Obliquely Reflected Brownian motions (ORBMs) in Non-Smooth Domains

Kavita Ramanan, Brown University

Frontier Probability Days, U. of Arizona, May 2014
Why Study Obliquely Reflected Diffusions?

Applications

- limits of interacting particle systems such as TASEP;
- diffusion approximations of stochastic networks;
- rank-dependent diffusion models (in finance);
- biological models of gene networks;
- closely related to certain (non-reflecting) diffusions;
Why Study Obliquely Reflected Diffusions?

Applications

- limits of interacting particle systems such as TASEP;
- diffusion approximations of stochastic networks;
- rank-dependent diffusion models (in finance);
- biological models of gene networks;
- closely related to certain (non-reflecting) diffusions;

Fundamental Mathematical Object

- a (non-symmetric) Markov process in a domain
- many basic questions are still not fully understood
Focus of this talk ...

Obliquely reflected Brownian motions (ORBM)s in non-smooth (rough) domains, planar domains

Motivation

- Diffusions in fractal domains have unusual and interesting properties (Goldstein ('87), Kusuoka ('87), Barlow-Perkins ('88)
- loosely motivated by applications in biology
Existing techniques for

- reflected diffusions in piecewise smooth domains
- normally reflected diffusions in fractal domains

are not applicable
Draws on various joint works with

W. Kang
University of Maryland, Baltimore County
and
K. Burdzy, Z.-Q.-Chen and D. Marshall
University of Washington, Seattle
A Heuristic Description
Given a domain D with a vector field $v(\cdot)$ on the boundary ∂D, ORBM behaves infinitesimally like Brownian motion in the interior, is constrained to stay within the closure \bar{D} of the domain and spends zero Lebesgue time on the boundary.
Tools to study ORBMs in smooth domains

A. (Extended) Skorokhod problem (and stochastic differential equations with reflection – SDER)
B. Submartingale problem
A. The (Extended) Skorokhod Problem

The 1-dimensional Skorokhod Map \(D = [0, \infty), \nu(0) = e_1 \)

Definition (Skorokhod Problem (Skorokhod '61))

For every continuous \(\mathbb{R} \)-valued path \(\psi \), find a continuous path \(\phi \) s.t. \(\forall t \geq 0, \)

1. \(\phi(t) \geq 0 \) i.e., \(\phi(t) \) lies in \([0, \infty)\)
2. \(\eta = \phi - \psi \) is non-decreasing
3. “\(\eta \) increases only when \(\phi \) is on the boundary”

\[
\int_0^\infty \phi(s) d\eta(s) = 0.
\]
\[\phi = \psi + \eta \geq 0, \quad \eta \text{ non-decreasing}, \quad \int_{0}^{\infty} \phi(s) \, d\eta(s) = 0. \]
An explicit formula (Skorokhod ’61)

\[\phi = \psi + \eta \geq 0, \quad \eta \text{ non-decreasing}, \quad \int_0^\infty \phi(s) d\eta(s) = 0. \]

\[\phi(t) = \Gamma_0(\psi)(t) = \psi(t) + \sup_{s \in [0,t]} [-\psi(s)]^+ \]

\[Z = \Gamma_0(Z_0 + B) \text{ is RBM in 1-d} \]
Obtain reflected Brownian motion as a constrained version of Brownian motion.
Recall 1-d Skorokhod Problem (Skorokhod ’61)

For every continuous \mathbb{R}-valued path ψ, find a continuous ϕ s.t. $\forall t \geq 0$,

1. $\phi(t) \geq 0$ i.e., $\phi(t)$ lies in $[0, \infty)$;
2. $\eta = \phi - \psi$ is non-decreasing
3. “η increases only when ϕ is on the boundary”

$$\int_0^\infty \phi(s) d\eta(s) = 0.$$
Recall 1-d Skorokhod Problem (Skorokhod ’61)

For every continuous \(\mathbb{R} \)-valued path \(\psi \), find a continuous \(\phi \) s.t. \(\forall t \geq 0 \),

1. \(\phi(t) \geq 0 \) i.e., \(\phi(t) \) lies in \([0, \infty)\);
2. \(\eta = \phi - \psi \) is non-decreasing
3. “\(\eta \) increases only when \(\phi \) is on the boundary”

\[
\int_{0}^{\infty} \phi(s) d\eta(s) = 0.
\]

