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Abstract. This is a continuation of [1] and [2]. We consider the
spectrum of the Dirichlet Laplacian in the domain {(x, y) : 0 ≤
y ≤ εh(x)} where h(x) is a positive, periodic function. The main
assumption is that h(x) has one point of global maximum on the
period interval. We study location of the bands and prove that the
band lengths are exponentially decaying as ε → 0.

1. Introduction

This paper is a continuation of the authors’ works [1] and [2] where
we studied the spectrum of the (positive) Laplacian ∆ε in a narrow
strip

Ωε = {(x, y) : x ∈ I, 0 < y < εh(x)}.
There, I could be either a finite interval [−a, b] or the whole real line.
In all cases, the Dirichlet boundary condition is imposed on the bot-
tom y = 0 and on the top y = εh(x) of the domain Ωε. In the case
I = [−a, b], we considered both the Dirichlet (in [1]) and Neumann
(in [2]) boundary conditions on the sides x = −a and x = b of Ωε.
The main objective in [1] and in [2] was to understand the behav-
ior of eigenvalues as ε → 0, and the main assumption was that the
continuous function h(x) has on I a single point of global maximum.
Our approach was based on a study of the behavior of the resolvent
(∆ε − π2M−2ε−2)−1, where M = max h(x), as ε → 0. Roughly speak-
ing, we proved that this resolvent converges in norm to the operator
H−1, where H is the operator, described below by (1.2). This requires
a suitable interpretation, since the operators involved act in different
Hilbert spaces. Such an interpretation was suggested in [1], [2].

In this paper, we consider the case when h(x) is a periodic function.
Namely, h(x) is a positive, continuous 2π-periodic function on I =
(−∞,∞). Let I0 = [−π, π]. We assume that

(i) x = 0 is the only point of global maximum of h(x) on I0;
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(ii) The function h(x) is C1 on I0 \ {0}, and in a neighborhood of
x = 0 it admits an expansion

(1.1) h(x) =

{
M − c+xm + O

(
xm+1

)
, x > 0,

M − c−|x|m + O
(
|x|m+1

)
, x < 0

where M, c± > 0 and m ≥ 1. The spectrum of the operator ∆ε consists
of bands [aj(ε), bj(ε)], j = 1, 2, . . .. It is purely absolutely continuous,
which was proved in [4], [5] and – under the most general assumptions
about the boundary of the waveguide – in [3]. Our goal is to describe
where the bands are located and to derive an upper bound for the band
widths.

To formulate the main result of the paper, we need some notations
(see [1], [2].) Let H be an operator on L2(R) given by

(1.2) H = − d2

dx2
+ q(x), q(x) =

{
2π2M−3c+xm, x > 0,

2π2M−3c−|x|m, x < 0.

Its spectrum is discrete and consists of simple eigenvalues, which we
denote by µj. If m = 2 and c+ = c− = c, then H turns into the
harmonic oscillator.

Theorem 1.1. Let h(x) be a continuous, positive, 2π-periodic function,
and suppose that it satisfies conditions (i) and (ii). Let [aj(ε), bj(ε)] be
spectral bands of the operator ∆ε in Ωε with the Dirichlet boundary
conditions. Then

(1.3) lim
ε→0

ε2α

(
aj(ε)−

π2

M2ε2

)
= µj,

where

(1.4) α = 2(m + 2)−1.

Moreover, there exist a constant σ > 0 and numbers Cj > 0 such that

(1.5) bj(ε)− aj(ε) ≤ Cje
−σ/ε.

The proof of the theorem is based on the Dirichlet–Neumann brack-
eting and on direct estimates for the difference between eigenvalues
of two boundary value problems for the Laplacian. In section 2 we
bound aj(ε) and bj(ε) by eigenvalues of axiliary problems in a bounded
domain. That material is well known; we include it for the sake of
completeness. The bulk of the proof of the theorem is in section 3.

A convergence in norm of the resolvents, similar to the one proved
in [1], [2], holds also in this new situation. Namely, the resolvents
(∆ε−π2M−2ε−2)−1 converge, in an appropriate sense, to the orthogonal
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sum of infinitely many copies of the operator H−1, see (1.2). We do not
go into details, since this gives nothing for the better understanding of
our main result which is the estimate (1.5).
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2. Dirichlet–Neumann bracketing

The Floquet theory tells us that the spectrum of the operator ∆ε is
the union of the spectra of operators ∆ε,k, 0 ≤ k < 1; these are the
Laplacians in Ωε with the domain

{u ∈ H2(Ωε) ∩H1
0 (Ωε) : u(x, y + 2π) = eiku(x, y)}.

