∗) = ∇xf0(x
∗) +

m∑
i=1

λ∗i · ∇xfi(x
∗) +

p∑
j=1

µ∗j∇xhj(x
∗).

This leads us to the KKT conditions: any primal optimal point x∗ and dual optimal point (λ∗, µ∗)
must satisfy complementary slackness, stationarity in x, and

• (primal feasibility): fi(x∗) ≤ 0 and hj(x∗) = 0 for all i, j;

• (dual feasibility): λ∗ ⪰ 0;

This of this as a “first derivative test” for linear programs: if you are searching for an optimal point,
one way is to find all solutions of the four conditions above and then check them for optimality.

We note two things. First, when there are no inequality constraints fi ≤ 0, this is simply the
method of Lagrange multipliers. Second, the point (x∗, λ∗, µ∗) is almost never an extremum of L, it
is usually a saddle point. This is hinted at by the fact that (λ∗, µ∗) is found by taking an infimum
(over x) and then a supremum (over λ, µ). Numerically, attempting to minimize L is not a useful
approach.

It turns out that, when the problem is convex, the conditions above are sufficient for (x∗, λ∗, µ∗) to
be optimal points.
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Theorem 7.4.1. Consider the primal problem above. If x∗ is a primal optimal point and (λ∗, µ∗)
is a dual optimal point, then they satisfy the KKT conditions (primal feasible, dual feasible, com-
plementary slackness, and stationarity in x).

If the primal problem is convex, then any (x∗, λ∗, µ∗) satisfying the KKT conditions is optimal
(primal and dual) and there is zero duality gap.

Proof. The first statement is essentially proven above, so we omit it here. Let us consider the second
statement. Since L(·, λ∗, µ∗) is convex in the x argument – this uses the convexity of the problem
and the nonnegativity of λ∗ (dual feasibility), any critical point must be the location of a minimum.
Hence,

L(x∗, λ∗, µ∗) = inf
x
L(x, λ∗, µ∗) = g(λ∗, µ∗). (7.4.1)

On the other hand, using complementary slackness and the primal feasibility of the problem, we
find

L(x∗, λ∗, µ∗) = f0(x
∗) + λ∗ · F (x∗) + µ∗ ·H(x∗) = f0(x

∗). (7.4.2)

We conclude from (7.4.1)-(7.4.2) and weak duality that

d∗ ≥ g(λ∗, µ∗) = f0(x
∗) ≥ p∗ ≥ d∗.

Hence all above inequalities are equalities, which completes the proof.

Exercise 7.4.1. Given a m× n matrix A and considering it as an operator with the ℓ2-norm, the
induced norm of A is

∥A∥ = sup
∥x∥=1

∥Ax∥.

Interpret this as a constrained optimization problem and apply the Lagrange multiplier / KKT ap-
proach to find potential optimal points. Is the critical point of the Lagrangian a local extremum?

Example 7.4.2 (Water filling).

minimize −
n∑

i=1

log(αi + xi)

subject to x ⪰ 0,
n∑

i=1

xi = 1.

Here α ⪰ 0 is a fixed vector. This problem arises in information theory – xi is the power transmitted
to the nth channel and log(αi + xi) is the capacity (communication rate) of each channel. Clearly
we wish to maximize the communication rate.

Notice that this is a convex problem. Hence, if we find a point satisfying the KKT conditions, we
have an optimal point. In this case,

fi(x) = −xi, hj(x) = h(x) =

n∑
i=1

xi

so the conditions are:

• (Primal feasibility): fi(x∗) = −x∗i ≤ 0 for i = 1, . . . , n, and h(x∗) =
n∑

i=1

x∗i − 1 = 0;

• (dual feasibility): λ∗j ≥ 0 for each j = 1, . . . , n;
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• (Complementary slackness): λ∗ix
∗
i = 0 for all i = 1, . . . , n;

• (Stationarity in x): 0 = − 1
αi+x∗

i
− λ∗i + µ∗.

Let us consider first the case where µ∗ < 1/αi. Then the stationarity-in-x condition can only hold
if x∗i > 0. Complementary slackness thus implies that λ∗i = 0 and, hence,

1

αi + x∗i
= µ∗, that is, x∗i =

1

µ∗
− αi.

On the other hand, if µ∗ > 1/αi, then

µ∗ >
1

αi
≥ 1

αi + x∗i
= µ∗ − λ∗i .

It follows that λ∗i > 0, whence x∗i = 0 by the complementary slackness condition. Finally, one can
easily extend the above reasoning to find that µ∗ = 1/αi implies that x∗i = 0. We compile the above
in the succinct formula

x∗i = max{0, 1/µ∗ − αi}.

Plugging this into the condition for primal feasibility, we arrive at

n∑
i=1

max{0, 1/µ∗ − αi} = 1.

There is clearly a unique solution µ∗ > 0 to this.

Why is this called “water filling”? Imagine that αi is the elevation of land in some patch i ∈
{1, . . . , n}. Then we have volume 1 of water that we pour over all patches. The fluid as a whole will
settle at the same height everywhere (which is height 1/µ∗), thus filling the deepest holes first.

7.4.2. Slater’s condition. Slater’s condition is a sufficient condition for strong duality to hold
(that is, there is zero duality gap). Let us take a convex optimization problem

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m
Ax = b.
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Slater’s condition: there is a strictly feasible x ∈ relint(D), where we define strictly feasible to mean
that

Ax = b and fi(x) < 0 for all i = 1, . . . ,m,

and the relative interior61 is defined as follows: x ∈ relint(C) if there is r > 0 such that

Br(x) ∩ aff(C) ⊂ C.

Actually, one does not need strict feasibility to hold for all fi, only the ones that are not affine.

