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1. Introduction

Let Γ be a connected finite graph; by V we denote the set of its vertices, and
by E we denote the set of its edges. If each edge e is considered as a segment
of certain length l(e) > 0 then such a graph is called a metric graph. One can
find a good survey and numerous references in [K]. A metric graph with a given
combinatorial structure Γ is determined by a vector of edge lengths (l(e)) ∈ R|E|

+ .
We will use the notation G = (Γ, (l(e))). The length of a metric graph, l(G), is the
sum of the lengths of all its edges. Sometimes, it is convenient to treat each edge
as a pair of oriented edges; then, on an oriented edge, one defines a coordinate xe

that runs from 0 to l(e). If −e is the same edge, with the opposite orientation, then
x−e = l(e) − xe. If an edge e emanates from a vertex v, we express it by writing
v ≺ e.

A function φ on G is a collection of functions φe(x) defined on each edge e. We
say that it belongs to L2(G) if each function φe belongs to L2 on the corresponding
edge; then

||φ||2 =
∑

e

||φe||2.

The Sobolev space H1(G) is defined as the space of continuous functions on G that
belong to H1 on each edge. The Laplacian on G is defined via the quadratic form∫

G

|φ′(x)|2dx =
∑
e∈E

∫ l(e)

0

|φ′e(x)|2dx

considered on the natural domain H1(G). The Laplacian ∆ is given by the differen-
tial expression −d2/dx2

e on each edge. Its domain is the set of continuous functions
that belong to the Sobolev space H2 on each edge and that satisfy the Kirchhoff
condition

(1.1)
∑
e�v

dφ

dxe
(v) = 0

The first version of this paper dealt with the smallest positive eigenvalue only; the proof was

completely different. Y. Colin de Verdiere and S. Gallot suggested the use of the symmetrization

technique. As a result, the theorem became more general and the proof became simpler. My great
thanks to them.
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for every vertex v. This operator is self-adjoint, and its spectrum consists of eigen-
values

0 = µ1(G) < µ2(G) ≤ µ3(G) ≤ · · · ↗ ∞

of finite multiplicity. The eigenvalues are the numbers for which the problem

(1.2)
d2φe

dx2
e

+ λφe = 0,

subject to the Kirchhoff conditions (1.1), has a non-trivial solution. For the sake
of brevity, we will call {µj(G)} the spectrum of the metric graph G.

In this paper, we study the extremal properties for µj(G) in the class of metric
graphs with a fixed length l. First, let us make explicit computations for three
simple examples.

Example 1. Γ is a cyclic graph with k vertices v1, . . . , vk. It has k edges that
connect v1 with v2, v2 with v3, . . . , vk with v1. Obviously, the spectrum of the
Laplacian on such a graph is the same as the spectrum of the Laplacian on a circle
of circumference l = l(G), so

(1.3) µ1(G) = 0, µ2k(G) = µ2k+1(G) = 4π2k2l(G)−2, k ≥ 1.

Example 2. Γ is a linear graph with k vertices. It is the same graph as in the
previous example, with the edge connecting vk and v1 removed. The spectrum
of the Laplacian on such a graph coincides with the spectrum of the Neumann
Laplacian on the interval [0, l], so

(1.4) µk(G) = π2(k − 1)2l(G)−2.

Example 3. Γ is a star with k edges. It has k+1 vertices v0, v1, . . . , vk, and v0 is
connected with all other vertices. We assume that k ≥ 2; in the case when k = 2,
Γ is a linear graph. For a metric graph G = Hk, we take the lengths of all edges to
be equal to l/k. Let us orient an edge ej that connects vj with v0 toward v0. Then
an eigenfunction of the Laplacian on ej must be of the form aj cos(

√
λxj) because

it satisfies the Neumann condition at xj = 0. If l
√
λ/k 6= −(π/2) + πm, m ∈ Z+,

then this function does not vanish at v0, all aj must be equal to each other, and the
Kirchhoff condition (1.1) is satisfied if sin(l

√
λ/k) = 0, or l

√
λ/k = πm, m ∈ Z+.

