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1 Area of a sphere

The volume in n dimensions is

vol = dnx = dx1 · · · dxn = rn−1 dr dn−1ω. (1)

Here r = |x| is the radius, and ω = x/r it a radial unit vector. Also dn−1ω
denotes the angular integral. For instance, when n = 2 it is dθ for 0 ≤ θ ≤ 2π,
while for n = 3 it is sin(θ) dθ dφ for 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.

The radial component of the volume gives the area of the sphere. The radial
directional derivative along the unit vector ω = x/r may be denoted

ωd =
1
r
(x1

∂

∂x1
+ · · ·+ xn

∂

∂xn
) =

∂

∂r
. (2)

The corresponding spherical area is

ωdcvol = rn−1 dn−1ω. (3)

Thus when n = 2 it is (1/r)(x dy−y dx) = r dθ, while for n = 3 it is (1/r)(x dy dz+
y dz dx + x dx dy) = r2 sin(θ) dθ dφ.

The divergence theorem for the ball Br of radius r is thus
∫

Br

div v dnx =
∫

Sr

v · ω rn−1dn−1ω. (4)

Notice that if one takes v = x, then div x = n, while x ·ω = r. This shows that
n times the volume of the ball is rn times the surface area of the sphere.

Recall that the Gamma function is defined by Γ(z) =
∫∞
0

tze−t dt
t . It is easy

to show that Γ(z + 1) = zΓ(z). Since Γ(1) = 1, it follows that Γ(n) = (n− 1)!.
The result Γ( 1

2 ) = π
1
2 follows reduction to a Gaussian integral. It follows that

Γ( 3
2 ) = 1

2π
1
2 .

Theorem 1 The area of the unit sphere Sn−1 ⊆ Rn is

ωn−1 =
2π

n
2

Γ(n
2 )

. (5)
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Thus in 3 dimensions the area of the sphere is ω2 = 4π, while in 2 dimensions
the circumference of the circle is ω1 = 2π. In 1 dimension the two points get
count ω0 = 2.

To prove this theorem, consider the Gaussian integral
∫

Rn

(2π)−
n
2 e−

x2
2 dnx = 1. (6)

In polar coordinates this is

ωn−1(2π)−
n
2

∫ ∞

0

e−
r2
2 rn−1 dr = 1. (7)

Let u = r2/2. Then this is

ωn−1(2π)−
n
2 2

n−2
2

∫ ∞

0

e−uu
n−2

2 du = 1. (8)

That is
ωn−1π

−n
2 2−1Γ(

n

2
) = 1. (9)

This gives the result.

2 Fourier transform of a power

Theorem 2 Let 1 < a < n. The Fourier transform of 1/|x|a is Ca/|k|n−a,
where

Ca = (2π)
n
2

2
n−a

2 Γ(n−a
2 )

2
a
2 Γ(a

2 )
. (10)

This is not too difficult. It is clear from scaling that the Fourier transform
of 1/|x|a is C/|k|n−a. It remains to evaluate the constant C.

Take the inner product with the Gaussian. This gives
∫

Rn

(2π)−
n
2 e−

x2
2

1
|x|a dnx =

∫

Rn

(2π)−ne−
x2
2 C

1
|k|n−a

dnk. (11)

Writing this in polar coordinates gives

(2π)−
n
2

∫ ∞

0

e−
r2
2 rn−1−α dr = C(2π)−n

∫ ∞

0

e−
r2
2 r1−α dr. (12)

This in turn gives

(2π)−
n
2 2

n−a−2
2 Γ(

n− a

2
) = C(2π)−n2

a−2
2 Γ(

a

2
). (13)
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3 The Hankel transform

Define the Bessel function

Jν(t) =
tν

(2π)ν+1
ω2ν

∫ π

0

e−it cos(θ) sin(θ)2ν dθ. (14)

This makes sense for all real numbers ν ≥ 0, but we shall be interested mainly
in the cases when ν is an integer or ν is a half-integer. In the case when ν is a
half-integer the exponent 2ν is odd, and so it is possible to evaluate the integral
in terms of elementary functions. Thus, for example,

J 1
2
(t) =

t
1
2

(2π)
1
2
2π

∫ π

0

e−it sin(θ) sin(θ) dθ =
t

1
2

(2π)
1
2
2
sin(t)

t
. (15)

This is not possible when ν is an integer. Thus for ν = 0 we have the relatively
mysterious expression

J0(t) =
1
π

∫ π

0

eit cos(θ) dθ. (16)

Fix a value of ν. If we consider a function g(r), its Hankel transform is the
function ĝν(s) given by

ĝν(s) =
∫ ∞

0

Jν(sr)g(r)r dr. (17)

We shall see that the Hankel transform is related to the Fourier transform.

4 The radial Fourier transform

The first result is that the radial Fourier transform is given by a Hankel trans-
form. Suppose f is a function on Rn. Its Fourier transform is

f̂(k) =
∫

e−ik·xf(x) dnx. (18)

Let r = |x| and s = |k|. Write f(x) = F (r) and f̂(k) = Fn(s).

Theorem 3 The radial Fourier transform in n dimensions is given in terms of
the Hankel transform by

s
n−2

2 F̂n(s) = (2π)
n
2

∫ ∞

0

Jn−2
2

(sr)r
n−2

2 F (r)r dr. (19)

Here is the proof of the theorem. Introduce polar coordinates with the z
axis along k, so that k · x = sr cos(θ). Suppose that the function is radial, that
is, f(x) = F (r).

f̂(k) = F̂n(s) =
∫ ∞

0

∫ π

0

e−isr cos(θ)F (r)ωn−2 sin(θ)n−2 dθrn−1 dr. (20)
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Use

Jn−2
2

(t) =
t

n−2
2

(2π)
n
2

ωn−2

∫ π

0

e−it cos(θ) sin(θ)n−2 dθ. (21)

For the case n = 3 the Bessel function has order 1/2 and has the above
expression in terms of elementary functions. So

F̂3(s) = 4π

∫ ∞

0

sin(sr)
sr

F (r)r2 dr. (22)

For n = 2 the Bessel function has order 0. We get

F̂2(s) = 2π

∫ ∞

0

J0(sr)F (r)r dr. (23)
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