Theorem 7.4.3 (Strong duality with Slater’s condition). If Slater’s condition holds at some point
xsl, then the duality gap is zero: p∗ = d∗ and there is a dual optimal point (λ∗, µ∗).

Proof. We begin with a few simplifications. First, we assume that p∗ is finite. By the existence of
xsl, it can only be p∗ = −∞ or a finite value. If it is −∞, then weak duality implies that d∗ = −∞
and we are finished.

Second, we assume that D has nonempty interior. This assumption on D is not much of a restriction
– we are essentially saying that each fi and hj are defined on “most” of Rn, which is a reasonable
assumption. It is made for simplicity.

Finally, we remove the condition Ax = b. Indeed, up to translating by xsl and applying a bijective
linear transformation T : Rd → Ker(A), where d is the rank of A, our problem becomes

minimize f0(Ty + xsl)

subject to fi(Ty + xsl) ≤ 0 i = 1, . . . ,m
y ∈ Rd.

This remains a convex problem satisfying the assumptions of the problem.

The basis for our proof is the separating hyperplane theorem (Proposition 6.2.3). Let us define our
two convex sets on which we apply the theorem. Our first set is

A = {(F, t) ∈ Rm × Rp × R : for all x ∈ D,F ⪰ (f1(x), . . . , fm(x))t ≥ f0(x)}.

It is easy to check the convexity of A using the convexity of the problem.

Exercise 7.4.2. Do this!

The second set is
B = {(0, t) ∈ Rm × R : t < p∗}.

This is also clearly convex as it is a half-line.

We check that A∩B = ∅ so that we can separate them by a hyperplane. If (F, t) ∈ A∩B, then the
definition of B and A imply that

t < p∗ ≤ f0(xsl) ≤ t,

which is a contradiction.
61This is, roughly, the same as saying the following. Let T : Rn → Rp be the affine function whose restriction
T : aff(C) → Rp is bijective. Then x ∈ relint(C) if and only if T (x) ∈ Int(T (C)). A careful definition is required
because, if aff(C) is a lower-dimensional space, it cannot have an interior even if we, heuristically, identify certain
points as being in the interior.
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Hence, we can apply Proposition 6.2.3 to obtain λ, s, and α such that

A ⊂ {(u, v, t) : u · λ+ ts ≥ α} (7.4.3)

and
B ⊂ {(u, t) : u · λ+ ts ≤ α}, (7.4.4)

where
(λ,m) ̸= 0. (7.4.5)

Since (7.4.5) is a crucial point in the proof it is worth clarifying why this is true. Suppose α ≥ 0
and (7.4.5) does not hold, i.e., λ = 0 and m = 0. It is clear, then, that

A,B ⊂ {(u, t) : u · 0 + t0 ≤ α},

which contradicts the definition of separating hyperplane. The case when α ≤ 0 is similar.

From (7.4.3), we see that s ≥ 0. Indeed, if s < 0, we can take t → ∞ and st → −∞, which would
contradict the inequality in (7.4.3). A similar argument shows that λ ⪰ 0. Hence,

λ ⪰ 0 and s ≥ 0.

On the other hand, the condition in (7.4.4) implies that ts ≤ α for all t < p∗. It follows that

p∗m ≤ α.

Using the definition of A with this, we find, for any x ∈ D,
m∑
i=1

λifi(x) + sf0(x) ≥ α ≥ sp∗. (7.4.6)

We now break into cases depending on whether s = 0 or not.

Case one: s > 0. From (7.4.6) and the definition of L, we find, for any x ∈ D,

L(x, λ∗) ≥ p∗, where λ∗ =
λ

s
.

This, along with weak duality, implies that

d∗ ≤ p∗ ≤ L(x, λ∗).

Taking the infimum of both sides in x, we find

d∗ ≤ p∗ ≤ g(λ∗) ≤ d∗,

where the last inequality holds because d∗ is the supremum of g. Since the right and left hand
sides of the above are the same, all inequalities must be equalities, whence d∗ = p∗ and the proof is
finished with λ∗ as a dual optimal point.

Case two: s = 0. Then we have, by (7.4.6),
m∑
i=1

λifi(xsl) ≥ 0.

By the feasibility of xsl and the nonnegativity of λ, each term in the sum above is nonpositive.
Hence, they must all be zero: λifi(xsl) = 0 for all i = 1, . . . ,m. By the strict feasibility of xsl, it
follows that λi = 0 as fi(xsl) < 0 for each i. We have now reached a contradiction to (7.4.5) since
we have shown that λ = 0 and s = 0. This concludes the proof.
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7.5. Relaxation. As we have seen with the KKT conditions and Slater’s condition, convexity
is very nice to have. Unfortunately, not all constrained optimization problems are convex. However,
let us notice something. Take a primal problem with value p∗

minimize f0(x) subject to fi(x) ≤ 0, hj(x) = 0 for all i = 1, . . . ,m, j = 1, . . . , p.

Let its dual problem with value d∗ be given by

maximize g(λ, µ) subject to λ ⪰ 0.

Consider the new primal problem, with value p̃∗, given by

minimize − g(λ, µ) subject to − λ ⪯ 0.

Clearly −d∗ is its value. Let us compute its dual problem. The Lagrangian is

L(λ, µ, z) = −g(λ, µ)− λ · z.

Taking its infimum over all λ, µ, we find

F (z) = inf
λ,µ

(−g(λ, µ)− λ · z) = − sup
λ,µ

((z, 0) · (λ, µ)− (−g)(λ, µ)) = −(−g)∗(z, 0).

Hence, the dual problem is
maximize F (z) subject to z ⪰ 0,

which, up to a minus sign, is equivalent to

minimize (−g)∗(z, 0) subject to − z ⪯ 0.

