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Abstract. I present a counter-example to the conjecture that the first eigenvalue

of the clamped buckling problem in a planar domain is not smaller than the third

eigenvalue of the fixed membrane in that domain. I also prove that the conjecture

holds for domains that are invariant under rotation by angle π/2.

1. Introduction

Let Ω be a bounded planar domain with smooth boundary Γ. By λ1(Ω) <
λ2(Ω) ≤ · · · I denote the eigenvalues of the Dirichlet Laplacian in Ω (the membrane
eigenvalues;) each eigenvalue is repeated as many times as its multiplicity is. Let
β1(Ω) ≤ β2(Ω) ≤ · · · be the values of the parameter β, for which the buckling
problem

(1.1)

{

∆2w(x) + β∆w(x) = 0 in Ω

w(x) = ∂w(x)
∂ν = 0 on Γ

has a non-trivial solution. Here ν(x), x ∈ Γ, is the outward unit normal vector
to Γ. With some abuse of terminology, I call βj(Ω) an eigenvalue of the buckling
problem in Ω, and a non-trivial solution of (1.1) will be called an eigenfunction.

Payne proved in [P] that

(1.2) β1(Ω) ≥ λ2(Ω),

and he suggested that the even sharper inequality β1(Ω) ≥ λ3(Ω) may hold. In this
paper, I present a counter-example to the last conjecture.

Theorem 1. There exists a convex planar domain Ω with smooth boundary such

that β1(Ω) < λ3(Ω).

Theorem 1 is proved in section 2 by looking at the buckling and membrane
eigenvalues of a deformed circle. For a circle, the first buckling eigenvalue coincides
with the second membrane eigenvalue, wich is of multiplicity two. It turns out that,
for almost every deformation of a circle, the multiple eigenvalue of the Dirichlet
Laplacian splits in such a way that the first buckling eigenvalue becomes strictly
in between the second and the third membrane eigenvalues. The typical graphs of
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the buckling and membrane eigenvalues as functions of the deformation parameter
can be seen in Fig. 1.
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Second membrane
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Fig. 1: The buckling and membrane eigenvalues
for a deformed circle

The second theorem that I prove says that the conjecture holds for domains with
a rotational Z/4Z symmetry.

Theorem 2. Let a bounded planar domain Ω be invariant under rotation by the

angle π/2. Then β1(Ω) ≥ λ3(Ω).

Let me first remind the reader that the inequalities βj(Ω) > λj(Ω) follow imme-
diately from variational characterization of the Dirichlet and buckling eigenvalues.
The buckling eigenvalues can be determined by applying min-max formulae (e.g.,
see [CH]) to the quotient

Rb(w) =

∫

Ω
|∆w(x)|2dx

∫

Ω
|∇w(x)|2dx

,

with w(x) taken from the Sobolev space H2
0 (Ω). The eigenvalue problem for the

Dirichlet Laplacian is equivalent to ∆2u+ λ∆u = 0, with the boundary conditions
u(x) = ∆u(x) = 0 on Γ. From this fact, one can easily conclude that the same
min-max formulae give the Dirichlet eigenvalues; however the test functions shoud
be taken now from the space H2(Ω) ∩ H1

0 (Ω). Because the latter space is bigger
than H2

0 (Ω), one gets smaller values for λj(Ω).
Remark. Unfortunately, Payne’s proof of inequality (1.2) contains a gap. Let
w1(x) be a non-trivial solution of (1.1) with β = β1(Ω), and let u1(x) be the
eigenfunction of the Dirichlet Laplacian that corresponds to the smallest eigenvalue
λ1(Ω). To prove (1.2), Payne uses test functions ψj(x) = ajw1(x) + ∂w1(x)/∂xj ,
j = 1, 2, that are orthogonal to u1(x) (see (34) and (35) in [P].) Such functions
clearly exist if

(1.3)

∫

Ω

w1(x)u1(x) 6= 0.
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However, it is not clear why (1.3) should hold. It is known that the ground state
of the buckling problem is not necessarily positive (see [AL] and references there.)
Numerical calculations in [W] show that it is not positive even for a square. If there
is no positivity for w1(x) then (1.3) becomes questionable.