Let Ω0
ε = {(x, y) : −π ≤ x ≤ π, 0 ≤ y ≤ εh(x)} be the fundamental

domain of the Z-action (x, y) 7→ (x + 2πn, y), n ∈ Z, on Ωε. The
operator ∆ε,k can be considered as an operator in Ω0

ε ; it is generated
by the quadratic form

(2.1) Q(u) =

∫
Ω0

ε

|∇u|2dxdu

with the domain
(2.2)
dε,k = {u ∈ H1(Ω0

ε) : u(x, 0) = u(x, εh(x)) = 0, u(π, y) = eiku(−π, y)}.
The operator ∆ε,k has discrete spectrum. Let

0 < ν1(ε, k) ≤ ν2(ε, k) ≤ · · ·
be its eigenvalues.

By ∆ε,DN and ∆ε,D we denote the Laplacians in Ω0
ε , with the Dirichlet

condition imposed on the bottom and on the top of Ω0
ε ; the conditions

on the sides x = ±π are Neumann and Dirichlet, respectively. These
operators are generated by the same quadratic form (2.1), but now it
is defined on the domains
(2.3)
dε,DN = {u ∈ H1(Ω0

ε) : u(x, 0) = u(x, εh(x)) = 0} and dε,N = H1
0 (Ω0

ε).

Let λj(ε, DN) and λj(ε, D) be the eigenvalues of the operators ∆ε,DN

and ∆ε,D, respectively. The inclusions dε,D ⊂ dε,k ⊂ dε,DN (see (2.2)
and (2.3)) imply

(2.4) λj(ε, DN) ≤ νj(ε, k) ≤ λj(ε, D).
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Theorem 2.1 from [2] says that both λj(ε, DN) and λj(ε, D) satisfy

(2.5) lim
ε→0

ε2α

(
λj(ε)−

π2

M2ε2

)
= µj.

Therefore, for every n, first n+1 eigenvalues of ∆ε,DN and ∆ε,D interlace

λ1(ε, DN) ≤ λ1(ε, D) < λ2(ε, DN) ≤ λ2(ε, D) < · · ·
< λn(ε, DN) ≤ λn(ε, D) < λn+1(ε, DN)

when ε is small enough, ε < ε0(n) (actually, in the last formula, one
can replace all inequalities ≤ by <; it follows from the formula (2.6)
below.) Then, the spectral bands [aj(ε), bj(ε)] lie between λj(ε, DN)
and λj(ε, D) when j ≤ n,

(2.6) λj(ε, DN) ≤ aj(ε) < bj(ε) ≤ λj(ε, D).

The two-term asymptotics (1.3) for aj(ε) follows from (2.5) and (2.6).
Notice that (1.3) holds if one replaces aj(ε) by bj(ε). In addition, (2.6)
implies

(2.7) bj(ε)− aj(ε) ≤ λj(ε, D)− λj(ε, DN).

3. The estimate for λj(ε, D)− λj(ε, DN)

In this section, we will prove that there exists a constant σ such that

(3.1) λj(ε, D)− λj(ε, DN) ≤ Cje
−σ/ε

for some Cj. The estimate (1.5) follow from (2.6) and (3.1). The
operators ∆ε,DN and ∆ε,D are unitary equivalent to the operators Lε,DN

and Lε,D, respectively, that are given by the differential expression

Lε = − ∂2

∂x2
− 1

ε2

∂2

∂y2

in

Ω = {(x, y) : −π ≤ x ≤ π, 0 ≤ y ≤ h(x)};
the boundary conditions are always Dirichlet on the top and on the
bottom of Ω. For the operator Lε,DN , one takes the Neumann condi-
tions at the sides x = ±π; for the operator Lε,D one takes the Dirichlet
conditions on the sides as well. We recall that function h has the only
point of global maximum on [−π, π], and h(0) = M . First, we will
show that eigenfunctions of the operator Lε,DN are very small near the
right and left sides of Ω. Let

m = max

{
h(x) :

π

3
≤ |x| ≤ π

}
,
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and let u(x, y) be an eigenfunction of Lε,DN :

(3.2) uxx+
1

ε2
uyy+

µ

ε2
u = 0, u(x, 0) = u(x, h(x)) = 0, ux(±π, y) = 0,

with

(3.3) µ ≤ π2

m2
− δ, δ > 0.

We will show that there exist constants C and η that depend on δ only
such that

(3.4)

∫ h(x)

0

u(x, y)2dy ≤ Ce−η/ε‖u‖2
L2(Ω)

when π/2 ≤ |x| ≤ π. To prove (3.2) one can assume ‖u‖L2(Ω) = 1. We
will take −π ≤ x ≤ −π/2; the case π/2 ≤ x ≤ π is similar. Let

(3.5) F (x) =

∫ h(x)

0

u(x, y)2dy.

Let −π ≤ x < z ≤ −π/3. We multiply (3.4) by u(x, y) and integrate
the resulting equality over

Πx,z = {(ξ, y) : x ≤ ξ ≤ z, 0 ≤ y ≤ h(ξ)}
to get∫

Πx,z

u2
x(ξ, y)dξdy +

∫ h(z)

0

ux(z, y)u(z, y)dy −
∫ h(x)

0

ux(x, y)u(x, y)dy

− 1

ε2

∫
Πx,z

u2
y(ξ, y)dξdy +

µ

ε2

∫
Πx,z

u2(ξ, y)dξdy = 0.