1. Property 2 is equivalent to \(\eta(t) - \eta(s) \geq 0 \) for all \(0 \leq s \leq t \);
Recall 1-d Skorokhod Problem (Skorokhod '61)

For every continuous \mathbb{R}-valued path ψ, find a continuous ϕ s.t. $\forall t \geq 0$,

1. $\phi(t) \geq 0$ i.e., $\phi(t)$ lies in $[0, \infty)$;
2. $\eta = \phi - \psi$ is non-decreasing
3. “η increases only when ϕ is on the boundary”

\[
\int_0^\infty \phi(s) d\eta(s) = 0.
\]

1. Property 2 is equivalent to $\eta(t) - \eta(s) \geq 0$ for all $0 \leq s \leq t$;
2. Setting $\nu(x) = 0$ if $x > 0$, properties 2 and 3 are equivalent to

\[
\eta(t) - \eta(s) \in \overline{co} \left(\cup_{u \in (s,t]} \nu(\phi(u)) \right),
\]

where, for $A \subset \mathbb{R}^d$, $\overline{co}[A]$ is the closure of the convex cone generated by the vectors in A.
Obtain reflected Brownian motion as a constrained version of Brownian motion
Natural to consider piecewise smooth domains where v is multi-valued

$$v(0) = \{\alpha_1 v_1 + \alpha_2 v_2 : \alpha_1, \alpha_2 \geq 0\}$$
The Extended Skorokhod Map on \((D, \nu(\cdot))\)

Extend \(\nu\) to \(\bar{D}\) by setting \(\nu(x) = 0\) for \(x \in D\)

Definition (Extended Skorokhod Problem (’R ’06))

For every continuous \(\mathbb{R}^d\)-valued path \(\psi\), find a continuous \(\phi\) s.t. \(\forall t \geq 0,\)

1. \(\phi(t) \in \bar{D}\);
2. \(\eta = \phi - \psi\) satisfies for every \(0 \leq s \leq t\),

\[
\eta(t) - \eta(s) \in \overline{co} \left(\bigcup_{u \in (s, t]} \nu(\phi(u)) \right),
\]

where, \(\overline{co}[A]\) is the closure of the convex cone generated by \(A\)
The Extended Skorokhod Map on \((D, \nu(\cdot))\)

Extend \(\nu\) to \(\bar{D}\) by setting \(\nu(x) = 0\) for \(x \in D\)

Definition (Extended Skorokhod Problem (’R ’06))

For every continuous \(\mathbb{R}^d\)-valued path \(\psi\), find a continuous \(\phi\) s.t. \(\forall t \geq 0,\)

1. \(\phi(t) \in \bar{D};\)
2. \(\eta = \phi - \psi\) satisfies for every \(0 \leq s \leq t,\)

\[
\eta(t) - \eta(s) \in \overline{co} \left(\bigcup_{u \in (s, t]} \nu(\phi(u)) \right),
\]

where, \(\overline{co}[A]\) is the closure of the convex cone generated by \(A\)

Previous Formulations and Results

Tanaka (’79), Harrison-Reiman (’81), Lions-Sznitman (’84), Bernard El-Kharroubi (’91), Dupuis-Ishii (’91), Costantini (’92), Dupuis-Ramanan (’99), ...
Previous formulations of the Skorokhod Map assumed η is of bounded variation;
This means that the RBM $Z = \Gamma(Z_0 + B)$ is always a semimartingale.
Previous formulations of the Skorokhod Map assumed η is of bounded variation;

This means that the RBM $Z = \Gamma(Z_0 + B)$ is always a semimartingale.

The ESP formulation enabled one to construct solutions to SDER that are not necessarily semimartingales, thus extending the applicability of the SDER approach.
Previous formulations of the Skorokhod Map assumed η is of bounded variation;

This means that the RBM $Z = \Gamma(Z_0 + B)$ is always a semimartingale.

The ESP formulation enabled one to construct solutions to SDER that are not necessarily semimartingales, thus extending the applicability of the SDER approach.

The ESP can be used to construct both strong and weak solutions to the associated SDER.