Fortunately, Payne’s proof can be easily repaired.1 In the case when

∫

Ω

w1(x)u1(x) = 0,

one takes a two-dimensional space L of functions spanned by u1(x) and w1(x). All
functions from L belong to H2(Ω)∩H1

0 (Ω). Let us estimate the Rayleigh quotient
Rb(ψ) for a function ψ = aw1 + bu1 from L. One has

∫

Ω

∆w1(x)u1(x)dx = −

∫

Ω

∇w1(x) · ∇u1(x) = −λ1

∫

Ω

w1(x)u1(x)dx = 0,

and therefore

∫

Ω

|∆ψ|2dx =

∫

Ω

|a∆w1 − λ1bu1|
2dx = |a|2

∫

Ω

|∆w1|
2dx+ λ21|b|

2

∫

Ω

|u1|
2dx

= µ1|a|
2

∫

Ω

|∇w1|
2dx+ λ1|b|

2

∫

Ω

|∇u1|
2dx

≤ µ1

∫

Ω

[|a|2|∇w1|
2 + |b|2|∇u1|

2]dx = µ1

∫

Ω

|∇ψ|2dx.

The Rayleigh quotient Rb(ψ) does not exceed µ1 for all functions ψ from a two-
dimentional subspace L of H2(Ω)∩H1

0 (Ω); so λ2(Ω) ≤ µ1(Ω) in the case when (1.3)
does not hold as well.

2. Proof of Theorem 1

A domain Ω, for which β1 < λ3, will be a small perturbation of the unit disk D =
{x : |x| < 1}. The eigenfunctions and the eigenvalues of the Dirichlet Laplacian in
the disk are well known. One has λ2(D) = λ3(D) = j21,1 where j1,1 is the smallest
positive zero of the Bessel function J1(r). The corresponding eigenspace E is two-
dimensional; functions v1(x) = cJ1(j1,1r) sin θ and v2(x) = cJ1(j1,1r) cos θ form an
ortho-normal basis in E. Here (r, θ) are polar coordinates, and the constant c is
chosen from the condition

1 =

∫

D

vj(x)
2dx = πc2

∫ 1

0

rJ1(j1,1r)
2dr =

πc2

j21,1

∫ j1,1

0

rJ1(r)
2dr.

Therefore,

(2.1) c2 =
j21,1

π
∫ j1,1

0
rJ1(r)2dr

.

1R. Laugesen told me that he knew about the gap in Payne’s proof in 1994; he found then a

slightly different way of filling the gap.
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It can be easily computed that the first eigenvalue of the buckling problem for the
disk, β1(D), equals the same j

2
1,1, it is simple, and the corresponding eigenfunction

(2.2) w(x) = J0(j1,1r)− J0(j1,1).

The boundary conditions are satisfied because J ′0 = −J1. I do not normalize w(x).
Let α(θ) be a smooth function on the unit circle S, and let Ω(τ) = {x : 0 ≤ r <

1+τα(θ)}. If |τ | is small enough, then Ω(τ) is a convex planar domain with smooth
boundary. For small values of τ , the double eigenvalue λ2 = λ3 of the Dirichlet
Laplacian in D splits into two τ -analytic functions λ2 + µjτ + · · · , j = 1, 2. The
numbers µj are eigenvalues of the matrix A = (aij), with

aij = −

∫

S

∂vi
∂r

∂vj
∂r

α(θ)dθ

(see [GSch], [M].) If

(2.3)

∫ 2π

0

α(θ) sin(2θ)dθ 6= 0,

then the matrix A is not scalar, µ1 6= µ2, and, for small positive values of |τ |,
λ2(Ω(τ)) 6= λ3(Ω(τ)). Let

f(τ) =
λ2(Ω(τ)) + λ3(Ω(τ))

2
.

