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1. Introduction

Let Γ be a connected finite graph; by V we denote the set of its vertices, and by
E we denote the set of its edges. In a contrast with a combinatorial graph, each
edge e is considered to be a line segment of length l(e). Sometimes, it is convenient
to treat each edge as a pair of oriented edges; then, on an oriented edge, one defines
a coordinate xe that runs from 0 to l(e). If −e is the same edge, with the opposite
orientation, then x−e = l(e) − xe. If an edge e emanates from a vertex v, we will
express it by writing v ≺ e. A good survey of operators on metric graphs and
numerous references can be found in [Ku].

A function φ on Γ is a collection of functions φe(x) defined on each edge e. We
say that it belongs to L2(Γ) if each function φe belongs to L2 on the corresponding
edge; then

||φ||2 =
∑

e

||φe||2.

The Sobolev space H1(Γ) is defined as the space of continuous functions on Γ
that belong to H1 on each edge. The Laplacian on Γ is given by the differential
expression −d2/dx2

e on each edge. To define an operator, one has to specify the
domain. For the domain, we take continuous functions that belong to the Sobolev
space H2 on each edge and that satisfy the Kirchhoff condition

(1.1)
∑
e�v

dφ

dxe
(v) = 0

for every vertex v. The operator is induced by the quadratic form∑
e

∫
e

∣∣∣∣dφe(x)
dxe

∣∣∣∣2 dxe

defined on H1(Γ). This operator is self-adjoint, and its spectrum consists of eigen-
values

0 = λ1(Γ) < λ2(Γ) ≤ λ3(Γ) ≤ · · · ↗ ∞

of finite multiplicity. The eigenvalues are the numbers for which the problem

(1.2)
d2φe

dx2
e

+ λφe = 0,
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subject to the Kirchhoff conditions (1.1), has a non-trivial solution. For the sake
of brevity, we call {λj(Γ)} the spectrum of the metric graph Γ.

The question that we address in this paper is whether generically these eigenval-
ues are simple. This question has been studied for operators on manifolds (see [A],
[BU], [BW], [U].) Let us formulate the question in more precise terms. We fix the
combinatorial structure of Γ. Then the graph depends on |E| positive parameters
l(e). The question is, whether for a generic choice of these parameters the spectrum
is simple.

If Γ is a polygon then our problem is equivalent to the spectral problem for
the Laplacian on the circle of the same circumference, and positive eigenvalues are
always double. Therefore, with no additional assumptions, the genericity theorem
does not hold. We will show that, for all other graphs, the spectrum of the Laplacian
is generically simple.

Suppose that v is a vertex of degree 2 in Γ. One can remove this vertex and
replace two edges e1 and e2 incident to v by one edge of length l(e1) + l(e2). It is
easy to see that the spectrum of the resulting graph coincides with the spectrum
of Γ. Therefore, with no lost of generality, one can assume that a graph does not
have vertices of degree 2. In the example from the previous paragraph, all vertices
are of degree 2; if all of them are removed, one obtains a circle that we consider to
be a metric graph with no vertices.

Theorem. Let Γ be a connected metric graph that is different from a circle. Sup-
pose that it does not have vertices of degree 2. Let M be the set in the parameter
space R|E|

+ of metrics, for which all eigenvalues of Γ are simple. Then the set M
is residual.

2. Proof of the Theorem

First, if |E| = 1 then we are dealing with the spectrum of the Neumann Laplacian
on a segment, which is known to be simple. Therefore, we assume that |E| ≥ 2.

It is well known that a genericity theorem follows from the fact that a multiple
eigenvalue can be split by a small perturbation. Let us formulate it precisely.
Suppose that λ is a multiple eigenvalue of Γ for a certain value of (l(e)), and there
are no other eigenvalues of Γ in an ε-neighborhood of λ. We say that it splits by a
small perturbation of parameters if there exists a continuous curve (l(e, t)) in the
parameter space such that l(e, 0) = l(e), and there are at least two eigenvalues of
Γ in an ε/2-neighborhood of λ for sufficiently small values of t different from 0.

Lemma. Suppose that the edge lengths l(e) are rationally independent. Then every
multiple eigenvalue of Γ splits.

First, we deduce the theorem from the lemma. The argument is standard, and
we give it for the sake of completeness. Let Mk be the set of all (l(e)) for which the
first k eigenvalues of Γ are simple. The eigenvalues are continuous functions of l(e),
so the set Mk is open. We will show that it is dense. Let (l(e)) ∈ R|E|

+ . Fix δ > 0.
We have to show that there exists (l′(e)) ∈ Mk such that |(l(e)) − (l′(e))| < δ.
Let λj be eigenvalues of (Γ, (l(e))) and λ′j be eigenvalues of (Γ, (l′(e))). There exist
numbers ε > 0 and δ1 > 0 such that if |(l′(e))− l(e))| < δ1 then

(1) 2ε is smaller than the smallest distance between different eigenvalues λj ,
j = 1, . . . , k;



GENERICITY OF SIMPLE EIGENVALUES FOR A METRIC GRAPH 3

(2) all eigenvalues λ′j that are smaller than λk+ε lie in the union of (λj−ε, λj+ε),
j = 1, . . . , k;

(3) the total multiplicity of the eigenvalues λ′i that lie in (λj − ε, λj + ε), j =
1, . . . , k, equals the multiplicity of λj .