B. The submartingale problem

The Submartingale Problem (Stroock-Varadhan ’71)

Given \((D, \nu(\cdot)), b, \sigma\), find probability measures \(Q_z, z \in \bar{D}\), on \(C([0, \infty) : \mathbb{R}^n)\) such that

- For every \(z \in \bar{D}\), \(Q_z(w(0) = z) = 1\);
- Under each \(Q_z\),

\[
M_t^f = f(X_t) - f(X_0) - \int_0^t \mathcal{L}f(X_s) \, ds
\]

is a submartingale for all \(f \in \mathcal{H}_0\), where

\[
\mathcal{H}_0 = \{f \in C_b^2(D) : \langle Df(x), \nu(x) \rangle \geq 0\}
\]
B. The submartingale problem

The Submartingale Problem (Stroock-Varadhan ’71)

Given \((D, \nu(\cdot)), b, \sigma\), find probability measures \(Q_z, z \in \bar{D}\), on \(C([0, \infty) : \mathbb{R}^n)\) such that

- For every \(z \in \bar{D}\), \(Q_z(w(0) = z) = 1\);
- Under each \(Q_z\),

\[
M_t^f = f(X_t) - f(X_0) - \int_0^t \mathcal{L}f(X_s) \, ds
\]

is a submartingale for all \(f \in \mathcal{H}_0\), where

\[
\mathcal{H}_0 = \{ f \in C_b^2(D) : \langle Df(x), \nu(x) \rangle \geq 0 \}
\]

Well-posedness of the submartingale problem

The submartingale problem is said to be well posed if there exists a solution to the submartingale problem and it is unique.
1. Stroock and Varadhan (1971) established well-posedness of the submartingale problem for bounded C^2 domains with Lipschitz continuous reflection field v satisfying $|\nabla v| \geq 1$.

2. Extended to specific non-smooth domains in Varadhan-Williams (1985); Williams (1987); Deblassie (1987, 1996); Deblassie-Toby (1993), ...
1. Stroock and Varadhan (1971) established well-posedness of the submartingale problem for bounded C^2 domains with Lipschitz continuous reflection field v satisfying $|\nabla v| \geq 1$.

2. Extended to specific non-smooth domains in Varadhan-Williams (1985); Williams (1987); Deblassie (1987, 1996); Deblassie-Toby (1993), ...

3. A general multi-dimensional formulation was not available ... cited as an open problem (Williams 1995, DeBlassie 1997)
• The direction vector field $v(\cdot)$ can be multi-valued.
• For piecewise smooth domains $D = \cap_i D_i$, with each domain having a smooth vector field v_i, v on the intersections of multiple smooth boundaries is defined as

$$v(x) = \left\{ \sum_{i \in I(x)} \alpha_i v_i(x), \alpha_i \geq 0 \right\},$$
A set \mathcal{V} of irregular points where ν contains a half-plane

$$\mathcal{V} = \partial D \setminus \{x \in \partial D : \exists n \in n(x) \text{ such that } \langle n, \nu \rangle > 0, \forall \nu \in \nu(x)\}$$
Submartingale Formulation (Kang-'R, ’12)

Given \((D, v(\cdot)), b, \sigma\), find probability measures \(Q_z, z \in \bar{D}\), on \(\mathcal{C}([0, \infty) : \mathbb{R}^n)\) such that

- \(Q_z(\omega(0) = 0) = 1\)

\[M_t^f = f(X_t) - \int_0^t \mathcal{L}f(X_s) \, ds, \quad t \geq 0, \]

is a \(Q_z\)-submartingale for all \(f \in \mathcal{H}\):

\[\mathcal{H} \doteq \left\{ f \in C^2_c(\bar{D}) \oplus \mathbb{R} : \begin{array}{l} f \text{ is constant in a neighborhood of } V, \\ \langle v, \nabla f(y) \rangle \geq 0 \text{ for } v \in v(y) \text{ and } y \in \partial D \end{array} \right\} \]

For every \(z \in \bar{D}\), \(Q_z\)-almost surely,

\[\mathcal{L}e b\{s \in [0, \infty) : \omega(s) \in V\} = 0. \]
Stroock and Varadhan (1969) introduced the martingale problem for diffusions and showed, under general conditions on b and σ that it was equivalent to the SDE formulation.

Reflected diffusions can also be defined as solutions to SDEs using the extended Skorokhod map Γ.

Is there a similar equivalence between SDEs and the submartingale formulation here?
Stroock and Varadhan (1969) introduced the martingale problem for diffusions and showed, under general conditions on b and σ that it was equivalent to the SDE formulation.

Reflected diffusions can also be defined as solutions to SDERs using the extended Skorokhod map Γ.

