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Determinant of the Schrödinger
Operator on a Metric Graph

Leonid Friedlander

Abstract. In the paper, we derive a formula for computing the determinant

of a Schrödinger operator on a compact metric graph. This formula becomes
very explicit in the case of the Laplacian with the Neumann boundary condi-
tions.

1. Introduction

Let G be a metric graph. This means that each edge of G is being considered
as a segment of certain length. Throughout this paper, we assume that G has a
finite number of edges, and the length of each edge is finite. We also assume that
G is connected. Let V be the set of all vertices, and let E be the set of all edges.
If e ∈ E, then l(e) is the length of the edge e. We allow multiple edges and loops.
Though, in this paper, edges are not oriented, it is covenient to treat each edge as
a pair of oppositely oriented edges. If an orientation of an edge is fixed, then one
can talk about the initial and the terminal vertex of the edge, and one can fix a
coordinate xe on e that varies from 0 at the initial vertex to l(e) at the terminal
vertex. If e is an edge then v ≺ e will mean that v is an initial vertex of e. For
two vertices, v and w, we denote by [v, w] the set of all edges connecting v and w.
If v = w then [v, v] is the set of all loops incident to v. The degree of a vertex v is
the number of oriented edges e such that v ≺ e. Roughly speaking, the degree of a
vertex is the number of edges that are incident to this vertex; however, each loop
should be counted twice.

By C∞(G) we denote the set of continuous functions on G that belong to C∞

on each closed edge; L2(G) is the set of all functions on G that belong to L2 on
each edge. One defines the L2-norm of a function by

||f ||2 =
∑
e∈E

∫
e

|f(xe)|2dxe.

In the last formula, for each edge, one chooses an orientation; the result is clearly
independent of these choices. The operator ∆ : C∞(G) → L2(G) is defined by the
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formula

(∆f)(xe) =
d2f(xe)

dx2
e

on each edge e. The result does not depend on the choice of an orientation of e.
The space H2(G) is defined as the closure of C∞(G) with respect to the norm

||f ||22 = ||f ||2 + ||∆f ||2.

Notice that Sobolev’s embedding theorem implies that H2(G)-functions belong to
C1 on each closed edge. In addition, they are continuous on G. The operators r
and j acting from H2(G) to C|V | are defined by formulas

rf = (f(v))v∈V ; jf =
(∑

e�v

− ∂f

∂xe
(v)

)
v∈V

.

In words, the operator r assigns to a function the vector of its values at vertices
of the graph; the operator j assigns to a function the vector, each component of
which is the total flux through the corresponding vertex.

Let q(x) be a continuous function on G that is smooth on each closed edge, and
let A be a |V | × |V | matrix. We define an operator HA as an operator in L2(G)
that acts on functions by the formula

Hf(x) = −∆f(x) + q(x)f(x),

and the domain of which is

D(HA) = {f ∈ H2(G) : (j + Ar)f = 0}.

The boundary condition with A = 0 has several names; the most common ones are
standard, Neumann, Kirchhoff. The corresponding operator will be denoted by H0.
The goal of this paper is to provide a formula for computing the determinant of the
operator HA. We will need the operator H with the Dirichlet boundary conditions
rf = 0. This operator will be denoted by HD. Notice that HD is the direct sum of
Schrödinger operators on edges with the Dirichlet conditions.

First, we have to recall the definition of the determinant. The operator HA

is an elliptic operator of order 2; its spectrum is discrete. In general, HA is not
self-adjoint, but the eigenvalues λk of HA behave asymptotically like eigenvalues of
H0; according to Weyl’s law,

λk ∼
π2

L2
k2

where L =
∑

e l(e) is the total length of the graph G. For almost all angles θ,
0 < θ < 2π, the ray

Γθ = {z = reiθ : r > 0}
is free from eigenvalues λk. Such an angle will be called an admissible angle. One
defines the ζ-function of HA by the formula

ζθ(z) =
∑

λk 6=0

λ−z
k ;

the cut along Γθ is used for determining values of complex powers. This ζ-function
is a holomorphic function in the half-plane <z > 1/2. It is known that ζθ(z) admits
an analytic continuation to a meromorphic function in the whole complex plane that
may have simple poles at the points (1/2) − n where n is a non-negative integer.
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According to Ray and Singer [RS], the modified determinant of the operator HA is
defined by the formula

log det′HA = −ζ ′θ(0).
We use the adjective “modified” to emphasize that the zero eigenvalues of HA are
disregarded. If θ1 > θ2 are two admissible angles then

ζ ′θ1
(0)− ζ ′θ2

(0) = 2πim

where m is the number of eigenvalues λk, the argument of which lies between θ1

and θ2. Therefore, the value of the modified determinant does not depend on the
choice of an admissible angle. In what follows, the angle θ will be supressed in
notations. We define the determinant of HA to be equal the modified determinant
if HA is invertible; otherwise, det HA = 0.