Let δ2 = min{δ, δ1}. Choose (l̃(e)) such that |(l̃(e))−(l(e))| < δ2/2 and the numbers
l̃(e) are rationally independent. If one out of the first k eigenvalues of (Γ, (l̃(e)))
is multiple then, by the Lemma, one can make it split and find a point (l̃′(e)) in a
δ2/4-neighborhood of (l̃(e)) such that the number of different eigenvalues out of the
first k eigenvalues of (Γ, (l̃′(e))) is bigger than it is for (Γ, (l̃(e))). Because the set
of points in R|E| with rationally independent components is dense, one can assume
that the numbers l̃′(e) are rationally independent. If one out of first k eigenvalues
of (Γ, (l̃′(e))) is still multiple, one repeats the procedure, and, after at most k steps,
one gets a point (l′(e)) ∈ Mk that lies in a δ1-neighborhood of (l(e)). We have
proved that the set Mk is open, dense. Therefore, the set M = ∩kMk is residual.

Proof of the Lemma. Let λ be a multiple eigenvalue of (Γ, (l(e))). By Mλ we denote
the corresponding space of eigenfunctions. Fix an edge e0 and consider a family
of metric graphs with l(e0, t) = l(e0) + t; the lengths of all other edges are kept
unchanged. To apply the perturbation theory (e.g., see [Ka],) it is convenient to
reduce the problem to the problem about a family of operators on a fixed metric
graph. To do the job, for small values of |t|, we introduce a family of diffeomor-
phisms f(t) : [0, l(e0)] → [0, l(e0) + t] that depends on t smoothly, and such that

(1) f(0, x) = x;
(2) f(t, x) = x when 0 ≤ x ≤ l(e0)/3;
(3) f(t, x) = x+ t when 2l(e0)/3 ≤ x ≤ l(e0).

Let g(t, x) be the family of inverse diffeomorphisms. We are using this family, rather
than doing a linear rescaling, to keep the Kirchhoff conditions (1.1) unchanged. The
Laplacian on (Γ, (l(e, t))) is unitary equivalent to the operator A(t) on (Γ, (l(e)))
given −d2/dx2 on the edges e 6= e0,

−
(
∂g

∂x
(t, f(t, x))

d

dx

)2

on the edge e0, and boundary conditions (1.1).
The question of whether a multiple eigenvalue λ splits in linear approximation

is equivalent to the question of whether the quadratic form (Ȧφ, φ) is given by a
scalar matrix on Mλ. By a dot we denote the t-derivative evaluated at t = 0. Let
us compute this quadratic form. First, (∂2g/∂x2)(0, x) = 0, so

∂

∂t

[
∂g

∂x
(t, f(t, x))

]
t=0

=
∂2g

∂x∂t
(0, x);

we denote this function by h(x). The function h(x) vanishes when x is close to 0
or to l(e0) because of conditions (2) and (3) on f(t, x). We claim that

(2.1)
∫ l(e0)

0

h(x)dx = −1.
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In fact, if y = g(t, x) and 0 ≤ t ≤ l(e0)/3 then

l(e0)− t =
∫ l(e0)−t

0

dy =
∫ l(e0)

0

∂g(t, x)
∂x

dx.

To get (2.1), one differentiates the last equality in t and sets t = 0. The operator
Ȧ is given by 0 on all edges e 6= e0 and by

−h(x) d
2

dx2
− d

dx
h(x)

d

dx

on e0. Therefore, for φ ∈Mλ,

(2.2) (Ȧφ, φ) =
∫

e0

h(x)[(φ′(x))2 + λφ(x)2]dx.

Here, we have used (1.1), and we have done integration by parts. On e0, the
function φ is of the form

(2.3) φ(x) = C(φ, e0) sin(
√
λx+ s(φ, e0))

where C(φ, e0) ≥ 0 and s(φ, e0) are constants. Then, (2.1) and (2.2) imply

(2.4) (Ȧφ, φ) = −λC(φ, e0)2.

From this point, we assume that dimMλ ≥ 2, and the eigenvalue λ does not
split. This assumption will lead us to a contradiction. The quadratic form (Ȧφ, φ)
is given by a scalar matrix on Mλ, so

(2.5) C(φ, e) = C(ψ, e)

for every edge e ∈ E and for every pair of eigenfunctions φ, ψ ∈ Mλ such that
||φ|| = ||ψ|| = 1. Let C(e) = C(φ, e) where φ ∈Mλ and ||φ|| = 1.

First, we show that

(2.6) C(e) 6= 0, e ∈ E.

In fact, suppose that C(e) = 0. Let v be a vertex incident to e, and let e1 be
another edge that has v as its endpoint. Every normalized eigenfunction φ ∈ Mλ

vanishes at v, so it is of the form ±C(e1) sin(
√
λx) on e1. Let φ(t) be a smooth

one-parameter family of normalized functions from Mλ. All of them are equal to
each other on e1, so φ′(t) = 0 on e1. However, φ′(t) ∈ Mλ. Therefore, C(e1) = 0.
We conclude that if C(e) = 0 then C(e1) = 0 for every edge e1 that is adjacent to
e. Then C(ẽ) = 0 for every edge ẽ ∈ E because the graph is connected. This is
impossible. The contradiction proves (2.6).

