1. What does the absolute value mean? $|x| \quad|x|=\left\{\begin{array}{cc}-x & x<0 \\ x & x \geq 0\end{array}\right.$
2. Equation of a circle $(x-h)^{2}+(y-k)^{2}=r^{2} \quad(h, k)$ is the center point and r is the radius
3. Solve for $x: \frac{x^{3}+x^{2}-20 x}{x+4}=0$

$$
\begin{aligned}
& x(x+5)(x-4)=0 \\
& x=-5 \quad x=4 \quad x=0
\end{aligned}
$$

NEVER divide by the variable YOU ARE SOLVING FOR.

4. Simplify: $\frac{x^{3}+x^{2}-20 x}{x+5}$

$$
=\frac{x(x+5)(x-4)}{x+5}=x(x-4)
$$

5. A table of values represents a linear function, $y=m x+b$,
a. if the slope between any two points are the same. $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{3}-y_{2}}{x_{3}-x_{2}}$
b. if the increments between the x 's are the same $x_{2}-x_{1}=x_{3}-x_{2}$ and if the different between the y 's are the same $y_{2}-y_{1}=y_{3}-y_{2}$.

$$
y_{2}-y_{1}=\text { slope only if } x_{2}-x_{1}=1
$$

6. A table of values represents an exponential function, $y=C a^{x}$,
a. if $a=\left(x_{2}-x_{1}\right) \sqrt{\frac{y_{2}}{y_{1}}}=\left(x_{3}-x_{2}\right) \sqrt{\frac{y_{2}}{y_{1}}}$
b. if the x 's are the equally spaces $x_{2}-x_{1}=x_{3}-x_{2}$ and if the ratios of the y 's are the same $\frac{y_{2}}{y_{1}}=\frac{y_{3}}{y_{2}}$.

$$
\frac{y_{2}}{y_{1}}=a \text { only if } x_{2}-x_{1}=1
$$

7. Solve for $x: x^{2}=9$

$$
|x|=3
$$

$$
x= \pm 3
$$

8. Simplify: $\sqrt{9}$ the answer is 3 .

Hint \# 1

Story Problems $r=$ rate of growth or decay
If r is given as a percentage then the equation is exponential
If r is given as a number per___ (not a percentage) then the equation is linear.
If the problem says one of the following:

1. if growth is exponential with a rate of r, then use $P=P_{o} a^{t} \quad$ where $a=1+r$
2. if decay is exponential with a rate of r, then use $P=P_{o} a^{t}$ where $a=1-r$
3. if it is a continuous growth rate of r, then use $P=P_{o} e^{k t}$ where $k=r$
4. if it is a continuous decay rate of r, then use $P=P_{o} e^{-k t}$ where $k=r$
Only use formulas 3 and 4 if the word continuous is in the word problem
Examples in Story problems
The garbage grows in the apartment at the following rates. The apartment started with 5 lbs of garbage.
a) Increases 3 lbs per day
(linear growth) $f(t)=3 t+5$
t is in days
b) Increase 3% per day
(exponential) $g(t)=5(1.03)^{t}$
t is in days
c) Increasing continuously 3% per day
t is in days

Hint \#2 Writing sinusoidal functions (sine and cosine functions)
When given a graph or a table and you are asked to write a possible sinusoidal function.
You know it is in one of these two forms

$$
g(t)=A \sin ((B(t-C))+D \text { or } f(t)=A \cos ((B(t-C))+D
$$

Goal is to write the function either as sine or cosine function, if possible, with no phase shift assume A>0

1. If the maximum value is given at $t=0$ then use $g(t)=A \cos ((B t)+D$
2. If the minimum value is given at $t=0$ then use $g(t)=-A \cos (B t)+D$
3. If the midline value is given at $t=0$ and the function is increasing then use $g(t)=A \sin (B t)+D$
4. If the midline value is given at $t=0$ and the function is decreasing then use $g(t)=-A \sin (B t)+D$
5. If the value at $t=0$ is not one of the above you will have a phase shift, choose min, max or midline value to write the equation with a phase shift

A is amplitude

$$
A=\frac{\text { Max }- \text { Min }}{2} \text { or Max }- \text { Midline or Midline }- \text { Min }
$$

B is angular frequency $B=\frac{2 \pi}{\text { period }}$
C is the phase shift
D is the midline (average) $\quad D=\frac{M a x+M i n}{2}$