One gets a family of simple eigenvalues π2k2m2/l(G)2, m ∈ Z+, of the Laplacian.
If l
√
λ/k = −(π/2) + πm then the function vanishes at v0, and it is continuous for

all values of aj . The Kirchhoff condition at v0 is equivalent to a1 + · · · + ak = 0.
Therefore,

λ = π2k2(2m− 1)2/4l(G)2, m ∈ Z+,

are also eigenvalues of the Laplacian; their multiplicity equal k − 1. We see that,
for a star,

(1.5) µ2(Hk) = µk(Hk) =
π2k2

4l(Hk)2
.

The third example shows that, in the class of metric graphs of fixed length,
µ2(G), and, therefore, µj(G), j ≥ 2, does not admit an upper bound. The best
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lower bound for µj(G), j ≥ 2, can be seen when G = Hj . The main purpose of
this paper is to prove that, in fact, the smallest possible value for µj(G) is achieved
when G = Hj .

Obviously, one can always remove vertices of degree 2 from the list of vertices.
To make some statements simpler, from this point, we assume that there are no
vertices of degree 2 in G.

Theorem 1. Let G be a connected metric graph. Then

(1.6) µj(G) ≥ π2j2

4l(G)2
, j ≥ 2.

Moreover, an equality in (1.6) occurs if and only if G is a segment when j = 2 and
G = Hj when j ≥ 3.

Remark. It is known that, in the class of bounded, connected planar domains of
given area, Ω, the first eigenvalue λ1(Ω) of the Dirichlet Laplacian in Ω is minimized
when Ω is a circle, and the first positive eigenvalue µ2(Ω) of the Neumann Laplacian
in Ω assumes its maximal value when Ω is a circle [PS]. Moreover λ1(Ω) can be
arbitrarily big, and µ2(Ω) can be arbitrarily close to 0. Though it may look like the
eigenvalues of a metric graph should be analogues of the eigenvalues of the Neumann
Laplacian: the domain of the Dirichlet functional in the variational formulation
is the whole space H1(G), their extremal properties are closer to those of the
eigenvalues of the Dirichlet Laplacian.

2. Proof of Theorem 1

First, it is sufficient to prove the inequality in Theorem 1 for trees. In fact, let
G be a metric graph, and let G′ be the graph that is obtained from G by cutting
an edge e at some point x0. This point gives rise to two different vertices in G′.
Obviously, H1(G) ⊂ H1(G′), so µj(G) ≥ µj(G′) because µj(G) is obtained by the
min-max principle from the Rayleigh quotient over a smaller space. If G is not a
tree, one can cut several edges of G to make a connected tree out of it, and the j-th
eigenvalue of that tree does not exceed µj(G).

Let G be a connected metric tree. By φ1(x) = const, φ2(x), . . . , we denote the
eigenfunctions of the Laplacian on G that correspond to the eigenvalues µ1 = 0,
µ2, . . . . Fix an integer j ≥ 2. For any collection of points x1, . . . , xm ∈ G, m ≤ j−1,
one can find a non-zero linear combination, φ(x), of φ1(x), . . . , φj(x) that vanishes
at all those points. One has

(2.1)
∫

G

|φ′(x)|2dx ≤ µj(G)
∫

G

|φ(x)|2dx.

The set G \ {x1, . . . , xm} consists of a certain number of connected components.
By G(x1, . . . , xm) we denote the disjoint union of their closures. Each connected
component of G(x1, . . . , xm) is a tree. Let us formulate the first lemma that we
need.

Lemma 2. Let G be a connected metric tree, and let j ≥ 2 be an integer. Then
there exist points x1, . . . , xm, m ≤ j − 1, such that the length of each connected
component of G(x1, . . . , xm) does not exceed l(G)/j.
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2A. Proof of (1.6) from Lemma 2. We choose points x1, . . . , xm from Lemma
2. Then, for at least one of the connected components of G(x1, . . . , xm) (we call it
G1,) φ(x) is not identically 0 on G1, and

(2.2)
∫

G1

|φ′(x)|2dx ≤ µj(G)
∫

G1

|φ(x)|2dx.