To formulate the main theorem, we have to introduce the Dirichlet-to-Neumann
operator. The Poisson operators P (λ) and QA(λ) map C|V | into C∞(G). To a
vector α ∈ C|V |, they assign the solution of the equation

(H + λ)f = 0

that satisfy the boundary conditions rf = α, for the operator P (λ), and (j+Ar)f =
α, for the operator QA(λ). Notice that the Poisson operators are defined not for
all values of λ. Namely, P (λ) is defined if −λ does not belong to the spectrum of
HD, and QA(λ) is defined if −λ does not belong to the spectrum of HA. Finally,
the Dirichlet-to-Neumann operator

R(λ) : C|V | → C|V |

is defined as
R(λ) = jP (λ).

The main result of this paper is the following theorem.

Theorem 1. Let d(v) be the degree of a vertex v. Then

(1.1) det(HA + λ) =
1∏

v∈V d(v)
det(R(λ) + A) det(HD + λ).

The determinant of operators on quantum graphs has been studied in a number
of papers, e.g. see [D1,2], [ACDMT]. Some of the formulas derived in that papers
are similar to ours, though the normalization constants are different.

Let us make several remarks concerning formula (1.1). First, the operator
R(λ) is not defined if λ = −µk where µk is a point of the Dirichlet spectrum for H.
Suppose that a Dirichlet eigenvalue µk has multiplicity mk. Then, as λ → −µk,
exactly mk eigenvalues of R(λ) go to infinity, and det(R(λ)+A) has a pole of order
mk at the point µk. On the other hand, det(HD + λ) has a zero of order mk at
λ = −µk. Therefore, the right hand side of (1.1) is an entire function.

The second remark is that the expression on the right in (1.1) is computable in
the sense that to find its value one has to be able to perform two operations: solving
ODEs and computing determinants of square matrices. R(λ) is a |V | × |V |-matrix;
to find its entries, one has to solve some ODEs. As it has already been mentioned,
the operator HD + λ is the direct sum of operators on closed edges; therefore,

(1.2) det(HD + λ) =
∏
e∈E

det(−∆ + q(xe) + λ)D.
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The determinant of a Schrödinger operator, with the Dirichlet boundary conditions,
on a segment can be computed in the following way ([F1], [BFK1]): Let u(xe) solve
the initial value problem

(1.3) −u′′ + (q(xe) + λ)u = 0, u(0) = 0, u′(0) = 1.

Then

(1.4) det(−∆ + q(xe) + λ)D = 2u(l(e)).

Let us now treat one of the most important cases q(x) = 0, A = 0, λ = 0. This
is the case of the determinant of the Neumann Laplacian on G. The determinant
itself equals 0 because the Neumann Laplacian has a zero mode. The operator R(0)
has a zero mode as well; it is

β =
1√
|V |

(1, . . . , 1).

Our goal is to compute the modified determinant of −∆0. We will use the formula
(1.1) with λ 6= 0, and take the limit λ → 0. First,

det′(−∆0) = lim
λ→0

det(−∆0 + λ)
λ

.

Secondly, it follows from (1.3) and (1.4) that

det(−∆D) = 2|E|
∏
e∈E

l(e).

Therefore,

(1.5) det′(−∆0) = 2|E|
∏

e∈E l(e)∏
v∈V d(v)

lim
λ→0

det R(λ)
λ

.

As λ → 0, one eigenvalue of R(λ) approaches 0; we denote it by ν(λ). One has

(1.6) lim
λ→0

det R(λ)
λ

= ν̇(0)det′R(0)

where det′R(0) is the product of non-zero eigenvalues of R(0). By the “dot” we
denote the derivative with respect to λ. The Rayleigh formula (e.g., see [K]) says
that

(1.7) ν̇(0) = (Ṙ(0)β, β) =
1
|V |

|V |∑
v,w=1

Ṙ(0)vw.

Let v and w be two different vertices of G. Then

R(λ)vw =
∑

e∈[w,v]

u′e(l(e)).

Here the sum is taken over all edges that go from w to v, and ue(x) is the solution
of the boundary value problem

(1.8) u′′e (x) = λue(x), ue(0) = 1, ue(l(e)) = 0
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on the interval [0, l(e)]. When λ = 0,

ue(x) =
l(e)− x

l(e)
.

We differentiate (1.8) in λ and set λ = 0:

u̇′′e (x) = ue(x), u̇e(0) = u̇e(l(e)) = 0.

The solution of the last problem is

(1.9) u̇e(x) =
(l(e)− x)3

6l(e)
− l(e)

6
((l(e)− x),

and

u̇′e(l(e)) =
l(e)
6

.