Then

(2.4) f ′(0) =
1

2
trA = −

1

2
c2j21,1J

′

1(j1,1)
2

∫ 2π

0

α(θ)dθ.

Let β(τ) = β1(Ω(τ)). For small values of |τ |, the function β(τ) is real-analytic.
Indeed, one can construct a family of diffeomorphisms Φ(τ) : Ω(τ) → D that is
real-analytic in τ . They induce a family of Riemannian metrics Φ(τ)∗(δij) on the
disk D. These metrics give rise to Laplace-Beltrami operators ∆(τ) in D, and,
finally, βj(τ)

−1 are eigenvalues of the operator

T (τ) = ((∆(τ)2)D)
−1/2∆(τ)((∆(τ)2)D)

−1/2.

Here (∆(τ)2)D is the bi-Laplacian with the Dirichlet boundary conditions u =
∂u/∂ν = 0 on the boundary S. The family of self-adjoint operators T (τ) is real-
analytic in τ ; the standard perturbation theory (e.g., see [K]) tells us that, for small
values of |τ |, the ground state is simple, and β(τ) is real-analytic in τ . Moreover,
one can construct a family of eigenfunctions w(τ) of the buckling problem that
correspond to the smallest eigenvalue β(τ) and that is real-analytic in τ . Functions
w(τ) can be chosen to be real-valued.

My goal now is to compute β′(0). To do the computation, one can transplant
the problem to the disk, and then use the Rayleigh formula from the perturbation
theory. This approach is rather straightforward, but it is somewhat time consuming.
I use a different approach, similar to the one used in [GSch]. I assume that α(θ) ≥ 0.
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Then, for positive values of τ , all eigenfunctions w(τ) are defined in the disk D.
Differentiating the equation (1.1) with respect to τ and setting τ = 0, one gets

(2.5) ∆2w′(0) + β1(D)∆w
′(0) + β′(0)∆w = 0.

Here, by ′ I denote the τ -derivative. The equation (2.5) is valid in D. I multiply
(2.5) by w, integrate over D, use Green’s formula, and use the equation (1.1) to get

(2.6)

∫

S

∂w′(0)

∂r
∆wdθ −

∫

S

w′(0)
∂∆w

∂r
dθ − β′(0)

∫

D

|∇w|2dx = 0.

Notice that w′(0) vanishes on S. Indeed, both w(τ) and its gradient vanish at
r = 1 + τα(θ). Therefore, w(τ)(1, θ) = O(τ 2), and w′(0)(1, θ) = 0. So, the second
term in (2.6) vanishes. Then, for positive small values of τ ,

∂w(τ)

∂r
(1, θ) = −τα(θ)

∂2w(τ)

∂r2
(1 + τα(θ), θ) +O(τ 2).

One divides the last equality by τ and takes the limit τ → 0 to get

(2.7)
∂w′(0)

∂r
(1, θ) = −wrr(1, θ)α(θ).

Obviously,

(2.8) ∆w(1, θ) = wrr(1, θ).

Equations (2.6)–(2.8) lead us to the formula

(2.9) β′(0) = −

∫

S
|wrr(1, θ)|

2α(θ)dθ
∫

D
|∇w|2dx

By substituting the explicit formula (2.2) for w(x) into (2.9) and by using J ′0(r) =
−J1(r), one gets

β′(0) = −
j41,1|J

′
1(j1,1)|

2

2π
∫ j1,1

0
rJ21 (r)dr

∫ 2π

0

α(θ)dθ.

Now, compare the last formula with (2.4) and (2.1) to see that

β′(0) = f ′(0) =
µ1 + µ2

2
.