Is there a similar equivalence between SDERs and the submartingale formulation here?

Theorem (Kang-'R '13)

When the set \mathcal{V} is finite, D is piecewise C^2 and ν is C^1, b bounded and measurable and σ continuous, then well-posedness of submartingale formulation is equivalent to existence and uniqueness in law of weak solutions to SDERs.
Main thrust: need to construct a weak solution from a solution to the submartingale problem

For the martingale formulation, use test functions $f(x) = x_i$, $f(x) = x_i x_j$ to show that

$$f(X_t) - f(X_0) - \int_0^t \langle \nabla f(X_s), b(X_s) \rangle \, ds$$

is a martingale, then use the martingale representation theorem.
Main thrust: need to construct a weak solution from a solution to the submartingale problem

For the martingale formulation, use test functions $f(x) = x_i$, $f(x) = x_i x_j$ to show that

$$f(X_t) - f(X_0) - \int_0^t \langle \nabla f(X_s), b(X_s) \rangle \, ds$$

is a martingale, then use the martingale representation theorem

Here, choice of test functions limited by derivative conditions

- Construction depends on geometry; especially at intersections of faces;
- need to identify the “local time” part;
- study behavior of quadratic variation of the mgale part of the Doob decomposition on the boundary;
Comments on the Proof

- Proof much more subtle ...

\[D = \{ y \in \mathbb{R}^3 : y_2 \geq 0, L(y) \leq y_2 \leq R(y) \} \]

Suggests that additional conditions may need to be imposed near \(V \) ...

Are there a natural set of conditions ?

K. Ramanan

Oblique Reflecting Brownian Motions
Proof much more subtle ...

In fact, the equivalence fails if \mathcal{V} is not a finite set.

\[D = \{ y \in \mathbb{R}^3 : y_2 \geq 0, L(y) \leq y_2 \leq R(y) \} \]

Suggests that additional conditions may need to be imposed near \mathcal{V} ...

Are there a natural set of conditions?
Other Questions Related to Reflecting Diffusions

- semimartingale property
- characterization of stationary Distributions
- hitting edges and corners
- ...

K. Ramanan Oblique Reflecting Brownian Motions
How can one even define normally reflected BMs in fractal domains?

Challenge
No way to make sense of the normal vector field
Normally Reflected ORBMs

Dirichlet form approach
Normally Reflected ORBMs

Dirichlet form approach

- \(E \) Hausdorff topological space, a Borel \(\sigma \)-field \(B(E) \), a \(\sigma \)-finite Borel measure \(m \);
Normally Reflected ORBMs

Dirichlet form approach

- E Hausdorff topological space, a Borel σ-field $\mathcal{B}(E)$, a σ-finite Borel measure m;
- A pair $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$, where
 - $\mathcal{D}(\mathcal{E})$ is a dense linear subspace of $L^2(\mathcal{E}; m)$;
 - $\mathcal{E} : \mathcal{D}(\mathcal{E}) \times \mathcal{D}(\mathcal{E}) \mapsto \mathbb{R}$ is a bilinear form;
Normally Reflected ORBM

Dirichlet form approach

- E Hausdorff topological space, a Borel σ-field $\mathcal{B}(E)$, a σ-finite Borel measure m;
- A pair $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$, where
 - $\mathcal{D}(\mathcal{E})$ is a dense linear subspace of $L^2(\mathcal{E}; m)$;
 - $\mathcal{E} : \mathcal{D}(\mathcal{E}) \times \mathcal{D}(\mathcal{E}) \mapsto \mathbb{R}$ is a bilinear form;
- that is symmetric: $\mathcal{E}(u, v) = \mathcal{E}(v, u), \forall u, v \in \mathcal{D}(\mathcal{E})$;
- and closed, i.e.,
 - $\mathcal{E}(u, u) \geq 0$;
 - $\mathcal{D}(\mathcal{E})$ is a Hilbert space when equipped with the norm $\mathcal{E}(u, v) + (u, v)_{L^2}$
- satisfies the contraction property

$$\mathcal{E}(u_*, u_*) \leq \mathcal{E}(u, u), \quad u_* = \min(\max(u, 0), 1).$$
The “energy” functional \mathcal{E} is used to define a Markov process X_t, $t \geq 0$:

$$\mathcal{E}(u, u) = \lim_{t \downarrow 0} \frac{1}{2t} \int_E \mathbb{E}_z \left[(u(X_t) - u(X_0))^2 \right] m(dz).$$