We conclude that, for v 6= w,

(1.10) Ṙ(0)vw =
∑

e∈[w,v]

l(e)
6

.

To find Ṙ(0)vv, one has to take into account both the edges connecting v and
w, with w 6= v, and loops that start and terminate at v. The computation of a
contribution of an edge [v, w] with v 6= w is the same as the computation from the
previous paragraph; the only difference is that one has to take −u̇′e(0) where the
function u̇e(x) is given by (1.9). The value is l(e)/3. For a loop, one has to solve
the problem

u′′e (x) = λue(x), ue(0) = ue(l(e)) = 1.

Its solution is

ue(x) =
cosh(

√
λ(x− (l(e)/2)))

cosh(
√

λl(e)/2)
.

The contribution of the loop to R(λ)vv equals

u′e(l(e))− u′e(0) = 2
√

λ tanh(
√

λl(e)/2).

The λ-derivative of this function at λ = 0 equals l(e). Therefore,

(1.11) Ṙ(0)vv =
∑

e∈[v,w],v 6=w

l(e)
3

+
∑

e∈[v,v]

l(e).

From (1.10) and (1.11), we immediately conclude that

|V |∑
v,w=1

Ṙ(0)vw = L =
∑
e∈E

l(e). (1.12)

Let us summarize our computations in
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Theorem 2. Let L be the total length of the graph G. Then

det′(−∆0) = 2|E|
L

|V |

∏
e∈E l(e)∏
v∈V d(v)

det′R(0).

Finally, we remark that the entries of the matrix R(0) are easily computable.
One has

R(0)vw = −
∑

e∈[v,w]

1
l(e)

when v 6= w, and

R(0)vv =
∑

e�v; not a loop

1
l(e)

.

2. Proof of Theorem 1

We introduce three functions

wA(λ) = log det(HA + λ),

wD(λ) = log det(HD + λ),

and
σA(λ) = tr log(R(λ) + A).

To define the logarithms, we use an admissible angle that is suppressed in our
notations. These functions are holomorphic functions of λ outside of the points −λk

and −µk. We recall that {λk} is the spectrum of HA and {µk} is the spectrum of
HD. The proof of theorem 1 consists of two parts (compare with [BFK1,2].) First,
we will prove the following lemma.

Lemma 1. One has

(2.1) ẇA(λ) = σ̇A(λ) + ẇD(λ).

Lemma 1 implies immediately that

(2.2) det(HA + λ) = cdet(R(λ) + A) det(HD + λ).

To find the value of the constant c in (2.2), we will study the asymptotic behavior
of the functions wA(λ), wD(λ), and σA(λ) as λ →∞. It follows from [F2] and [V]
that both the functions wA(λ) and wD(λ) admit a complete asymptotic expansion
as λ → ∞. Moreover, constant terms in these expansions vanish. Therefore, the
function σA(λ) also admits a complete asymptotic expansion as λ → ∞. It c0 is
the constant term in this expansion then

(2.3) c = e−c0 .

The second part of the proof of theorem 1 is computing the value of c0.
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Proof of Lemma 1. One has

(2.4)
σ̇A(λ) = tr[(R(λ) + A)−1Ṙ(λ)]

= tr[(R(λ) + A)−1jṖ (λ)].

Recall that P (λ) is a Poisson operator; it assigns the solution of the problem

(2.5) (H + λ)u = 0, u(v) = αv

to a vector α = {αv}, v ∈ V . One differentiates (2.5) with respect to λ:

(H + λ)u̇ + u = 0, u̇(v) = 0, v ∈ V.

Therefore,

(2.6) Ṗ (λ) = −(HD + λ)−1P (λ).

The Poisson operator QA(λ) assigns the solution of the problem

(2.7) (H + λ)u = 0, (j + Ar)u = α

to a vector α = {αv}, v ∈ V , and rQA(λ) gives the vector of values of the solution
of (2.7) at the vertices; in other words, it maps the vector (j+Ar)u for a solution to
(H +λ)u = 0 into the vector ru. The operator R(λ)+A does exactly the opposite.
Therefore,

(2.8) (R(λ) + A)−1 = rQA(λ).

We summarize (2.4), (2.6), and (2.8):

(2.9)
σ̇A(λ) = −tr[rQA(λ)j(HD + λ)−1P (λ)]

= −tr[P (λ)rQA(λ)j(HD + λ)−1].

In the last equality, we used the main property of the trace. There is an issue of
whether the operator from the last line in (2.9) is of the trace class. We will see in
a moment that it belongs to the trace class indeed. Notice that

P (λ)rQA(λ) = QA(λ).