This a convex problem! Let p̃∗ be its optimal value. Then

p̃∗ = inf
z
(−g)∗(z, 0) ≤ (−g)∗(0, 0) =

(
sup
λ,µ

(g(λ, µ) + λ · 0)

)
= d∗ ≤ p∗.

The last inequality holds by weak duality.

In other words, by taking the “double dual,” we end up with a problem that is convex and provides
a lower bound for our primal problem!

Exercise 7.5.1. Perform this procedure for the constrained optimization problem: minimize f(x) =
(1− x2)2 subject to x ∈ R. What is the objective function for the resulting problem and what is its
relationship to f?

A. The Cantor-Schöder-Bernstein theorem

Here we provide a proof of Theorem 3.2.8. Let us restate this for convenience.

Theorem A.1. Suppose that X and Y are sets such that there exist injections

f : X → Y and g : Y → X.

Then card(X) = card(Y ).
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This proof is kind of a behemoth. Let me stress, however, that one uses the same “trick” over and
over again. Hence, most of the length below is redoing the same work in slightly different contexts.

Proof. We need to use f and g to construct a bijection φ : X → Y . Let us define equivalence classes
as follows. For each x ∈ X, we set

x ∼X x̃ if and only if there is n ∈ N ∪ {0} such that (g ◦ f)n(x) = x̃ or (g ◦ f)n(x̃) = x.

This is clearly an equivalence relation (it is symmetric, reflexive, and associative – recall Defini-
tion 3.3.5 and check this on your own!). We define φ on each equivalence class

[x]X = {x̃ ∈ X : x ∼X x̃}.

We define also an equivalence relation on Y :

y ∼Y ỹ if and only if there is n ∈ N ∪ {0} such that (f ◦ g)n(y) = ỹ or (f ◦ g)n(ỹ) = y.

Let X̃ and Ỹ be sets containing one representative from each equivalence class. Then

X =
⋃
x̃∈X̃

[x̃]X and Y =
⋃
ỹ∈Ỹ

[ỹ]Y

and both unions are unions of disjoint sets.

Notice that there is a correspondence between equivalence classes. Indeed, we may associate [x]X
with [f(x)]X and [g(y)]X with [y]Y . Hence, if we can construct φ such that, for every x,

φ|[x]X [x]X → [f(x)]X

is a bijection, then φ : X → Y is a bijection.

Case one: [x]X is finite.. Roughly, this is the case where applying f and g iteratively yields a
finite cycle. We let φ(x) = f(x). Let us check that φ|[x]X : [x]X → [f(x)]Y is a bijection. It is
clearly injective (this is inherited from f).

On the other hand, notice that (g ◦ f)n(x) cannot be infinite, so there is n,N such that (g ◦
f)n+N (x) = (g ◦ f)n(x). Because g and f are injective, so is (g ◦ f)n, which implies that

(g ◦ f)N (x) = x.

Further, by iterating this, we see that, for all k ∈ N,

(g ◦ f)kN (x) = x. (A.1)

Fix any y ∈ [f(x)]Y . if y = f(x), then it is clear that φ(x) = y and we are finished. Otherwise,
there is n ∈ N such that either

(f ◦ g)n(y) = f(x) or (f ◦ g)n(f(x)) = y. (A.2)

Consider the case where the first equality holds. Then, by the injectivity of f , we have

x = g ◦ (f ◦ g)n−1(y) = (g ◦ f)n−1(g(y)).
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Fix any k such that kN > n+ 1. Then, by (A.1),

(g ◦ f)kN−(n−1)(x) = (g ◦ f)kN−(n−1)(g ◦ f)n−1(g(y)) = g(y).

By the injectivity of g, we see that

y = (f ◦ g)kN−(n−1)−1(f(x)) = (f ◦ g)kN−n(f(x)) = f
(
(g ◦ f)kN−n−1(x)

)
.

Since (g ◦ f)kN−n−1(x) ∈ [x]X , this shows that y = φ|[x]X (x̃) for some x̃ ∈ [x]X .

The case where the second equality in (A.2) holds can be handled similarly. We omit the proof.

Case two: there exists x0 ∈ [x]X such that x0 /∈ g(Y ). Roughly, the equivalence class has a
first element that generates the whole equivalence class after applying f and g iteratively.

For every n, let xn = (g ◦ f)n(x0). Let us first show that xn ̸= xm whenever n ̸= m. Assume,
without loss of generality, that n < m. Then

(g ◦ f)n(x0) = xn = xm = (g ◦ f)m(x0)

and, by injectivity,
x0 = (g ◦ f)m−n(x0) = g

(
(f ◦ g)m−n−1(x0)

)
.

This is a contradicts the fact that x0 /∈ g(Y ). Hence, xn ̸= xm.

Next, we claim that [x]X = {x0, x1, x2, . . . }. Clearly “⊃” holds, so we show that “⊂” holds as well.
Fix any x̃ ∈ [x]X . Since ∼X is an equivalence relation, there is n such that

(g ◦ f)n(x0) = x̃ or (g ◦ f)n(x̃) = x0.

The latter cannot hold because x0 /∈ g(Y ). Hence, the former holds, which implies that x̃ = xn.
This concludes the proof that [x]X = {x0, x1, x2, . . . }.
We now define

φ(xn) = f(xn).

Let us check that φ|[x]X : [x]X → [f(x)]Y is a bijection. It is, again, clearly an injection because f is.
We check that φ|[x]X is surjective. Fix y ∈ [f(x0)]Y . If y = f(x0), then we are finished. Otherwise,
there is n ∈ N such that either

(f ◦ g)n(y) = f(x0) or (f ◦ g)n(f(x0)) = y.

