EVOLUTIONARY DYNAMICS OF A MULTI-TRAIT SEMELPAROUS MODEL

AMY VEPRAUSKAS
Interdisciplinary Program in Applied Mathematics
University of Arizona
617 N Santa Rita, Tucson, Arizona 85721, USA

J. M. CUSHING
Interdisciplinary Program in Applied Mathematics and Department of Mathematics
University of Arizona
617 N Santa Rita, Tucson, Arizona 85721, USA

Figures 1 and 2 show sample time series plots of the Darwinian equations (3) for the example in Section 6. Corrected versions of these figures appear below. Changes made are in the time series plots of the traits u_1 and u_2 in Figure 1(b) and (c) and in Figure 2(a).

Key words and phrases. juvenile-adult dynamics, evolutionary dynamics, bifurcation, stability, synchronous cycles.

The authors were supported by NSF grant DMS-140756 (program in Mathematical Biology).
Figure 1. Shown are the time series of solutions of the Darwinian equations (3) with parameter values (23), variance-covariance matrix (24), and three initial conditions (25) in rows (a), (b) and (c) respectively. Calculations show $c_{0}^{w} = -0.043 < 0$, $a_{+}^{0} = -0.178 < 0$, $a_{-} = -0.010 < 0$ and $R_{0}^{w} = 2.103 > 1$.
Figure 2. The time series of a solution of the Darwinian equations (3) when n = 1 with parameter values (23) and variance-covariance matrix $C = (0.1)$. The trait u_2 does not evolve and is fixed at the three initial conditions used in Figure 1. In all three cases, the bifurcations of both positive equilibria and synchronous 2-cycles are forward since $c_w^0 < 0$ and $a_+^0 < 0$.

(a) $u_2 = 0.2$. Since $R_0^0 = 0.903 < 1$, the population goes extinct.

(b) $u_2 = 1$. In this case $a_-^0 = 0.010 > 0$ and the forward bifurcating 2-cycles are stable. Since $R_0^0 = 1.856 > 1$ the population approaches a synchronous 2-cycle with non-overlapping generations. Although it is not visible in the scale of this plot, the trait u_1 also oscillates with period 2.

(c) $u_2 = 2$. In this case $a_-^0 = -0.034 < 0$ and the forward bifurcating positive equilibria are stable. Since $R_0^0 = 1.856 > 1$ the population equilibrates with overlapping generations.
REFERENCES

Received for publication November 2015.

E-mail address: aveprauskas@math.arizona.edu
E-mail address: cushing@email.arizona.edu