In the other direction,

$$(\mathcal{E}, \mathcal{D}(\mathcal{E}) \mapsto (T_t) \mapsto (\rho_t) \mapsto \{X_t\}_{t \geq 0}$$
The “energy” functional \mathcal{E} is used to define a Markov process X_t, $t \geq 0$:

$$
\mathcal{E}(u, u) = \lim_{t \downarrow 0} \frac{1}{2t} \int_E \mathbb{E}_z \left[(u(X_t) - u(X_0))^2 \right] m(dz).
$$

In the other direction,

$$(\mathcal{E}, \mathcal{D}(\mathcal{E}) \mapsto (T_t) \mapsto (p_t) \mapsto \{X_t\}_{t \geq 0}$$

Results using the Dirichlet Form Approach

- Beurling and Deny (1959)
- Silverstein and Fukushima (1970s)
- Fukushima (1990s): If a Dirichlet form on a locally compact state space is regular, one can construct an associated Markov process with RCLL paths.
Normal RBMs are symmetric Markov processes;
Dirichlet form techniques have been successively used to construct normally reflected Brownian motions in quite general domains (Z.-Q.-Chen '93)
Can the Dirichlet form approach be applied to ORBMs?

- ORBMs are not symmetric Markov processes;
Can the Dirichlet form approach be applied to ORBMs?

- ORBMs are not symmetric Markov processes;
- There exist extensions to the Dirichlet form approach that relax the symmetry assumption (sector condition);
Can the Dirichlet form approach be applied to ORBMs?

- ORBMs are not symmetric Markov processes;
- There exist extensions to the Dirichlet form approach that relax the symmetry assumption (sector condition);
- Ma and Röckner ('92): a more general result relating (non-symmetric) Dirichlet forms with Markov processes;
Can the Dirichlet form approach be applied to ORBMs?

- ORBMs are not symmetric Markov processes;
- There exist extensions to the Dirichlet form approach that relax the symmetry assumption (sector condition);
- Ma and Röckner ('92): a more general result relating (non-symmetric) Dirichlet forms with Markov processes;
- However, not much success with ORBMs.
Challenges

- The normal and tangential vector fields are not well defined in the classical sense
- ORBM is not a symmetric Markov process
- A new approach is required ...
ORBM in Smooth Planar domains

- Parametrize ORBMs in smooth domains by “angle of reflection”
- Let B be standard two-dimensional Brownian motion
- Given $D \subset \mathbb{C}$ a smooth bounded open set and $\theta : \partial D \mapsto (-\pi/2, \pi/2)$ Borel measurable function satisfying $\sup_{x \in \partial D} |\theta(x)| < \pi/2$.
- $n(x)$: unit inward normal vector at $x \in \partial D$
- $t(x)$: unit tangent vector to ∂D at x
- Vector field v_θ on ∂D associated with θ:
 \[v_\theta(x) = n(x) + \tan \theta(x)t(x) \]
- Parametrize vector field in terms of the angle of reflection θ
A. Domain Approximation

Given a simply connected Jordan domain D, $y_0 \in D$, approximate it by a sequence of smooth domains D^k in the sense that for all k,

$$y_0 \in D_k \subset D_{k+1} \subset D,$$

and

$$\bigcup_k D_k = D$$

For each k consider a smooth vector field θ^k and let Z^k be ORBM associated with (D^k, θ^k).
When does Z^k converge to some limit process Z, and in what sense?
Is the “limit” Z an ORBM in D in any reasonable sense?
Is there an independent characterization of the limit ORBM?
Let D_* denote the unit disc in the plane
Let D_* denote the unit disc in the plane
First define the ORBM on the unit planar disc D_*
Then use conformal maps to extend the definition to more general domains
ORBM in the unit planar disc D_*

- Recall, given $\theta : \partial D \mapsto (-\pi/2, \pi/2)$,
 \[v_\theta(x) = n(x) + \tan \theta(x)t(x) \]

- When θ is C^2, D smooth, Skorokhod Map Γ is well defined; RBM
 \[Z = \Gamma(Z_0 + B) \]

 or, equivalently,
 \[Z_t = Z_0 + B_t + \int_0^t v_\theta(Z_s) dL_s, \]

 Here, L is the local time of X on ∂D.
ORBM in the unit planar disc D_*

- Recall, given $\theta : \partial D \mapsto (-\pi/2, \pi/2)$,
 \[
 v_\theta(x) = n(x) + \tan \theta(x)t(x)
 \]

- When θ is C^2, D smooth, Skorokhod Map Γ is well defined; RBM
 \[
 Z = \Gamma(Z_0 + B)
 \]
 or, equivalently,
 \[
 Z_t = Z_0 + B_t + \int_0^t v_\theta(Z_s)dL_s,
 \]
 Here, L is the local time of X on ∂D.