The former cannot hold because, by the injectivity of f , it follows that g ◦ (f ◦g)n−1(y) = x0, which
is a contradiction to the assumption that x0 /∈ g(Y ). Hence the latter holds, which implies that

y = (f ◦ g)n(f(x0)) = f
(
(g ◦ f)n−1(x0)

)
= f(xn−1).

This concludes the proof of surjectivity.

Case three: there exists x0 ∈ [x]X such that x0 ∈ g(Y ) \ g(f(X)). This, again, is roughly the
case where the equivalence class has a first element that generates the whole equivalence class after
applying f and g iteratively. Note, though, that φ is defined differently here than in the previous
case.

Let y0 /∈ f(X) be such that g(y0) = x0. For every n, let

xn = (g ◦ f)n(x0).
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First we claim that xn ̸= xm whenever n ̸= m. Assume, without loss of generality, that n < m.
Then

(g ◦ f)n(x0) = xn = xm = (g ◦ f)m(x0)

and, by injectivity,
x0 = (g ◦ f)m−n(x0) = g

(
(f ◦ g)m−n−1(x0)

)
.

By injectivity, (f ◦ g)m−n−1(x0) = y0; however, this contradicts the fact that y0 /∈ f(Y ).

Next, we claim that [x]X = {x0, x1, x2, . . . }. Clearly “⊃” holds, so we show that “⊂” holds as well.
Fix any x̃ ∈ [x]X . Since ∼X is an equivalence relation, there is n such that

(g ◦ f)n(x0) = x̃ or (g ◦ f)n(x̃) = x0.

If n = 0, then x̃ = x0 and we are finished. If n ≥ 1, the second equality above cannot hold because
x0 /∈ g(f(X)). Hence, the former holds, which implies that x̃ = xn. This concludes the proof that
[x]X = {x0, x1, x2, . . . }.
We now define

φ(xn) =

{
f(xn−1) if n > 1,

y0 if n = 0.

Let us check that φ|[x]X : [x]X → [f(x)]Y is a bijection.

First we show that it is an injection. If φ(xn) = φ(xm) and n,m ̸= 0, we have

f(xn−1) = f(xm−1),

which, by injectivity of f , implies that xn−1 = xm−1. By the work above, this can only occur if
n = m, finishing the proof. If n = 0 = m, then we are finished. Hence, assume that, without loss
of generality n = 0 and m > 0. Then y0 = f(xm), which contradicts the fact that y0 /∈ f(X). It
follows that this case cannot occur. This concludes the proof of the injectivity of φ.

We check that φ|[x]X is surjective. Fix y ∈ [f(x0)]Y . There is n ∈ N ∪ {0} such that either

(f ◦ g)n(y) = f(x0) or (f ◦ g)n(f(x0)) = y. (A.3)

If n = 0, then y = f(x0). We are then finished because φ(x1) = f(x0).

Suppose that the first equality in (A.3) holds. By the injectivity of f , it follows that

g ◦ (f ◦ g)n−1(y) = x0.

If n = 1, we get that g(y) = x0 = g(y0), which implies that y = y0. By construction, φ(x0) = y0,
and we are finished. If n > 1, which is a contradiction to the assumption that x0 /∈ g(f(X)). This
completes the proof in the case when the first equality in (A.3) holds.

Suppose that the second equality in (A.3) holds for n ≥ 1. Then

y = f ((g ◦ f)n(x0)) = f(xn) = φ(xn+1),

which completes the proof that φ|[x]X is surjective.

Case four: [x]X is infinite, is a subset of g(f(X)), and there exists n,m and x0 such that
(g ◦ f)n+m(x0) = (g ◦ f)n(x0). Roughly, this equivalence class has a “last element” x0 but extends
infinitely “backwards” by iteratively applying g−1 and f−1.
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First, we show that (g ◦ f)(x0) = x0. Arguing as in case 1, we see that (g ◦ f)m(x0) = x0. It follows
that the set

{x0, (g ◦ f)(x0), (g ◦ f)2(x0), . . . } (A.4)

has at most m elements and that, for any k ∈ N,

(g ◦ f)km(x0) = x0.

Let x̃ ∈ [x]X . Then there is n such that either

(g ◦ f)n(x0) = x̃ or (g ◦ f)n(x̃) = x0.

In the latter case, take k such that km > n and

(g ◦ f)n(x̃) = (g ◦ f)km(x0),

which, by injectivity, implies that
x̃ = (g ◦ f)km−n(x0).

Hence, in both cases, x̃ is in the set defined in (A.4). This implies that [x]X has at most m elements,
which is a contradiction. We deduce that (g ◦ f)(x0) = x0.

Next, we show that there are x0, x1, x2, . . . such that

(g ◦ f)(xk) = xk−1 for all k ∈ N.

We do this inductively. First, take any x̃ ∈ [x]X \ {x0}, which must exist because [x]X is infinite.
As usual, there exists n such that

(g ◦ f)n(x0) = x̃ or (g ◦ f)n(x̃) = x0.

The former cannot hold because (g ◦ f)n(x0) = x0 for all n. Then, let

x1 = (g ◦ f)n−1(x̃).

This has the required properties.

Now, assume that we already have defined x0, x1, . . . , xk. Take any x̃ ∈ [x]X \ {x0, x1, . . . , xk}.
Again, there must be m such that

(g ◦ f)n(x0) = x̃ or (g ◦ f)n(x̃) = x0.

As before, the former cannot hold, so we latter must. First, suppose that n ≤ k. Then, (g◦f)n(x̃) =
(g ◦ f)n(xn), which implies that x̃ = xn. This is a contradiction. Hence, n > k. Let

xk+1 = (g ◦ f)n−k−1(x̃).

Clearly,
(g ◦ f)k+1(xk+1) = (g ◦ f)n(x̃) = x0 = (g ◦ f)k(xk).