Indeed, for a vector α ∈ C|V |, QA(λ)α is a solution of the equation (H + λ)u = 0.
If one takes the restriction of this solution to vertices, and then applies P (λ) to this
restriction, one gets the same solution u(x). Therefore,

(2.10) σ̇A(λ) = −tr[QA(λ)j(HD + λ)−1].

We claim that

(2.11) QA(λ)j(HD + λ)−1 = (HD + λ)−1 − (HA + λ)−1.

It follows from (2.11) that the operator from the last line in (2.9) is of the trace
class, and commuting operators under the trace in (2.9) is legitimate. Notice that
r(HD + λ)−1 = 0; so

QA(λ)j(HD + λ)−1 = QA(λ)(j + Ar)(HD + λ)−1.

Let u(x) be a function on G, and

(HD + λ)−1u = g, QA(λ)(j + Ar)(HD + λ)−1u = h.
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Then
(H + λ)g = u, r(g) = 0,

and
(H + λ)h = 0, (j + Ar)h = (j + Ar)g.

For the difference, h− g, one gets

(H + λ)(h− g) = −u, (j + Ar)(h− g) = 0.

Therefore,
h− g = −(HA + λ)−1u,

and
h = (HD + λ)−1u− (HA + λ)−1u.

This completes the proof of (2.11). The statement of the lemma follows from (2.10),
(2.11) and

ẇ∗(λ) = det(H∗ + λ)−1.

Here ∗ stands for either D or A. �

Now, we turn to computing c0, the constant term in the asymptotic expansion
of σA(λ) as λ →∞.

Lemma 2. Let D be a diagonal matrix with elements d(v) on the diagonal.
Then

(2.12) R(λ) =
√

λD + O(1)

as λ →∞.

Lemma 2 implies that

R(λ) + A =
√

λD

(
1 + O

(
λ−1/2

))
,

and, therefore,

σA(λ) =
|V |
2

log λ + log det D + O
(
λ−1/2

)
.

We conclude that
c0 = log detD =

∑
v∈V

log d(v).

The statement of Theorem 1.1 follows from (2.2), (2.3), and the last formula.

Proof of Lemma 2. Let v, w ∈ V , and let e ∈ [v, w]. First, we assume that
v 6= w. To compute the contribution of e to R(λ)vw and its contribution to R(λ)ww,
one has to solve the boundary value problem

(2.13) −u′′ + λu + q(x)u = 0, u(0) = 0, u(l) = 1;

the contributions are −u′(0) and u′(l), respectively. We have suppressed e in nota-
tions: l = l(e), x = xe. The solution of (2.13) can be looked for in the form

(2.14) u(x) =
sinh(

√
λx)

sinh(
√

λl)
+ g(x)



DETERMINANT OF THE SCHRÖDINGER OPERATOR ON A METRIC GRAPH 9

where

(2.15) −g′′ + (λ + q(x))g = −q(x)
sinh(

√
λx)

sinh(
√

λl)
= h(x), g(0) = g(l) = 0.

The function h(x) is uniformly bounded as λ →∞; therefore the L2 norm of g(x)
is bounded as λ → ∞. Actually, ||g|| = O(1/λ). One can re-write (2.15) in the
form

−g′′ + λg = h(x)− q(x)g(x) = k(x), g(0) = g(l) = 0;
the L2 norm of k(x) is uniformly bounded in λ. Then

g(x) =
∫ l

0

G(λ;x, y)k(y)dy

where G(λ;x, y) is the Green function of the operator −∆ + λ, with the Dirichlet
boundary conditions, on the interval [0, l]. One can easily compute it and check
that |Gx(λ;x, y)| ≤ 1. Therefore, the C1-norm of g(x) is uniformly bounded in
λ. Now, from (2.14) we conclude that u′(0) = O(1) and u′(l) =

√
λ + O(1) as

λ → ∞. To summarize, for v 6= w, R(λ)vw = O(1), and the contribution of each
edge e ∈ [v, w] to R(λ)ww equals

√
λ + O(1).

Now, let e be a loop incident to a vertex w. To compute the contribution of e
to R(λ)ww, one has to solve the boundary value problem

−u′′1 + λu1 + q(x)u− 1 = 0, u1(0) = u1(l) = 1;

the contribution of the loop e to R(λ)ww equals u′1(l) − u′1(0). One has u1(x) =
u(x)+ũ(x) where u(x) is the solution of (2.13), and ũ(l−x) solves a similar problem,
with q(x) replaced by q(l−x). The analysis of the previous paragraph implies that

u′1(l)− u′1(0) = 2
√

λ + O(1)

as λ →∞.
Finally, up to terms that are bounded in λ, each edge that connects w with a

different vertex contributes
√

λ to R(λ)ww, and each loop incident to w contributes
2
√

λ to R(λ)ww. Therefore, R(λ)ww = d(w)
√

λ + O(1). �
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