When restricted to G1, the function φ(x) satisfies the Dirichlet boundary condition
at one of its leaves. The next lemma gives a lower bound for the ground state of
the Laplacian with the Dirichlet condition at a point.

For a metric graph G and a point y ∈ G, we denote by H1
y (G) the space of

H1(G) functions that vanish at y.

Lemma 3. Let G be a connected metric graph and y ∈ G. Then

(2.3)
∫

G

|φ′(x)|2dx ≥ π2

4l(G)2

∫
G

|φ(x)|2dx

for all functions φ ∈ H1
y (G). For a non-zero function φ ∈ H1

y (G), the equality in
(2.3) may happen only if G is a segment, y is its endpoint, and φ(x) is proportional
to sin(πs/(2l(G)) where s is the distance to y.

One obtains the inequality in Theorem 1 by applying Lemma 3 to G1 and com-
paring (2.2) and (2.3).

Proof of Lemma 3. We use the symmetrization technique (see [B], [BG], [G1], [G2],
[PS].) First, one can assume that φ ≥ 0: replacing φ(x) by |φ(x)| does not result
in the change of either the right hand side or the left hand side in (2.3). For t ≥ 0,
let mφ(t) be the measure of the set {x ∈ G : φ(x) < t}; this is a lower semi-
continuous function that increases from 0 to M = maxφ(x). One can uniquely
define a continuous, non-decreasing function φ∗(s) on the interval [0, l(G)] such
that φ∗(0) = 0 and mφ∗(t) = mφ(t). Then

(2.4)
∫

G

|φ(x)|2dx =
∫ M

0

t2dmφ(t) =
∫ l(G)

0

|φ∗(s)|2ds.

The set of H1
y (G) functions that are continuously differentiable on closed edges

is dense in H1
y (G); therefore, for the proof of (2.3), one can assume that φ(x) is

continuously differentiable on closed edges. A critical point of φ(x) is either a
critical point on an open edge or a vertex. By Sard’s theorem the set of critical
values have measure 0. Let t be a regular value of φ(x). The number of pre-images
of t under φ(x) is finite; we denote this number by n(t). The co-area formula (e.g.,
see [B]) implies ∫

G

|φ′(x)|2dx =
∫ M

0

dt
∑

x:φ(x)=t

|φ′(x)|.

By the Cauchy–Schwarz inequality,
(2.5) ∑

x:φ(x)=t

|φ′(x)| ≥ n(t)2
( ∑

x:φ(x)=t

1
|φ′(x)|

)−1

≥
( ∑

x:φ(x)=t

1
|φ′(x)|

)−1

=
1

m′
φ(t)

.
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Therefore,

(2.6)
∫

G

|φ′(x)|2dx ≥
∫ M

0

dt

m′
φ(t)

.

The same argument applies to the function φ∗(s); that function takes every regular
value once, and all inequalities become exact equalities. One concludes that∫

G

|φ′(x)|2dx ≥
∫ l(G)

0

|(φ∗)′(s)|2ds.

Function φ∗(s) belongs to H1([0, l(G)]) and φ∗(0) = 0. Therefore,

(2.7)
∫ l(G)

0

|(φ∗)′(s)|2ds ≥ π2

4l(G)2

∫ l(G)

0

|φ∗(s)|2ds

because π/(2l(G)) is the first eigenvalue of the operator −d2/ds2 on the interval
[0, l(G)], with the Dirichlet condition at 0 and the Neumann condition at l(G).

This finishes the proof of the inequality (2.3). Now, suppose that an equality in
(2.3) takes place for a non-zero function φ(x). Then

(1) the function φ(x) minimizes the Rayleigh quotient∫
G

|φ′(x)|2dx
/ ∫

G

|φ(x)|2dx

on the space H1
y (G);

(2) the equality in (2.5) holds;
(3) the equality in (2.7) holds.