If the condition (2.3) is satisfied then µ1 6= µ2, and one of the µ’s, say µ1,
is bigger than β′(0). For small positive values of τ , the third eigenvalue of the
Dirichlet Laplacian is j21,1 + µ1τ +O(τ2), and it is bigger than the first eigenvalue

of the buckling problem, which equals j21,1 + β′(0)τ + O(τ2). Note that the same

thing happens for small negative values of τ ; then j21,1 + µ2τ + O(τ2) is the third
eigenvalue of the Dirichlet Laplacian. We see that, as long as (2.3) is satisfied, any
small deformation of the disk gives a counter-example to the conjectue β1 ≥ λ3.
Remark. R. Laugesen noticed that, for constructing a counter-example, one can
avoid computing β′(0) for a general function α(θ). Take α(θ) = sin(2θ). Then
f ′(0) = 0 (see (2.4).) The counter-clockwise rotation by angle π/2 about the origin
maps Ω(τ) onto Ω(−τ) because α(θ + π/2) = −α(θ). Therefore, β(−τ) = β(τ),
and β′(0) = 0 = f ′(0). The condition (2.3) clearly holds for sin(2θ). This argument
works for functions of the type

α(θ) =
∞
∑

k=0

(ak cos((4k + 2)θ) + bk sin((4k + 2)θ))

with b0 6= 0.



6 LEONID FRIEDLANDER

3. Proof of Theorem 2

Let p be the counter-clockwise rotation of the plane R2 about the origin by angle
π/2. The space L2(Ω) splits into the direct sum of spaces L2±1(Ω) and L2

±i(Ω)

where L2ζ(Ω) = {u(x) ∈ L2(Ω) : u(p(x)) = ζu(x)}. These spaces are invariant
under both the Dirichlet Laplacian and the buckling operator, so the spectra of
both problems split into the union of their spectra in four symmetry sectors. I
denote the corresponding eigenvalues by λj,ζ and βj,ζ where ζ = ±1,±i. Notice

that L2i (Ω) = L2
−i(Ω), both the Dirichlet Laplacian and the buckling problem are

invariant under complex conjugation; therefore λj,i = λj,−i and βj,i = βj,−i. Notice
also that the proof of βj > λj works for each symmetry sector separately; so
βj,ζ(Ω) > λj,ζ(Ω).
Case 1. β1(Ω) = β1,±i(Ω).
The first eigenvalue of the Dirichlet Laplacian belongs to the L21 sector because of
positivity of the ground state. Therefore, in this case,

λ1(Ω) = λ1,1(Ω) < λ1,±i(Ω) < β1,±i(Ω) = β1(Ω),

and there are at least three eigenvalues of the Dirichlet Laplacian, λ1 and λ1,i =
λ1,−i, that are smaller than β1.
Case 2. β1(Ω) = β1,1(Ω) or β1(Ω) = β1,−1(Ω).
In both cases, the ground state of the buckling problem, w1(x), can be taken as
a real-valued, even function with respect to central symmetry o = p2. All its
directional derivatives ∂w1/∂ω are odd functions with respect to o; therefore they
are orthogonal to u1(x). For a unit vector ω, I denote ω̃ = p(ω). One has

β1(Ω) =

∫

Ω
(∆w1)

2dx
∫

Ω
|∇w1|2dx

=

∫

Ω

(

∣

∣∇∂w1

∂ω

∣

∣

2
+
∣

∣∇∂w1

∂ω̃

∣

∣

2
)

dx

∫

Ω

(

(

∂w1

∂ω

)2
+
(

∂w1

∂ω̃

)2
)

dx

.

Notice that ∂w1/∂ω̃ = ±∂w1/∂ω; therefore,

β1(Ω) =

∫

Ω

∣

∣∇∂w1

∂ω

∣

∣

2
dx

∫

Ω

(

∂w1

∂ω

)2
dx

,

and the Rayleigh quotient

R(v) =

∫

Ω
|∇v|2dx

∫

Ω
|v|2dx

equals β1(Ω) for any function from a two-dimensional space {v(x) = a∂w1/∂x1 +
b∂w1/∂x2} ⊂ H1

0 (Ω) that is orthogonal to u1(x). Therefore, β1(Ω) ≥ λ3(Ω).
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