By injectivity, we have that (g ◦ f)k(xk+1) = xk.

Finally, we show that [x]X = {x0, x1, x2, . . . }. Here, we argue exactly as above to see that, for any
x̃ ∈ X, there is n such that (g ◦ f)n(x̃) = x0, which, by injectivity, implies that x̃ = xn.
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We now define
φ(xn) = f(xn+1).

Let us check that φ|[x]X : [x]X → [f(x)]Y is a bijection.

It is an injection because, if φ(xn) = φ(xm) for some n and m, then g(xn+1) = g(xm+1). This
implies that xn+1 = xm+1, which, by above, can only happen if n = m. We deduce that xn = xm.

Now we check that φ|[x]X is surjective. Fix y ∈ [f(x0)]Y . If y = f(x0), then we are clearly finished
since

g(y) = g(f(x0)) = x0 = (g ◦ f)(x1)

and, thus, y = f(x1), by the injectivity of g. If y ̸= f(x0), then there is n ∈ N such that

(f ◦ g)n(f(x0)) = y or (f ◦ g)n(y) = f(x0).

In the former case, since (g ◦ f)n(x0) = x0, we have

f(x0) = y,

which is a contradiction. In the latter case, we have

(f ◦ g)n+1(y) = f ((g ◦ f)n(g(y))) = f(x0)

= f ((g ◦ f)n) (xn) = (f ◦ g)n (f(xn)) ,

it follows, by injectivity, that f(xn) = y. Thus φ|[x]X is surjective.

Case five: [x]X is infinite, is a subset of g(f(X)), and (g ◦ f)n+m(x̃) ̸= (g ◦ f)n(x̃) for every
x̃ ∈ [x]X and n,m ∈ N.

In this case, we once again define φ(x̃) = f(x̃) for every x̃ ∈ [x]X . As usual, this is clearly injective.

Before we show that it is a surjection, we claim that

[x]X = {. . . , x−2, x−1, x0, x1, x2, . . . },

where (g ◦ f)(xk) = xk+1. Let x0 = x and inductively define xn = (g ◦ f)(xn−1) for each n ∈ N.
Since x ∈ g(f(X)), there must be x̃ ∈ X such that (g ◦ f)(x̃) = x. Note that, if x̃ = xk for some k,
we have

x = (g ◦ f)(x̃) = (g ◦ f)(xk) = (g ◦ f)
(
(g ◦ f)k(x)

)
= (g ◦ f)k+1(x),

which contradicts our hypothesis about [x]X . Hence, x̃ ∈ [x]X \ {x0, x1, x2, . . . }. Let x−1 = x̃.
Repeating this argument yields x−2, x−3, etc.

We now have
[x]X ⊃ {. . . , x−2, x−1, x0, x1, x2, . . . }.

Let us show the other inclusion. Fix any x̃ ∈ [x]X . Then there is n such that

(g ◦ f)n(x0) = x̃ or (g ◦ f)n(x̃) = x0.

In the former case, we see that x̃ = xn, and in the latter case we see that x̃ = x−n (this uses the
injectivity of (g ◦ f)n).

Now we show that φ is a surjection. Fix any y ∈ [f(x0)]X . If y = f(x0), we are finished. Otherwise,
there is n such that either

(f ◦ g)n(y) = f(x0) or (f ◦ g)n(f(x0)) = y.
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In the latter case, we have
f(xn) = f ((g ◦ f)n(x)) = y,

and we are finished. In the former case, we have

(f ◦ g)n(y) = f(x0) = f ((g ◦ f)n(x−n)) = (f ◦ g)n (f(x−n)) .

By injectivity, we find y = f(x−n), which concludes the proof in case five.

We have now exhausted all cases, which completes the proof of Theorem 3.2.8.

B. Constructing the real numbers

We follow the outline for the general construction given in Section 3.3.1. Let

QCauchy =
{
x̄ ∈ QN : x̄ is Cauchy

}
.

To be very careful, we should redefine Cauchy sequences using only ε ∈ Q (cf. Definition 3.3.1).
Define an equivalence relation ∼ on QCauchy by

x̄ ∼ ȳ if and only if lim
n→∞

(xn − yn) = 0.

This is clearly an equivalence class (see Exercise 3.3.5).

Then we define the real numbers to be set of equivalence classes with respect this equivalence
relation:

R = {[x̄] : x̄ ∈ QCauchy}.

A useful fact is that we may always take a representative ȳ of [x̄] such that ȳ is increasing. Similarly,
we may find a decreasing representative. We prove this now. Fix x̄. Let N0 = 0 and, for each k,
choose Nk > Nk−1 such that, for n,m ≥ Nk, we have

|xn − xm| < 1

k
.

If k = 1, let y1 = xN1 − 1. Otherwise, let

yk = max
{
yk−1, xNk

− 1

k

}
.

We easily observe that yk ≥ yk−1. It follows that ȳ is increasing. Additionally, one sees that

xn − 2

k
≤ yk ≤ xn for all n ≥ Nk.

After a small amount of work (using the fact that x̄ is Cauchy), it follows that ȳ ∼ x̄.

We note that “our” set R inherits all of the operations that we expect from real numbers:

(i) (Addition) We define [x̄] + [ȳ] = [x̄ + ȳ]. Let us check that this is well-defined; indeed, we
might worry that if we choose different representatives of [x̄] and [ȳ], their sum might give a
different equivalence class.
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Let ā ∈ [x̄] and b̄ ∈ [ȳ]. Then

lim
k→∞

(ak − xk) = 0 and lim
k→∞

(bk − yk) = 0.

We must show that [ā+ b̄] = [x̄+ ȳ].