- When $D = D_*$, strong solution exists without regularity assumption on θ (use polar decomposition)
B. Conformal Mapping

\[\mathcal{T} = \{ \theta \in L^\infty(\partial D_*) : \|\theta\|_\infty \leq \pi/2, \ \theta \neq \pi/2, \ \text{and} \ \theta \neq -\pi/2 \}. \]

Suppose \(\theta \in \mathcal{T} \) is \(C^2 \) and let \(Z \) be a \((D_*, v_\theta)\) ORBM.
B. Conformal Mapping

\[\mathcal{T} = \{ \theta \in L^\infty(\partial D_\ast) : \|\theta\|_\infty \leq \pi/2, \; \theta \neq \pi/2, \; \text{and} \; \theta \neq -\pi/2 \}. \]

Suppose \(\theta \in \mathcal{T} \) is \(C^2 \) and let \(Z \) be a \((D_\ast, v_\theta)\) ORBM.

- Let \(D \) be a simply connected bounded domain
- Let \(f : D_\ast \mapsto D \) be a one-to-one onto analytical function.
B. Conformal Mapping

\[\mathcal{T} = \{ \theta \in L^\infty(\partial D_*) : ||\theta||_{\infty} \leq \pi/2, \ \theta \neq \pi/2, \ \text{and} \ \theta \neq -\pi/2 \} \]

Suppose \(\theta \in \mathcal{T} \) is \(C^2 \) and let \(Z \) be a \((D_*, v_\theta)\) ORBM.

- Let \(D \) be a simply connected bounded domain
- Let \(f : D_* \mapsto D \) be a one-to-one onto analytical function.
- Define

\[
c(t) = \int_0^t |f'(Z_s)|^2 ds, \quad \text{for } t \geq 0,
\]
\[
\zeta = \inf\{ t \geq 0 : c(t) = \infty \},
\]
\[
Y(t) = f(Z_{c^{-1}(t)}), \quad \text{for } t \in [0, \zeta).
\]
B. Conformal Mapping (contd.)

- \(Z \) be a \((D_*, \nu_\theta)\) ORBM.
- Let \(f : D_* \mapsto D \) be a one-to-one onto analytical function.
- \(Y(t) = f(Z_{c^{-1}}(t)), \quad \text{for } t \in [0, \zeta) \).
- Then \(Y \) is an extension of killed Brownian motion in \(D \), i.e., for every \(t \geq 0 \) and \(\tau_t = \inf\{s \geq t : Y_s \in \partial D\} \), the process \(\{Y_s, s \in [t, \tau_t)\} \) is Brownian motion killed upon exiting \(D \).
B. Conformal Mapping (contd.)

- Z be a (D_*, v_θ) ORBM.
- Let $f : D_* \mapsto D$ be a one-to-one onto analytical function.
- $Y(t) = f(Z_{c^{-1}(t)})$, for $t \in [0, \zeta)$.
- Then Y is an extension of killed Brownian motion in D, i.e., for every $t \geq 0$ and $\tau_t = \inf\{s \geq t : Y_s \in \partial D\}$, the process $\{Y_s, s \in [t, \tau_t]\}$ is Brownian motion killed upon exiting D.
- Is Y an ORBM in a suitable sense?
Results: A. Smooth domain approximation

\(D \subset \mathbb{R}^2 \) – open bounded simply connected set

\(D_k \subset D_{k+1}, \bigcup_k D_k = D \), \(D_k \) have smooth boundaries

\(\theta_k(x) \) – reflection angle; \(x \in \partial D_k \)

\(Z^k \) – obliquely reflected Brownian motion in \(D_k \)
Results: A. Smooth domain approximation

\[D \subset \mathbb{R}^2 \] – open bounded simply connected set
\[D_k \subset D_{k+1}, \bigcup_k D_k = D, \ D_k \text{ have smooth boundaries} \]
\[\theta_k(x) \] – reflection angle; \(x \in \partial D_k \)
\[Z^k \] – obliquely reflected Brownian motion in \(D_k \)