Let φ and ψ be two normalized functions from Mλ that are orthogonal to each
other. Consider the family φ(t) = cos tφ + sin tψ. Let v be a vertex. if φ(v) =
ψ(v) = 0 then the functions φ and ψ coincide on every edge e that is incident
to v (see the previous paragraph.) Then, φ − ψ = 0 on e, and C(e) = 0, which
contradicts (2.6). Therefore, for almost all values of t, the function φ(t) does not
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vanish on all vertices. By redefining φ and ψ, one can assume that the function φ
does not vanish on all vertices.

On an edge e

(2.7) φ(t, xe) = C(e) sin(
√
λxe + s(t, e))

(see (2.3).) Therefore,

(2.8) φt(t, xe) = st(t, e)C(e) cos(
√
λxe + s(t, e)), x ∈ e.

The function φt belongs to Mλ, and it is normalized. Its amplitude equals C(e).
We conclude that

(2.9)
ds

dt
(t, e) = ±1,

and, therefore,

(2.10) φ(t, xe) = C(e) sin(
√
λxe + s(e)± t)

Let v be a vertex, and let e be an edge that emanates from v. We differentiate (2.8)
with respect to xe, and set t = 0, xe = 0:

(2.11)
dψ

dxe
(v) = −st(0, e)C(e)

√
λ sin s(0, e) = −st(0, e)

√
λφ(v).

From the last equality, from the fact that φ(v) 6= 0, and from (1.1), we conclude

(2.12)
∑
e�v

st(0, e) = 0.

Equations (2.9) and (2.12) imply that the degree of each vertex is even. The
graph does not have vertices of degree 2, so the degree of each vertex is at least
4. Moreover, it follows from (2.11) that there exist numbers α(v) > 0 such that
(dψ/dxe)(v) = α(v) for half of the edges that emanate from v (we call these edges
v-positive), and (dψ/dxe)(v) = −α(v) for the second half of the edges that emanate
from v (we call this edges v-negative.) Here, the edges are thought to be oriented,
and a loop that emanates from v and terminates at v is counted twice, as e and
−e.

We call two (oriented) edges, e and e′, that emanate from the same vertex
v neighbors if (dψ/dxe)(v) = −(dψ/dxe′)(v). It follows from (2.10) that then
(dφ(t)/dxe)(v) = −(dφ(t)/dxe′)(v) for all values of t. We start from a vertex
v1. Let e1 be an edge emanating from v1. Denote by v2 its terminal vertex. Choose
an edge e2 that emanates from v2 such that e2 and −e1 are neighbors. Continue
the process. We get a sequence of vertices vj and a sequence of edges ej connecting
vj with vj+1 such that ej+1 is a neighbor of −ej . At some point, we hit the same
vertex twice. We assume that v1 = vk+1 is the vertex that is repeated the first time;
otherwise, we rename that vertex by v1. All the vertices v1, . . . , vk are different. We
map the union of edges ej , j = 1, . . . , k onto the interval [0, l], l = l(e1)+ · · ·+ l(ek),
by the formula

(2.13) xej
7→ l(e1) + · · ·+ l(ej−1) + xej

.
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By φ(t, y) we denote the function φ(t) on Γ, transplanted to [0, l] according to
(2.13). The function φ(t, y) is continuous, it is differentiable because the adjacent
edges are neighbors, and it satisfies the differential equation φyy + λφ = 0. On the
interval [0, l(e1)] it is given by (2.10), with xe1 replaced by y. Therefore,

φ(t, y) = C(e1) sin(
√
λy + s(e1)± t).

The endpoints of the interval [0, l] correspond to the same point v1 on Γ, so φ(t, 0) =
φ(t, l), and

sin(s(e1)± t) = sin(l
√
λ+ s(e1)± t)

for all values of t. Hence,
l
√
λ ∈ 2πZ+,

and

(2.14) l(e1) + · · ·+ l(ek) = 2πλ−1/2p, p ∈ Z+.

Now, we start the same procedure second time from a vertex w1. We use the
same rules to construct a sequence of vertices w1, w2, . . . and a sequence of edges
f1, f2, . . . , with one addition: on each step, an edge should be chosen to be different
from e1, . . . , ek. Because not more than two edges from e1, . . . , ek are adjacent to
each vertex, the degree of each vertex is at least 4, and the number of v-positive
edges equals the number of v-negative edges, the process can be continued all the
way up to a moment when a repetition in the sequence w1, w2, . . . arises. Then, we
get another cycle (f1, · · · , fm) of neighbors, and

(2.15) l(f1) + · · ·+ l(fm) = 2πλ−1/2q, q ∈ Z+.

The edges ej are different from the edges fi, so (2.14) and (2.15) contradict to the
assumption of the lemma that the numbers l(e) are rationally independent. �
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