The first condition implies that φ(x) is an eigenfunction of the Laplacian on G,
with the Dirichlet condition at the point y. Therefore, on each edge of G \ y, it
is a trigonometric function. The same is true for |φ(x)| because, for that function
an equality in (2.3) also holds. The second condition implies that n(t) = 1 for all
regular values t. We conclude that y is a vertex of G of degree 1 (a leaf.) In fact,
the derivative of |φ(x)| at y in each direction emanating from y is positive (it can
not vanish), so if there is more than one direction then small positive values are
taken at least twice. In the same way, G does not have vertices of degree greater
than 2. If v is a vertex of degree at least 3, then, close to v, the function φ(x)
either increases or decreases along each edge; so either φ(x) or −φ(x) increases in
a neighborhood of v along two different edges emanating from v. Therefore the
values that are close to φ(v) either from above or from below are taken at least
twice.

We have agreed to disregard vertices of degree 2. Finally, G is a connected
graph, and all its vertices are leaves. There is at least one vertex (y.) Therefore,
G is a segment [0, l(G)], and φ(x) is a monotone function on that segment. That
implies φ = φ∗. The third condition tells us that φ∗ is the first eigenfunction of the
Laplacian on [0, l(G)], with the Dirichlet condition at 0 and the Neumann condition
at l(G), so it is proportional to sin(πs/(2l(G))). �

2B. Proof of Lemma 2. The proof of Lemma 2 is based on the following lemma.
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Lemma 4. Let G be a connected metric tree of length L. For every l, 0 < l ≤ L,
there exists a point x ∈ G such that

G(x) = G0 tG1 t · · · tGp,

and l(G0) ≤ L− l, l(Gk) ≤ l, 1 ≤ k ≤ p.

One applies Lemma 4 (j − 1) times. Fix l = L/j. First, one finds a point x1

such that G(x1) = G1 tG(1) where G1 is a connected tree of length ≤ (j − 1)L/j,
and all connected components of G(1) have length ≤ L/j. Then one finds x2 ∈ G1

such that G1 = G2 tG(2), with G2 being a connected tree of length ≤ (j − 2)L/j,
and all connected components of G(2) having length ≤ L/j. One keeps going, and,
after not more than (j − 1) steps, one gets the desired decomposition.

Proof of Lemma 4. We fix a leaf y0 of G. For a point x ∈ G that is not a vertex,
we denote by Gx the connected component of G(x) that does not contain y0. Note
that, if x is not a vertex, then G(x) consists of exactly two connected components.
If l(Gx) = l for some x ∈ G \ V (here V is the set of vertices) then such a point
will do the job. Otherwise, on each edge e of G, either l(Gx) < l, x ∈ e, (we call
them edges of the first type) or l(Gx) > l, x ∈ e; they will be called edges of the
second type. Denote by G1 the closure of the union of all edges of the first type; G2

is the closure of the union of edges of the second type. All connected components
of both G1 and G2 are metric trees. Notice that the edge incident to y0 belongs
to G2, and the edges that are incident to all other leaves of G belong to G1. Let
y 6= y0 be a leaf of G2. By G0 we denote the component of G(y) that contains y0,
and let G1, . . . Gp be other components of G(y).

We claim that l(G0) ≤ L− l and l(Gk) ≤ l, 1 ≤ k ≤ p. In fact, let ek, 0 ≤ k ≤ p,
be the edge of Gk incident to y (notice that y is a leaf for all Gjs.) For x ∈ e0, one
has l(Gx) ≥ l, and

l(G0) = lim
e03x→y

l(G \Gx) ≤ L− l.

Because y is a leaf of G2, the edges e1, . . . , ep belong to G1; therefore, for 1 ≤ k ≤ p,
one has

l(Gk) = lim
ek3x→y

l(Gx) ≤ l.