THEOREM (forthcoming; Burdzy, Chen, Marshall, ’R)

Suppose that, as \(k \to \infty \), \(\theta_k : \partial D_* \mapsto (-\pi/2, -\pi/2) \) converges to \(\theta \) in the weak-* topology (as elements of the dual space of \(\mathbb{L}^1(\partial D_*) \)). Then obliquely reflected Brownian motions \(Z^k \) converge, as \(k \to \infty \), to a process \(Z \) in \(D \).
Results: A. Smooth domain approximation

\(D \subset \mathbb{R}^2 \) – open bounded simply connected set

\(D_k \subset D_{k+1}, \bigcup_k D_k = D, D_k \) have smooth boundaries

\(\theta_k(x) \) – reflection angle; \(x \in \partial D_k \)

\(Z^k \) – obliquely reflected Brownian motion in \(D_k \)

THEOREM (forthcoming; Burdzy, Chen, Marshall, ’R)

Suppose that, as \(k \rightarrow \infty \), \(\theta_k : \partial D_\ast \mapsto (-\pi/2, -\pi/2) \) converges to \(\theta \) in the weak-* topology (as elements of the dual space of \(L^1(\partial D_\ast) \)). Then obliquely reflected Brownian motions \(Z^k \) converge, as \(k \rightarrow \infty \), to a process \(Z \) in \(D \).

How does one independently characterize the ORBM?
Jumps on the boundary when $\theta(x) = \pi/2$

- Limit process could have jumps

- So convergence of Z^k to Z is (in general) in a certain M_1 topology
Jumps on the boundary when $\theta(x) = \pi/2$

- Limit process could have jumps

- So convergence of Z^k to Z is (in general) in a certain M_1 topology
- Limit could be "excursion reflected Brownian motion (ERBM)" when limit $\theta \equiv \pi/2$
Towards an independent characterization

Alternative parametrization of ORBMs in D_*

D_* – unit disc in \mathbb{R}^2

$\theta(x)$ – angle of reflection at $x \in \partial D$

$$T = \{ \theta \in L^\infty(\partial D_*) : ||\theta||_\infty \leq \pi/2, \, \theta \not\equiv \pi/2, \, \text{and} \, \theta \not\equiv -\pi/2 \}.$$
Towards an independent characterization

Alternative parametrization of ORBM's in D_*

D_* — unit disc in \mathbb{R}^2

$\theta(x)$ — angle of reflection at $x \in \partial D$

$$\mathcal{T} = \{ \theta \in L^\infty(\partial D_*) : \|\theta\|_\infty \leq \pi/2, \; \theta \neq \pi/2, \; \text{and} \; \theta \neq -\pi/2 \}.$$

$$\theta \in \mathcal{T} \leftrightarrow (h, \mu_0) \in \mathcal{H} \times \mathbb{R}$$

$$\mathcal{H} = \{ h \text{ harmonic in and strictly positive in } D_*, \|h\| = \pi h(0) \}$$
Towards an independent characterization

Alternative parametrization of ORBMss in D_*

D_* – unit disc in \mathbb{R}^2

$\theta(x)$ – angle of reflection at $x \in \partial D$

$\mathcal{T} = \{ \theta \in L^\infty(\partial D_*) : ||\theta||_\infty \leq \pi/2, \; \theta \not\equiv \pi/2, \; \text{and} \; \theta \not\equiv -\pi/2 \}$.

$\theta \in \mathcal{T} \iff (h, \mu_0) \in \mathcal{H} \times \mathbb{R}$

$\mathcal{H} = \{ h \text{ harmonic in and strictly positive in } D_*, ||h|| = \pi h(0) \}$

$h(x)dx$ – stationary distribution

μ_0 – “rate of rotation” of Z around zero
Towards an independent characterization

Alternative parametrization of ORBM in D_*

$D_* -$ unit disc in \mathbb{R}^2

$\theta(x) -$ angle of reflection at $x \in \partial D$

$$\mathcal{T} = \{ \theta \in L^\infty(\partial D_*): ||\theta||_\infty \leq \pi/2, \theta \not\equiv \pi/2, \text{ and } \theta \not\equiv -\pi/2 \}. $$

$$\theta \in \mathcal{T} \iff (h, \mu_0) \in \mathcal{H} \times \mathbb{R}$$

$$\mathcal{H} = \{ h \text{ harmonic in and strictly positive in } D_*, ||h|| = \pi h(0) \}$$