We first claim that [ā+ b̄] ⊂ [x̄+ ȳ]. Indeed, letting z̄ ∈ [ā+ b̄], we see that

0 = lim
k→∞

(zk − (ak + bk)) = lim
k→∞

(zk − (xk + yk)) + lim
k→∞

((xk + yk)− (ak + bk))

= lim
k→∞

(zk − (xk + yk)) + lim
k→∞

(xk − ak) + lim
k→∞

(yk − bk)

= lim
k→∞

(zk − (xk + yk)).

Thus z̄ ∈ [x̄+ ȳ].

The argument that [ā+ b̄] ⊃ [x̄+ ȳ] is similar, so we omit it.

Let us note that subtraction can be defined similarly, and the proof of well-definedness is clear.
Finally, we make a note about notation. If r ∈ Q and [x̄] ∈ R, we use the shorthand

[x̄] + r := [x̄] + [(r, r, . . . )].

(ii) (Multiplication) We define [x̄] · [ȳ] = [(x1y1, x2y2, . . . )]. Let us check that this is well-
defined. First we show that (x1y1, x2y2, . . . ) is Cauchy. By Exercise 3.3.4, there exists a
rational number R > 0 such that

|xn|, |yn| ≤ R for all n.

Fix any ε ∈ Q such that ε > 0. Take N sufficiently large so that

|xn − xm|, |yn − ym| ≤ ε

100(R+ 1)
for all n,m ≥ N.

This exists because x̄ and ȳ are Cauchy. Then, we see that

|xnyn − xmym| = |xnyn − xnym + xnym − xmym|

≤ |xn||yn − ym|+ |ym||xn − xm| ≤ R
ε

100(R+ 1)
+R

ε

100(R+ 1)

=
εR

50(R+ 1)
< ε.

Hence, (x1y1, x2y2, . . . ) is Cauchy.

Exercise B.0.1. Let ā ∈ [x̄] and b̄ ∈ [ȳ]. Show that [ā+ b̄] = [x̄+ ȳ]. The ideas in the previous
paragraph will be useful here.

Let us note that division can be defined similarly, and the proof of well-definedness is clear.

(iii) (Ordering) We define [x̄] < [ȳ] if and only if there exists 0 < ε ∈ Q and N such that
xn + ε < yn for all n ≥ N .

Exercise B.0.2 (Well-defined). Suppose that [x̄] < [ȳ]. Let ā ∈ [x̄] and b̄ ∈ [ȳ]. Show that
there exists N such that an < bn for all n ≥ N .
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Note that we may define [x̄] ≤ [ȳ] to mean that [x̄] < [ȳ] or [x̄] = [ȳ]. We use this notation in
what follows.

(iv) (Well-ordering) Either [x̄] < [ȳ], [x̄] > [ȳ] or [x̄] = [ȳ]. Let us prove this. Suppose that
[x̄] ̸= [ȳ]. It follows that the limit of xn − yn is not zero (it also may not exist).

This implies that there is ε > 0 and a subsequence n1, n2, n3, . . . such that |xni − yni | > ε
for all i. Thus, either xni − yni > ε for infinitely many i or xni − yni < ε for infinitely many
i. Without loss of generality, we assume the former. Additionally, up to relabeling (that is,
passing to a further subsequence), we may assume that

xni − yni > ε for all i.

Since x̄ and ȳ are Cauchy, we take N sufficiently large that

|xn − xm|, |yn − ym| < ε

3
for all n,m ≥ N.

Fix i, k ≥ N . Notice that ni ≥ i ≥ N , by definition of a subsequence. We, thus, have that

xk = (xk − xni) + (xni − yni) + (yni − yk) + yk

> −ε
3
+ ε− ε

3
+ yk > yk,

which implies that [x̄] > [ȳ]. This concludes the proof.

(v) (Least upper bound) We claim that any nonempty set S ⊂ R that is bounded above, has
a supremum. Here, we say that S is bounded above if there is [x̄] ∈ R such that [S̄] < [x̄] for
every [s̄] ∈ S. Typically, this is denoted

supS := [ū].

Let us also note that once the supremum has been established, the infimum follows: given a
set S̃ that is bounded from below, we let

inf S̃ := − sup−S̃ = − sup{s : −s ∈ S̃}.

This is well-defined because −S̃ will be bounded from above and, thus, have a least upper
bound (supremum).

The proof is somewhat long and complicated, so we only sketch the main points. Let

US = {[x̄] ∈ R : [s̄] ≤ [x̄] for all [s̄] ∈ S}.

This is the set of upper bounds, and it is nonempty by assumption.

First, we show that, for any 0 < ε ∈ Q, there is [ū] ∈ US and [s̄] ∈ S such that

[ū]− ε ≤ [s̄] ≤ [ū]. (B.1)

Fix any element [µ̄] ∈ US , which exists by assumption. Let

n = max{m ∈ N ∪ {0} : [µ̄]−mε ∈ US}.

To show that n exists, we need to show that the set on the right hand side is nonempty. Fix
any [s̄] ∈ S. Since s̄ and µ̄ are Cauchy, there is N > 0 such that if n ≥ N , we have

−Nε ≤ sn and µn ≤ Nε.
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It follows that [µ̄]− (2N + 1)ε ≤ [s̄]. Hence n is well-defined.

Let [ū] = [µ̄]− nε. Since [µ̄]− (n+ 1)ε /∈ US , there must be [s̄] such that

[ū]− ε = [µ̄]− (n+ 1)ε < [s̄].

On the other hand, [ū] ∈ US by construction. Hence, [ū] ≥ [s̄]. This completes the proof
of (B.1).

