Radial functions and the Fourier transform

Notes for Math 583A, Fall 2008

December 6, 2008

1 Area of a sphere

The volume in n dimensions is

$$
\begin{equation*}
\mathrm{vol}=d^{n} \mathbf{x}=d x_{1} \cdots d x_{n}=r^{n-1} d r d^{n-1} \omega \tag{1}
\end{equation*}
$$

Here $r=|\mathbf{x}|$ is the radius, and $\omega=\mathbf{x} / r$ it a radial unit vector. Also $d^{n-1} \omega$ denotes the angular integral. For instance, when $n=2$ it is $d \theta$ for $0 \leq \theta \leq 2 \pi$, while for $n=3$ it is $\sin (\theta) d \theta d \phi$ for $0 \leq \theta \leq \pi$ and $0 \leq \phi \leq 2 \pi$.

The radial component of the volume gives the area of the sphere. The radial directional derivative along the unit vector $\omega=\mathbf{x} / r$ may be denoted

$$
\begin{equation*}
\omega d=\frac{1}{r}\left(x_{1} \frac{\partial}{\partial x_{1}}+\cdots+x_{n} \frac{\partial}{\partial x_{n}}\right)=\frac{\partial}{\partial r} . \tag{2}
\end{equation*}
$$

The corresponding spherical area is

$$
\begin{equation*}
\omega d\rfloor \mathrm{vol}=r^{n-1} d^{n-1} \omega \tag{3}
\end{equation*}
$$

Thus when $n=2$ it is $(1 / r)(x d y-y d x)=r d \theta$, while for $n=3$ it is $(1 / r)(x d y d z+$ $y d z d x+x d x d y)=r^{2} \sin (\theta) d \theta d \phi$.

The divergence theorem for the ball B_{r} of radius r is thus

$$
\begin{equation*}
\int_{B_{r}} \operatorname{div} \mathbf{v} d^{n} \mathbf{x}=\int_{S_{r}} \mathbf{v} \cdot \omega r^{n-1} d^{n-1} \omega . \tag{4}
\end{equation*}
$$

Notice that if one takes $\mathbf{v}=\mathbf{x}$, then $\operatorname{div} \mathbf{x}=n$, while $\mathbf{x} \cdot \omega=r$. This shows that n times the volume of the ball is r^{n} times the surface area of the sphere.

Recall that the Gamma function is defined by $\Gamma(z)=\int_{0}^{\infty} t^{z} e^{-t} \frac{d t}{t}$. It is easy to show that $\Gamma(z+1)=z \Gamma(z)$. Since $\Gamma(1)=1$, it follows that $\Gamma(n)=(n-1)$!. The result $\Gamma\left(\frac{1}{2}\right)=\pi^{\frac{1}{2}}$ follows reduction to a Gaussian integral. It follows that $\Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \pi^{\frac{1}{2}}$.

Theorem 1 The area of the unit sphere $S_{n-1} \subseteq \mathbf{R}^{n}$ is

$$
\begin{equation*}
\omega_{n-1}=\frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)} . \tag{5}
\end{equation*}
$$

Thus in 3 dimensions the area of the sphere is $\omega_{2}=4 \pi$, while in 2 dimensions the circumference of the circle is $\omega_{1}=2 \pi$. In 1 dimension the two points get count $\omega_{0}=2$.

To prove this theorem, consider the Gaussian integral

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}(2 \pi)^{-\frac{n}{2}} e^{-\frac{\mathbf{x}^{2}}{2}} d^{n} \mathbf{x}=1 . \tag{6}
\end{equation*}
$$

In polar coordinates this is

$$
\begin{equation*}
\omega_{n-1}(2 \pi)^{-\frac{n}{2}} \int_{0}^{\infty} e^{-\frac{r^{2}}{2}} r^{n-1} d r=1 \tag{7}
\end{equation*}
$$

Let $u=r^{2} / 2$. Then this is

$$
\begin{equation*}
\omega_{n-1}(2 \pi)^{-\frac{n}{2}} 2^{\frac{n-2}{2}} \int_{0}^{\infty} e^{-u} u^{\frac{n-2}{2}} d u=1 \tag{8}
\end{equation*}
$$

That is

$$
\begin{equation*}
\omega_{n-1} \pi^{-\frac{n}{2}} 2^{-1} \Gamma\left(\frac{n}{2}\right)=1 \tag{9}
\end{equation*}
$$

This gives the result.

2 Fourier transform of a power

Theorem 2 Let $1<a<n$. The Fourier transform of $1 /|x|^{a}$ is $C_{a} /|k|^{n-a}$, where

$$
\begin{equation*}
C_{a}=(2 \pi)^{\frac{n}{2}} \frac{2^{\frac{n-a}{2}} \Gamma\left(\frac{n-a}{2}\right)}{2^{\frac{a}{2}} \Gamma\left(\frac{a}{2}\right)} . \tag{10}
\end{equation*}
$$

This is not too difficult. It is clear from scaling that the Fourier transform of $1 /|x|^{a}$ is $C /|k|^{n-a}$. It remains to evaluate the constant C.

