\qquad

1. Use the graph below to rank the value of each expression from smallest (1) to largest (5), without calculating an exact value. Show your work in the graph.

$$
-\frac{f(20)-f(10)}{20-10}
$$

\qquad slope of the tangent line at $x=14$
2. Illustrate each expression on the graph below by sketching a line with the indicated slope.

Indicated which line goes with which question. This is not asking for any values just the visual representation.

A. Average rate of change of $T(d)$ between the $5^{\text {th }}$ and $25^{\text {th }}$ days.
B. Rate of change of $T(d)$ on the $15^{\text {th }}$ day.
C. $\frac{T(10)}{10}$
3. Estimate $L^{\prime}(35)$ and give a practical interpretation. L is the light output (millions of lumens), and t is the time after ignition (milliseconds) of a No. 22 lightbulb.

Time after ignition	0	5	10	15	20	25	30	35	40	45	50
Light output	0	0.2	0.5	2.6	4.2	3.0	1.7	0.7	0.35	0.2	0

4. Estimate $P^{\prime}(1940)$ and give a practical interpretation. P represents the amount of carbon dioxide (ppm) in the atmosphere, t represents the year.

5. The speed of a car in mph can be expressed in terms of the length of a skid mark in feet when brakes are applied. Estimate $S^{\prime}(20)$ and give a practical interpretation if $S(L)=2 \sqrt{5 L}$. (If you get stuck algebraically then make a table)
6. Suppose a filter has been designed to remove 100 grams of sediment from a storage tank. Let $Q(t)$ be the amount of sediment in the tank at time t.
A. Estimate $Q^{\prime}(3)$ if the filter removes a fixed amount of sediment each hour, say 2.3 grams.
B. Estimate $Q^{\prime}(3)$ if the filter removes a fixed percentage of sediment each hour, say 20%. (After you find the equation, make a table to find the derivative.)
C. Give a practical interpretation of $Q^{\prime}(3)$ for both parts A and B.