Next, we use (B.1) to take a sequence that approximates the supremum. Indeed, for any n,
we find sequences [s̄1], [s̄2], · · · ∈ S and [ū1], [ū2], · · · ∈ US such that

[ūn]−
1

2n
≤ [s̄n] ≤ [ūn] (B.2)

and, for all n, [ūn+1] ≤ [ūn]. It follows from (B.2) that, for any k and n,

[ūn] ≤ [ūk] +
1

2n
. (B.3)

Our goal is to create a “best” lower bound by taking a suitable “diagonal” sequence.

Up to removing finitely many elements of the sequence, we may assume that, for all k, ℓ ≥ n,

|un,k − un,ℓ| ≤
1

2n
, and |sn,k − sn,ℓ| ≤

1

2n
(B.4)

where un,k is the kth element of the ūn (similarly for sn,k). It is easy to check that

un,n − 3

2n
≤ sn,n ≤ un,n +

3

2n
.

We define a sequence
ū =

(
u1,1, u2,2, . . . , un,n, . . .

)
.

We expect that [ū] is our least upper bound. To show this, we must check that [ū] ∈ US and
that [ū] ≤ [ū′] for all [ū′] ∈ US .

We check that [ū] ∈ US . If not, then there is [s̄] ∈ S such that

[s̄] > [ū].

By definition, there is N1 and ε > 0 such that sn > un + ε for all n ≥ N1. We deduce that

sn > ε+ un,n.

Up to increasing N1 so that 2−n < ε/2, we have that

sn >
ε

2
+ un,n +

1

2n
.

There is N2 such that, for all i, j ≥ N2.

|si − sj | <
ε

4
.

Let N = max{N1, N2, n}. For any k ≥ N , it follows that

sk > sn − ε

4
>
ε

4
+ un,n +

1

2n
.
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From this and (B.4), it follows that, for all k ≥ n,

sk >
ε

4
+ un,k.

We deduce that [s̄] > [ūn], which is a contradiction. It follows that [ū] ∈ US .

We now fix any [ū′] ∈ US . Assume, by contradiction, that [ū′] < [ū]. By definition, there is
N1 and ε > 0 such that un > u′n + ε for all n ≥ N1. We deduce that

u′n + ε < un = un,n < sn,n +
3

2n
.

Here we used (B.4) and (B.3) to get the last inequality above. Next, using (B.4), we find, for
all k ≥ n,

u′n + ε < sn,k +
5

2n
.

We take N2 such that, for n ≥ N2,
5

2n
<
ε

2

Finally, we take N3 such that, for all i, j ≥ N3,

|u′i − u′j | <
ε

4
.

Fix n = max{N1, N2, N3}. If k ≥ n, we have

u′k +
ε

4
< u′n +

ε

2
< sn,k +

5

2n
− ε

2
< sn,k.

It follows that [ū′] < [s̄n], which contradicts the fact that [ū′] ∈ US . This completes the proof
that [ū] is the least upper bound.

(vi) (Completeness) All of the hard work for this happened in the last step (least upper bound
property). Indeed, suppose that [ūn] ∈ R is a Cauchy sequence. By standard arguments from
undergraduate analysis62, every sequence has a monotone subsequence [ūn1 ], [ūn2 ], . . . .

If this subsequence is increasing, we let

[ū] = sup{[ūnk
] : k = 1, 2, . . . }.

Here the sup is the least upper bound of the set.

Exercise B.0.3. Show that [ūnk
] → [ū] as k → ∞. The use Exercise 3.3.1 to conclude that

[ūn] → [ū] as n→ ∞.

If this sequence is decreasing, we let

[ū] = − sup{−[ūnk
] : k = 1, 2, . . . }.

62Perhaps this will be added one day...
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C. Identifying a Stieltjes measure

Suppose that F : R → R is a non-decreasing, càdlàg function associated to a measure space
(R,F , µF ). If (R,G, µ) is another measure space, how can we tell it is the same as (R,F , µF )? We
note that this comes up often in Section 5.1.2; see, e.g., Example 5.1.3. The interested reader may
wish to explore further topics such as Carathéodory’s extension theorem and Dynkin’s π-λ theorem.

The first thing that we need notice is the following:

Lemma C.1. The measure space (R,F , µF ) defined via (5.1.3)-(5.1.4) is complete.

We omit the proof as it is exactly the same as for the Lebesgue measure; see Example 4.2.7.((i)).

Proposition C.2. Suppose that (R,G, µ) is a complete measure space, B ⊂ G, and

µF ((a, b]) = µ((a, b])

for every a < b. Then F ⊂ G and µF (A) = µ(A) for all A ∈ F .

Proof. First we show that F ⊂ G. Let us argue by contradiction, assuming that there exists
A ∈ F \ G. Since

A =
∞⋃
n=1

A ∩ [−n, n],

it must be that
AN := A ∩ [−N,N ] ∈ F \ G for some N .

Let CN = [−N,N ] ∩Ac
N , and it follows that

CN ∈ F \ G

as well.

By definition, for all n ∈ N, there are

AN ⊂ In =
∞⋃
i=1

(an,i, bn,i] and CN ⊂ Jn =
∞⋃
i=1

(cn,i, dn,i]

so that

µF (AN ) ≥
∞∑
i=1

(F (bn,i)− F (an,i))−
1

n
and µF (CN ) ≥

∞∑
i=1

(F (dn,i)− F (cn,i))−
1

n
.

Let us point out that, by assumption,

µF (In) = µ(In) and µF (Jn) = µ(Jn) for all n ∈ N. (C.1)

Clearly, we can choose these intervals such that, for all i and n,

−N − 1

n
≤ an,i, cn,i and bn,i, dn,i ≤ N. (C.2)

Then we take the set

I :=

∞⋂
n=1

In and J :=

∞⋂
n=1

Jn.
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By (C.1), Lemma 4.5.2, and Exercise 4.5.1, we have

µF ([−N,N ]) = µ([−N,N ]), µF (I) = µ(I) and µF (J) = µ(J).