�

2C. The case of equality in (1.6). To finish the proof of Theorem 1 we have
to analyze, under what conditions the equality in (1.6) takes place. First, we
consider the case when G is a connected tree. Then, for any linear combination
φ(x) of φ1(x), . . . , φj(x) that vanishes at the points x1, . . . , xm from Lemma 2,
the inequality (2.1) becomes an exact equality. Therefore, φ(x) is an eigenfunction
of the Laplacian on G that corresponds to the eigenvalue µj(G) = π2j2/(4l(G)2).
Let G1, . . . , Gp be the connected components of G(x1, . . . , xm). The restriction
of φ(x) to Gk, k = 1, . . . , p, if not identically zero, is an eigenfunction of the
Laplacian on Gk, with the Dirichlet condition at those points xi that belong to
Gk. From Lemma 3 (notice that the length of each Gk does not exceed l(G)/j) we
conclude that those components Gk, on which the function φ(x) does not vanish
identically, are segments of length l(G)/j, one endpoint of each segment is one of
the points x1, . . . , xm, and the restriction of φ(x) to such a segment is proportional
to sin(πjs/(2l(G)) where s is the distance to the endpoint of the segment where
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φ(x) vanishes. The function φ(x) does not vanish at the second end of the segment,
so the second end of the segment is a leaf of the tree G because this segment is a
connected component of G(x1, . . . , xm).

A certain complication arises from the fact that φ(x) may vanish on some of
the components Gk: an eigenfunction of the Laplacian on a metric graph may well
vanish on some edges of the graph. Now, we do induction in j. If j = 2 then m = 1,
and one has only one point x1. The function φ(x) does not vanish on at least two
connected components of G(x1): otherwise φ(x) would not satisfy the Kirchhoff
condition at the point x1 (notice that x1 is not a leaf of G; if x1 is not a vertex then
the Kirchhoff condition is the same as the differentiability at x1 condition.) Each
connected component of G(x1) on which φ(x) does not vanish is of length l(G)/2,
so there are exactly two of them, and these are the only connected components of
G(x1). We conclude that G consists of two segments of length l(G)/2 emanating
from x1, so G is a segment, and x1 is its midpoint.

Now, let us do the inductive step. Let j ≥ 3. Let G1 be a connected component
of G(x1, . . . , xm) on which φ(x) does not vanish. Suppose that x1 is an endpoint
of G1. As we have already seen, G1 is a segment of length l(G)/j than connects x1

with a leaf of the graph G. Therefore, G′ = G \ G1 is a connected tree, x1 is one
of its vertices, and l(G′) = (j − 1)l(G)/j. By L we denote the space of all linear
combinations of φ1(x), . . . , φj(x) that vanish at x1. Clearly, dimL = j − 1. A
non-zero function ψ(x) ∈ L can not vanish identically on G′. In fact, if it vanishes
on G′, then ∫

G1

|ψ′|2dx ≤ π2

4l(G1)2

∫
G1

|ψ(x)|2dx,

so the restriction of ψ(x) to G1 is proportional to sin(πs/(2l(G1)), and the Kirchhoff
condition breaks at the point x1. Denote by L′ the space of restrictions of functions
from L to G′. Then

(2.8) dimL′ = j − 1.

For every ψ ∈ L, one has∫
G

|ψ′(x)|2dx ≤ π2j2

4l(G)2

∫
G

|ψ(x)|2dx

and ∫
G1

|ψ′(x)|2dx ≥ π2j2

4l(G)2

∫
G1

|ψ(x)|2dx.

Therefore, ∫
G′
|ψ′(x)|2dx ≤ π2j2

4l(G)2

∫
G′
|ψ(x)|2dx

=
π2(j − 1)2

4l(G′)2

∫
G′
|ψ(x)|2dx.

(2.9)

From (2.8) and (2.9), one concludes that

µj−1(G′) ≤
π2(j − 1)2

4l(G′)2
,
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and, by the induction assumption, G′ = Hj−1. In the case j = 3, we treat a segment
as H2 by inserting a vertex at the midpoint of the segment. Denote by y the center
of G′ = Hj−1. The question is, how the segment G1 is attached to G′. There are
three possibilities:

(1) x1 = y;
(2) x1 lies inside of an edge e = (y, z) of G′;
(3) x1 coincides with a leaf z of G′.

