- 1. What does the absolute value mean? |x| $|x| = \begin{cases} -x & x < 0 \\ x & x \ge 0 \end{cases}$
- 2. Equation of a circle $(x-h)^2 + (y-k)^2 = r^2$ (h,k) is the center point and *r* is the radius

3. Solve for
$$x: \frac{x^3 + x^2 - 20x}{x+4} = 0$$

$$x(x+5)(x-4) = 0$$
$$x = -5 \quad x = 4 \quad x = 0$$

4. Simplify: $\frac{x^3 + x^2 - 20x}{x+4}$

NEVER DIVIDE BY THE VARIABLE YOU ARE SOLVING FOR.

- 4. Simplify: $\frac{x^3 + x^2 20x}{x+5} = \frac{x(x+5)(x-4)}{x+5} = x(x-4)$
- 5. A table of values represents a linear function, y = mx + b,
 - a. if the slope between any two points are the same. $m = \frac{y_2 y_1}{x_2 x_1} = \frac{y_3 y_2}{x_3 x_2}$
 - b. if the increments between the x's are the same $x_2 x_1 = x_3 x_2$ and if the different between the y's are the same $y_2 y_1 = y_3 y_2$.

 $y_2 - y_1 = slope$ only if $x_2 - x_1 = 1$

- 6. A table of values represents an exponential function, $y = Ca^{x}$,
 - a. if $a = (x_2 x_1) \sqrt{\frac{y_2}{y_1}} = (x_3 x_2) \sqrt{\frac{y_2}{y_1}}$
 - b. if the x's are the equally spaces $x_2 x_1 = x_3 x_2$ and if the ratios of the y's are the

same
$$\frac{y_2}{y_1} = \frac{y_3}{y_2}$$
.
 $\frac{y_2}{y_1} = a$ only if $x_2 - x_1 = 1$

7. Solve for $x: x^2 = 9$ |x| = 3 $x = \pm 3$ 8. Simplify: $\sqrt{9}$ the answer is 3.

Hint #1

Story Problems r = rate of growth or decay

If *r* is given as a percentage then the equation is exponential

If *r* is given as a number per ____ (not a percentage) then the equation is linear. If the problem says one of the following:

1. if growth is exponential with a rate of <i>r</i> , then use $P = P_o a^t$	where $a = 1+r$
2. if decay is exponential with a rate of r , then use $P = P_o a^t$	where $a = 1 - r$

3. if it is a **<u>continuous</u>** growth rate of *r*, then use $P = P_o e^{kt}$ where k = r

4. if it is a **<u>continuous</u>** decay rate of *r*, then use $P = P_a e^{-kt}$ where k = r

Only use formulas 3 and 4 if the word <u>continuous</u> is in the word problem

Examples in Story problems

The garbage grows in the apartment at the following rates. The apartment started with 5 lbs of garbage.

a) Increases 3 lbs per day	(linear growth)	f(t) = 3t + 5	t	is in days
b) Increase 3% per day	(exponential)	$g(t) = 5(1.03)^t$	t	is in days
c) Increasing continuously 3% per day	(exponential)	$k(t) = 5e^{.03t}$	t	is in days

Hint #2 Writing sinusoidal functions (sine and cosine functions)

When given a graph or a table and you are asked to write a possible sinusoidal function. You know it is in one of these two forms

 $g(t) = A\sin((B(t-C)) + D \text{ or } f(t) = A\cos((B(t-C)) + D$

Goal is to write the function either as sine or cosine function, if possible, with no phase shift assume A>0

- 1. If the maximum value is given at t=0 then use $g(t) = A\cos((Bt) + D)$
- 2. If the minimum value is given at t=0 then use $g(t) = -A\cos(Bt) + D$
- 3. If the midline value is given at t = 0 and the function is increasing then use $g(t) = A\sin(Bt) + D$
- 4. If the midline value is given at t =0 and the function is decreasing then use $g(t) = -A\sin(Bt) + D$
- 5. If the value at t = 0 is not one of the above you will have a phase shift, choose min, max or midline value to write the equation with a phase shift

A is amplitude
$$A = \frac{Max - Min}{2}$$
 or Max – Midline or Midline – Min
B is angular frequency $B = \frac{2\pi}{period}$
C is the phase shift
D is the midline (average) $D = \frac{Max + Min}{2}$