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1 Area of a sphere
The volume in n dimensions is
vol=d"x =dxy - -dzy, =" Vdrd" tw. (1)

Here r = |x| is the radius, and w = x/r it a radial unit vector. Also d" 'w
denotes the angular integral. For instance, when n = 2 it is df for 0 < 6 < 27,
while for n = 3 it is sin(f) df d¢ for 0 < 0 < 7 and 0 < ¢ < 2.

The radial component of the volume gives the area of the sphere. The radial
directional derivative along the unit vector w = x/r may be denoted

1 0 0 0

The corresponding spherical area is
wd]vol = r"~td" 1w, (3)

Thus when n = 2 it is (1/r)(z dy—y dx) = r df, while for n = 3 it is (1/r)(z dy dz+
ydzdx + x dx dy) = r?sin(0) df do.
The divergence theorem for the ball B, of radius r is thus

/ div vd”x:/ veowr" v . (4)
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Notice that if one takes v = x, then div x = n, while x-w = r. This shows that
n times the volume of the ball is 7™ times the surface area of the sphere.
Recall that the Gamma function is defined by I'(z) = [ t7e~tdt It is easy
to show that I'(z + 1) = 2I'(z). Since I'(1) = 1, it follows that I'(n) = (n — 1)\
The result I'(1) = 77 follows reduction to a Gaussian integral. It follows that

r()=1ir2.

Theorem 1 The area of the unit sphere S,,_1 C R"™ is

Wp—1 =



Thus in 3 dimensions the area of the sphere is wy = 4, while in 2 dimensions
the circumference of the circle is w; = 27. In 1 dimension the two points get
count wg = 2.

To prove this theorem, consider the Gaussian integral

/n(%)*%efé d"x = 1. (6)

In polar coordinates this is
n o0 ’7‘2
wp—1(2m)"2 / e” T hdr = 1. (7)
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Let u = r2/2. Then this is

wn_l(27r)*%2%2 / ety T du = 1. (8)
0

That is
(ﬁ
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This gives the result.

2 Fourier transform of a power

Theorem 2 Let 1 < a < n. The Fourier transform of 1/|x|* is Cq/|k|" ™,
where

n—a

n 273 l—\(n—a)
Co=Cn i)
2

(10)

This is not too difficult. It is clear from scaling that the Fourier transform
of 1/]z|* is C/|k|™~*. It remains to evaluate the constant C.
Take the inner product with the Gaussian. This gives

| x2 1
/ (2m)"ze T d"x = / (QW)*”e*TClmn_a d"k. (11)
Writing this in polar coordinates gives

0 L2 0 2
(2m)~ =2 / e~ Tl g = C(?W)_n/ e~ TriTdr. (12)
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This in turn gives

(2m)"%27 2 I(




3 The Hankel transform

Define the Bessel function
J,(t) = sz " miteos(0) sin(6)%” d (14)
Y @m)r 1 g '

This makes sense for all real numbers v > 0, but we shall be interested mainly
in the cases when v is an integer or v is a half-integer. In the case when v is a
half-integer the exponent 2v is odd, and so it is possible to evaluate the integral
in terms of elementary functions. Thus, for example,
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1(t) = 72127r/ e~ 50 gin(h) d = 72128111( )
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J (15)

This is not possible when v is an integer. Thus for v = 0 we have the relatively
mysterious expression

1 /™ .
Jo(t) = = / eiteos®) gg. (16)
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Fix a value of v. If we consider a function g(r), its Hankel transform is the
function g, (s) given by

iu(s) = / " (sr)g(r)rdr. (17)

We shall see that the Hankel transform is related to the Fourier transform.

4 The radial Fourier transform

The first result is that the radial Fourier transform is given by a Hankel trans-
form. Suppose f is a function on R"™. Its Fourier transform is

f(k) = / e7RX f(x) d™x. (18)

Let r = |x| and s = |k|. Write f(x) = F(r) and f(k) = F,(s).

Theorem 3 The radial Fourier transform in n dimensions is given in terms of
the Hankel transform by

SER =@ [ e T FOr (19)

Here is the proof of the theorem. Introduce polar coordinates with the z
axis along k, so that k- x = srcos(f). Suppose that the function is radial, that

is, f(x) = F(r).

f(k) = Fu(s) = /O h /0 ! e~ eosO) B (), o sin(h)" 2 dor"t dr. (20)



Use

e T eos
Tn_2(t) = yF 2 / e~ tcos(9) 5in(9)"2 dp. (21)
ke 0

For the case n = 3 the Bessel function has order 1/2 and has the above
expression in terms of elementary functions. So

Fy(s) = 4n /O h @F(r)ﬂ dr. (22)

For n = 2 the Bessel function has order 0. We get

Fy(s) =2m /0 b Jo(s)E(r)r dr. (23)