$h(x)dx -$ stationary distribution

$\mu_0 -$ “rate of rotation” of Z around zero

and
Rate of Rotation μ_0

D_* – unit disc in \mathbb{R}^2, $\theta(x)$ – angle of reflection at $x \in \partial D$

$$\theta \leftrightarrow (h, \mu_0)$$

$h(x)dx$ – stationary distribution

μ_0 – rate of rotation around zero

$$\lim_{t \to \infty} \frac{1}{t} \arg X_t - \mu_0 \Rightarrow \text{Cauchy}.$$
Alternative Parametrization of ORBMs

\[\theta \leftrightarrow (h, \mu_0) \]

The correspondence has quite an explicit form

THEOREM (forthcoming; Burdzy, Chen, Marshall, ’R)

\[
h(z) = \frac{\text{Re} \exp(\tilde{\theta}(z) - i\theta(z))}{\pi \text{Re} (e^{-i\theta(0)})} = \frac{\text{Re} \exp(\tilde{\theta}(z) - i\theta(z))}{\pi \cos \theta(0)}, \quad z \in D,
\]

\[
\mu_0 = \tan \theta(0) = \int_D \tan \theta(z) h(z) dz,
\]

\[
\theta(z) = -\arg \left(h(z) + i\tilde{h}(z) - i\mu/\pi \right), \quad z \in D.
\]
We can also parameterize the ORBM in terms of “rotation rates”

\[\theta \in \mathcal{T} \leftrightarrow \mu(\cdot) \in \mathcal{R}, \]

\[\mathcal{R} = \{ \mu : \mu \text{ is harmonic in } D_\ast \text{ and } \tilde{\mu}(z) > -1, \text{ for all } z \in D_\ast \}. \]

Again, \(\mu(z) \) can be written quite explicitly in terms of \(\theta \).

Probabilistic interpretation of \(\mu(z) \):

\[\lim_{t \to \infty} \arg^* \frac{X_t - z}{t} = \mu(z). \]
Theorem (forthcoming; Burdzy, Chen, Marshall, ’R)

For any simply connected bounded domain D and $\theta \in \mathcal{T}$, we can define an ORBM Y using a conformal mapping f as described earlier.

If $\theta \leftrightarrow (h, \mu)$, $\theta \leftrightarrow \mu$, then Y has stationary density

$$\hat{h} = h \circ f^{-1} / ||h \circ f^{-1}||^D_1,$$

and

$$\lim_{t \to \infty} \arg^* \frac{Y_t - z}{t} = \frac{\mu(f^{-1}(z))}{||h \circ f^{-1}||^D_1}.$$ \hspace{1cm} (1)

For any $\mu_0 \in \mathbb{R}$ and \hat{h} a positive harmonic function in D with $||\hat{h}||_1 = 1$, there exists an ORBM Y in D such that Y has stationary distribution \hat{h} and (1) holds with $\mu(\cdot) \leftrightarrow (\mu_0, h)$.
THEOREM (forthcoming; Burdzy, Chen, Marshall, ’R)

Suppose that, as \(k \to \infty \), \(\theta_k : \partial D_* \mapsto (\frac{-\pi}{2}, \frac{-\pi}{2}) \) converges to \(\theta \) in the weak-* topology (as elements of the dual space of \(\mathbb{L}^1(\partial D_*) \)). Then obliquely reflected Brownian motions \(Z^k \) converge, as \(k \to \infty \), to a process \(Z \) in \(D \).

[Recall: forthcoming; Burdzy, Chen, Marshall, ’R] The limit process \(Z \) can be characterized in terms of \(\theta \) and \(D \) as described above. And this characterization is consistent with the ORBM obtained in terms of the conformal mapping.
Reflected Diffusions in piecewise-smooth domains arise in a variety of fields ranging from math physics and finance to queueing theory.

A new paradigm has been developed for characterization of ORBMs in bounded planar domains, including some ORBMs with jumps (excursion-reflected Brownian motions).

Many questions remain regarding the construction of ORBMs in more general (multiply connected) planar domains as well as multi-dimensional domains.

Several foundational questions remain even for RBMs in polyhedral domains.
List of Some of My Relevant Works