Take the inner product with the Gaussian. This gives

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}(2 \pi)^{-\frac{n}{2}} e^{-\frac{\mathbf{x}^{2}}{2}} \frac{1}{|x|^{a}} d^{n} \mathbf{x}=\int_{\mathbf{R}^{n}}(2 \pi)^{-n} e^{-\frac{\mathbf{x}^{2}}{2}} C \frac{1}{|k|^{n-a}} d^{n} \mathbf{k} \tag{11}
\end{equation*}
$$

Writing this in polar coordinates gives

$$
\begin{equation*}
(2 \pi)^{-\frac{n}{2}} \int_{0}^{\infty} e^{-\frac{r^{2}}{2}} r^{n-1-\alpha} d r=C(2 \pi)^{-n} \int_{0}^{\infty} e^{-\frac{r^{2}}{2}} r^{1-\alpha} d r \tag{12}
\end{equation*}
$$

This in turn gives

$$
\begin{equation*}
(2 \pi)^{-\frac{n}{2}} 2^{\frac{n-a-2}{2}} \Gamma\left(\frac{n-a}{2}\right)=C(2 \pi)^{-n} 2^{\frac{a-2}{2}} \Gamma\left(\frac{a}{2}\right) . \tag{13}
\end{equation*}
$$

3 The Hankel transform

Define the Bessel function

$$
\begin{equation*}
J_{\nu}(t)=\frac{t^{\nu}}{(2 \pi)^{\nu+1}} \omega_{2 \nu} \int_{0}^{\pi} e^{-i t \cos (\theta)} \sin (\theta)^{2 \nu} d \theta \tag{14}
\end{equation*}
$$

This makes sense for all real numbers $\nu \geq 0$, but we shall be interested mainly in the cases when ν is an integer or ν is a half-integer. In the case when ν is a half-integer the exponent 2ν is odd, and so it is possible to evaluate the integral in terms of elementary functions. Thus, for example,

$$
\begin{equation*}
J_{\frac{1}{2}}(t)=\frac{t^{\frac{1}{2}}}{(2 \pi)^{\frac{1}{2}}} 2 \pi \int_{0}^{\pi} e^{-i t \sin (\theta)} \sin (\theta) d \theta=\frac{t^{\frac{1}{2}}}{(2 \pi)^{\frac{1}{2}}} 2 \frac{\sin (t)}{t} . \tag{15}
\end{equation*}
$$

This is not possible when ν is an integer. Thus for $\nu=0$ we have the relatively mysterious expression

$$
\begin{equation*}
J_{0}(t)=\frac{1}{\pi} \int_{0}^{\pi} e^{i t \cos (\theta)} d \theta \tag{16}
\end{equation*}
$$

Fix a value of ν. If we consider a function $g(r)$, its Hankel transform is the function $\hat{g}_{\nu}(s)$ given by

$$
\begin{equation*}
\hat{g}_{\nu}(s)=\int_{0}^{\infty} J_{\nu}(s r) g(r) r d r \tag{17}
\end{equation*}
$$

We shall see that the Hankel transform is related to the Fourier transform.

4 The radial Fourier transform

The first result is that the radial Fourier transform is given by a Hankel transform. Suppose f is a function on \mathbf{R}^{n}. Its Fourier transform is

$$
\begin{equation*}
\hat{f}(\mathbf{k})=\int e^{-i \mathbf{k} \cdot \mathbf{x}} f(\mathbf{x}) d^{n} \mathbf{x} \tag{18}
\end{equation*}
$$

Let $r=|\mathbf{x}|$ and $s=|\mathbf{k}|$. Write $f(\mathbf{x})=F(r)$ and $\hat{f}(\mathbf{k})=F_{n}(s)$.
Theorem 3 The radial Fourier transform in n dimensions is given in terms of the Hankel transform by

$$
\begin{equation*}
s^{\frac{n-2}{2}} \hat{F}_{n}(s)=(2 \pi)^{\frac{n}{2}} \int_{0}^{\infty} J_{\frac{n-2}{2}}(s r) r^{\frac{n-2}{2}} F(r) r d r . \tag{19}
\end{equation*}
$$

Here is the proof of the theorem. Introduce polar coordinates with the z axis along \mathbf{k}, so that $\mathbf{k} \cdot \mathbf{x}=s r \cos (\theta)$. Suppose that the function is radial, that is, $f(\mathbf{x})=F(r)$.

$$
\begin{equation*}
\hat{f}(\mathbf{k})=\hat{F}_{n}(s)=\int_{0}^{\infty} \int_{0}^{\pi} e^{-i s r \cos (\theta)} F(r) \omega_{n-2} \sin (\theta)^{n-2} d \theta r^{n-1} d r \tag{20}
\end{equation*}
$$

Use

$$
\begin{equation*}
J_{\frac{n-2}{2}}(t)=\frac{t^{\frac{n-2}{2}}}{(2 \pi)^{\frac{n}{2}}} \omega_{n-2} \int_{0}^{\pi} e^{-i t \cos (\theta)} \sin (\theta)^{n-2} d \theta \tag{21}
\end{equation*}
$$

For the case $n=3$ the Bessel function has order $1 / 2$ and has the above expression in terms of elementary functions. So

$$
\begin{equation*}
\hat{F}_{3}(s)=4 \pi \int_{0}^{\infty} \frac{\sin (s r)}{s r} F(r) r^{2} d r \tag{22}
\end{equation*}
$$

For $n=2$ the Bessel function has order 0 . We get

$$
\begin{equation*}
\hat{F}_{2}(s)=2 \pi \int_{0}^{\infty} J_{0}(s r) F(r) r d r \tag{23}
\end{equation*}
$$