In the first case, G = Hj , so we have to rule out two remaining possibilities.
Suppose that x1 lies inside of (y, z). Let G′′ = G′ \(x1, z]. Every function ψ ∈ L′

satisfies

(2.10)
∫

G′′
|ψ′(x)|2dx ≤ π2(j − 1)2

4l(G′)2

∫
G′′
|ψ(x)|2dx

because

(2.11)
∫

(x1,z)

|ψ′(x)|2dx ≥ π2(j − 1)2

4l(G′)2

∫
(x1,z)

|ψ(x)|2dx

(notice that the length of (x1, z) is smaller than l(G)/j = l(G′)/(j−1).) A function
ψ ∈ L′ can not vanish on G′′ because, otherwise, a strict inequality would hold in
(2.11), and that would contradict (2.9). Therefore, the inequality (2.10) holds for
functions from a (j − 1)-dimensional subspace of H1(G′′). Hence,

µj−1(G′′) ≤
π2(j − 1)2

4l(G′)2
<
π2(j − 1)2

4l(G′′)2
.

The last inequality contradicts (1.6).
Let us now treat the case x1 = z. Then the graph G consists of (j − 2) edges,

e1, . . . , ej−2 emanating from y, of length L/j each, and one edge, f , of length 2L/j
emanating from y (here L = l(G).) All edges connect y with leaves of G. We
parametrize each edge by the distance from y. An eigenfunction of the Laplacian
on G that corresponds to an eigenvalue µ = λ2 6= 0 equals ak cos(λ((L/j)− s)) on
an edge ek, and it equals b cos(λ((2L/j) − s)) on the edge f . When s = 0, all the
values must coincide, so

(2.12) a1 cos(λL/j) = · · · = aj−2 cos(λL/j) = b cos(2λL/j).

The Kirchhoff condition at y reads

(2.13) (a1 + · · ·+ aj−2) sin(λL/j) + b sin(2λL/j) = 0.

We will count the number of eigenvalues of the Laplacian on G that do not exceed
π2j2/(4L2). There is an eigenvalue 0 of multiplicity 1. In the case cos(λL/j) =
0, (2.12) and (2.13) imply a1 + · · · + aj−2 = 0 and b = 0; one gets a (j − 3)-
dimensional space of eigenfunctions that correspond to the eigenvalue π2j2/(4L2).
If sin(λL/j) = 0 then µ = λ2 ≥ (π2j2/L2) > π2j2/(4L2). In the case when
cos(λL/j) 6= 0 and sin(λL/j) 6= 0, (2.12) and (2.13) imply a1 = · · · = aj−2 = a,

a cos(λL/j) = b(2 cos2(λL/j)− 1), and cos2(λL/j) =
j − 2

2(j − 1)
.
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Therefore, cos(2Lλ/j) = −1/(j − 1). This case gives rise to one eigenvalue
arccos2(−1/(j − 1))j2/(4L2) of multiplicity one that is smaller than π2j2/(4L2) ;
all other eigenvalues are bigger than π2j2/(4L2). Finally, in the case x1 = z, there
are exactly (j−1) eigenvalues of G that are smaller than or equal to π2j2/(4l(G)2),
so, for such a graph, an equality in (1.6) does not take place.

We have proved that if an equality in (1.6) takes place, and if G is a connected
tree, then G = Hj . If G is a connected graph that is not a tree then one can cut it at
points x1, . . . , xm lying on open edges in such a way that G′ = G(x1, . . . , xm) is a
connected tree. As it was noted earlier, µj(G′) ≤ µj(G). If µj(G) = π2j2/(4l(G)2)
then the last inequality, in combination with (1.6), imply µj(G′) = π2j2/(4l(G′)2).
Therefore, G′ = Hj for any choice of points x1, . . . , xm that make G(x1, . . . , xm)
a connected tree. Clearly, this is impossible. �

References

[B] P. Bérard, Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Mathematics

1207, Springer-Verlag, 1986.

[BG] P. Bérard et S. Gallot, Inégalités isopérimétriques pour l’équation de la chaleur et appli-
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