Notice that the second term in the last equality equals F ′(z)/2, the
third term equals F ′(x)/2, and the last term equals ε−2µ

∫ z

x
F (ξ)dξ, so

it can be re-written as

F ′(z)− F ′(x)

2
=

1

ε2

∫
Πx,z

u2
y(ξ, y)dξdy − µ

ε2

∫ z

x

F (ξ)dξ+∫
Πx,z

u2
x(ξ, y)dξdy.

The estimate h(ξ) ≤ m for x ≤ ξ ≤ z implies∫ h(ξ)

0

u2
y(ξ, y)dy ≥ π2

m2
F (ξ),

and ∫
Πx,z

u2
y(ξ, y)dξdy ≥ π2

m2

∫ z

x

F (ξ)dξ.
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The last inequality and (3.3) imply

(3.6)
F ′(z)− F ′(x)

2
≥ δ

ε2

∫ z

x

F (ξ)dξ.

We divide (3.6) by z − x and take the limit z → x to get

(3.7) F ′′(x) ≥ 2δ

ε2
F (x), |x| ≥ π

3
.

Notice that F ′(−π) = 0. Therefore F ′(x) ≥ 0 when −π ≤ x ≤ −π/3;
together with (3.7) this implies

(3.8) F (z) ≥ F (x) cosh

(√
2δ

ε
(z − x)

)
, x ≤ z ≤ −π

3
.

Let −π ≤ x ≤ −π/2. It follows from (3.8) that

F (z) ≥ 1

2
F (x)e

√
2aδ/(12ε), −5π

12
≤ z ≤ −π

3
.

Therefore,

1 ≥
∫ −π/3

−5π/12

F (z)dz ≥ π

24
F (x)e

√
2πδ/(12ε),

and

F (x) ≤ 24

π
e−

√
2πδ/(12ε).

One sets C = 24/π and η = π
√

2δ/12 to get (3.4).
We are ready now to prove (3.1). Let {ul(x, y)} be an ortho-normal

basis composed by eigenfunctions of the operator Lε,DN ,

Lεul(x, y) = λl,DN(ε)ul(x, y).

By Lj we denote the span of u1(x, y), . . . , uj(x, y). Let χ(x) ∈ C∞
0 (−π, π)

be a cut-off function such that 0 ≤ χ(x) ≤ 1 and χ(x) = 1 when
|x| ≤ π/2. Let Mj = χ(x)Lj ⊂ H1

0 (Ω). Then dim Mj = j. Take a
function v(x, y) = χ(x)u(x, y) ∈ Mj. Then an upper bound for the
ration

(3.9)

∫
Ω

(
v2

x +
1

ε2
v2

y

)
dxdy

/ ∫
Ω

v2dxdy

will be an upper bound for λj,D(ε). One can assume that
∫

Ω
u2dxdy = 1.

Then

u(x, y) =

j∑
l=1

clul(x, y),

j∑
l=1

c2
l = 1

and ∫
Ω

v2dxdy ≥ 1−
∫

Ω∩{π/2≤|x|≤π}
u2dxdy.
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Take any number δ, 0 < δ < π2(m−2 − M−2) (here m is the same
as in (3.3).) Theorem 2.1 from [2] implies limε→0 ε2λj,D(ε) = π2/M2;
therefore, for ε small enough,

λj,D(ε) ≤ 1

ε2

(
π2

m2
− δ

)
.

One has λl,DN(ε) ≤ λj,D(ε) for l ≤ j, so (3.4) implies

(3.10)

∫
Ω

v2dxdy ≥ 1− C ′
je
−η/ε.

Let us now get an estimate for the numerator in (3.9):∫
Ω

(
v2

x +
1

ε2
v2

y

)
dxdy =

∫
Ω

(
χ2(x)(u2

x +
1

ε2
u2

y

)
dxdy

+

∫
Ω

χ′(x)2u2dxdy + 2

∫
Ω

χ(x)χ′(x)uuxdxdy

≤ λj,DN(ε)−
∫

Ω

χ(x)χ′′(x)u2dxdy

≤ λj,DN(ε) + C ′
∫

Ω∩{π/2≤|x|≤π}
u2dxdy ≤ λj,DN(ε) + C ′′

j e−η/ε.(3.11)

Inequalities (3.10) and (3.11) imply that the quotient (3.9) does not
exceed

µj(ε) + C ′′
j e−η/ε

1− C ′
je
−η/ε

≤ λj,DN(ε) + Cje
−η/ε.

Therefore,
λj,D(ε) ≤ λj,DN(ε) + Cje

−η/ε.
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