Clearly I, J ∈ B ⊂ G and, by (C.2),
I, J ⊂ [−N,N ]. (C.3)

It follows that I \AN , J \ CN ∈ F \ G. Additionally, we observe that

AN ⊂ I and CN ⊂ J

and that
µF (I) = µF (AN ) and µF (J) = µF (CN ). (C.4)

We claim that
µ(I ∩ J) = 0 (C.5)

and
I \AN ⊂ I ∩ J. (C.6)

This is a contradiction to completeness because then I \ AN is a non-G-measurable subset of the
set I ∩ J of measure zero.

We begin with (C.6) as it is more straightforward. Indeed,

I \AN = I ∩Ac
N = I ∩ ([−N,N ]c ∪ CN ) = I ∩ CN ⊂ I ∩ J.

In the third equality, we used (C.3). For later, it will be convenient to notice that, similarly,

J ∩ Cc
N = J \ CN = J ∩AN . (C.7)

This is precisely (C.6).

We now show (C.5). Notice that I ∩ J ∈ B, so µF (I ∩ J) = µ(I ∩ J) by assumption. Hence, we
actually show that

µF (I ∩ J) = 0. (C.8)

Next, we notice that, by the F-measurability of J ∩AN ,

µF (J ∩AN ) = µF (J)− µF (J ∩Ac
N ) = µF (J)− µF (J ∩ CN ) = µF (J)− µF (CN ) = 0.

We used (C.7) in the second equality and (C.4) in the last equality. Similarly, we have

µF (I ∩ CN ) = 0.

Thus,

µF (I ∩ J) = µF (I ∩ J ∩AN ) + µF (I ∩ J ∩Ac
N ) ≤ µF (J ∩AN ) + µF (I ∩ CN ) = 0.

Thus, (C.8) is established and completes the proof that F ⊂ G.

Now we show that µF (A) = µ(A) for all A ∈ F . Fix any A ∈ F . By Lemma 4.5.2, if

µF (AN )µ(AN ), where AN = A ∩ [−N,N ],

239



for every N ∈ N, then µF (AN ) = µ(AN ). Hence, we may assume that A ⊂ [−N,N ] for some N .
Arguing as in the first part of this proof, we may find Borel sets I, J such that

A ⊂ I ⊂ [−N,N ], C := Ac ∩ [−N,N ] ⊂ J ⊂ [−N,N ],

µF (A) = µF (I) = µ(I), and µF (C) = µF (J) = µ(J).
(C.9)

By measurability, we have
µ(I) = µ(A) + µ(I \A).

By (C.1) and then (C.9), we have

µ(I) = µF (I) = µF (A).

Thus, the proof is finished if we show that

µ(I \A) = 0.

Notice that, by (C.9), I \A = I ∩ C. Hence,

µ(I \A) = µ(I ∩ C) ≤ µ(I ∩ J) = µ(I) + µ(J)− µ(I ∪ J)
= µF (I) + µF (J)− µF (I ∪ J) = µF (A) + µF (C)− µF ([−N,N ])

= µF (A ∪ C)− µF ([−N,N ]) = µF ([−N,N ])− µF ([−N,N ]) = 0.

All steps above either use the additivity of measures on disjoint unions, (C.1), or (C.9). Thus, the
proof is complete.

D. Proof of the law of the unconscious statistician

Proof of (5.2.5). Let us first reduce this question to a simpler one. First, it is enough to prove
this only for nonnegative functions g; the general case can be handled by writing g = g+ − g−.
Additionally, it is enough to show it simply only for indicator functions g = 1A for A ∈ B. Indeed,
the result then follows for all simple functions by linearity, and then the case of a general Borel
function can be handled by approximation (see, e.g., the approximation procedure in the proof of
Lemma 4.4.17).

We now proceed with the proof that, for all A ∈ B,

E[1A(X)] =

∫
1A(x) dµX . (D.1)

Define the Borel measure
µ(A) = E[1A(X)] = P(X ∈ A).

Then (D.1) follows by showing that
µ(A) = µFX

(A), (D.2)

for all A ∈ B.

Actually, we claim that we need only show that

µ(A) ≤ µF (A) for all A ∈ B. (D.3)
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Indeed, then we would have, by applying (D.3) to Ac,

1− µ(A) = µ(Ac) ≤ µF (A
c) = 1− µ(A),

which clearly yields that µ(A) ≥ µF (A). As a consequence, we deduce (D.2) and, thus, (D.1).

We now prove (D.3). First note that it holds for sets A = (a, b]. Now fix any A ∈ B ⊂ FX . Then,
by definition of outer measure, there are sets Vn of the form

Vn =

∞⋃
i=1

(an,i, bn,i]

with (an,i, bn,i] ∩ (an,j , bn,j ] = ∅ if i ̸= j, such that

A ⊂ Vn and µFX
(Vn) ≥ µFX

(A) +
1

n
.

Up to taking finite intersections, we may assume that V1 ⊃ V2 ⊃ · · · . Notice that

µ(Vn) =

∞∑
i=1

µ((an,i, bn,i]) =

∞∑
i=1

µFX
((an,i, bn,i]) = µFX

(Vn). (D.4)

Let

V =
∞⋂
n=1

Vn.

Since A ⊂ V and µ is a finite measure, we deduce from Exercise 4.5.1, that

µ(A) ≤ µ(V ) = lim
n→∞

µ(Vn) = lim
n→∞

µFX
(Vn) ≤ µFX

(A).

We used (D.4) in the second equality above. This is precisely (D.3). Hence, we deduce that (D.2)
holds as a result.
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