Quiz 5 Solutions

1. If the event that he hits the free throw \(P(H) = 0.793 \)
 and the event he misses the free throw \(P(M) = 0.207 \)

 A. \(S = \{0, 1, 2, 3\} \)

 B. \(P(S=1) = P(HMM) + P(MHM) + P(MHH) = 3 \times (0.793) \times (0.207)^2 \)

 C. \(P(S=0) = P(MMM) = (0.207)^3 = 0.0087 \)
 \(P(S=2) = 3 \times P(MHH) = 3 \times (0.793)^2 \times (0.207) \approx 0.3905 \)
 \(P(S=3) = P(HHH) = 0.793^3 = 0.4987 \)

 \[
 \begin{array}{c|cccc}
 S & 0 & 1 & 2 & 3 \\
 \hline
 P(S) & 0.0087 & 0.1019 & 0.3905 & 0.4987 \\
 \end{array}
 \]

2. G is event the referee is good \(P(G) = 1 - P(B) = 0.87 \)
 B is event the referee is bad \(P(B) = 0.13 \)
 \(P(\text{all 6 are good}) = (0.87)^6 = 0.4336 \) or 43.36%

 Note we are assuming that the events are independent

3. \(P(\text{OB}) = 0.36 \) \(P(\text{OW}) = 0.33 \) \(P(\text{N}) = 0.31 \)

 A. There is no overlap. One cannot be in both groups.

 B. See below

 C. \(P(\text{OB or OW}) = 0.36 + 0.33 = 0.69 \)

 C. Above

 \(\text{OB} \) is event person is obese, \(\text{OW} \) is event person is overweight, \(\text{N} \) is event person's weight is normal
4. A. When add up the probabilities you get one. So this shows that there are no students who are taking 2 languages.
B. \(P(\text{Sp or For G or M}) = .29 + .12 + .06 + .09 = .56 \)
C. \(P(\text{For G or M}) = .12 + .06 + .09 = .27 \)

5. A. normcdf \((50,57,61,9) = .2175\) or 21.75% of runners run the race between 50 and 57 mins.
B. normcdf \((75,100,61,9) = .0599\) or 5.99% run race in greater than 75 minutes.
C. \[
\frac{65 - 61}{9} \approx .4444\] time is .4444 standard deviations above the mean.
D. \[
\frac{50 - 61}{9} \approx -1.222, \quad \frac{57 - 61}{9} \approx -.4444\]
\[\text{normcdf}\ (-1.222, -.4444, 0, 1) \approx .2175\]

6. A. \(P(T \leq 8) \) means the person runs the race in 8 minutes or less
\(P(T \leq 8) = \text{normcdf}\ (-100, 8, 7.11, 0.74) \approx .8855 \)

B. \(P(T \geq 7) \) is probability that person could not run a mile in less than 7 minutes
\(P(T \geq 7) = \text{normcdf}\ (7,100,7.11,0.74) \approx .5591 \)