
Dirichlet kernel, convergence of Fourier series,
and Gibbs phenomenon

In these notes we discuss convergence properties of Fourier series. Let f(x) be a peri-
odic function with the period 2π. This choice for the period makes the annoying factors
π/L disappear in all formulas. The Fourier series for the function f(x) is

a0 +
∞∑

k=0

(ak cos(kx) + bk sin(kx))

where

a0 =
1
2π

∫ π

−π

f(y)dy, ak =
1
π

∫ π

−π

f(y) cos(ky)dy, and bk =
1
π

∫ π

−π

f(y) sin(ky)dy.

One substitutes the values of ak and bk into partial sums of the Fourier series

Sn(x) = a0 +
n∑

k=0

(ak cos(kx) + bk sin(kx))

to get

Sn(x) =
1
2π

∫ π

−π

[
1 + 2

n∑
k=0

(cos(kx) cos(ky) + sin(kx) sin(ky))
]
f(y)dy

=
∫ π

−pi

Dn(x− y)f(y)dy

where

Dn(z) =
1
2π

[
1 + 2

n∑
k=1

cos(kz)
]
. (1)

Here we have used the formulas cos(α − β) = cos α cos β + sinα sinβ. We multiply both
sides of (1) by sin(z/2) and use the formula 2 sinα cos β = sin(α + β) + sin(α− β):

sin
(

z

2

)
Dn(z) =

1
2π

{
sin

(
z

2

)
+

n∑
k=1

[
sin

((
k +

1
2

)
z

)
− sin

((
k − 1

2

)
z

)]}
.

One regongizes a telescopic sum on the right in the last formula; all terms except of

sin
((

n +
1
2

)
z

)
cancel. Therefore,

Dn(z) =
sin

((
n + 1

2

)
z
)

2π sin
(

z
2

) . (2)
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The function Dn(z) is called the Dirichlet kernel; partial sums of the Fourier series are
given by the formula

Sn(x) =
∫ π

−π

Dn(x− y)f(y)dy. (3)

Formula (2) is actually instrumental for the proof of the Fourier theorem. I will sketch the
proof.
First, formula (1) implies ∫ π

−π

Dn(z)dz = 1. (4)

Suppose that a function f(x) is piecewise smooth. We use (4) to write

Sn(x)− f(x) =
∫ π

−π

Dn(x− y)[f(y)− f(x)]dy. (5)

Indeed, ∫ π

−π

Dn(x− y)f(x)dy = f(x)
∫ π

−π

Dn(x− y)dy = f(x).

Here we used the fact that Dn is a 2π-periodic function. If the function f is differentiable
at the point x then the function

g(y) =
f(y)− f(x)

x− y

is piecewise continuous on the interval [−π, π], and so is the function

h(y) =
f(y)− f(x)
2π sin

(
x−y

2

) .

Then
Sn(x)− f(x) =

∫ π

−π

sin
((

n +
1
2
)
(x− y)

)
h(y)dy.

One can prove that the last integrals approach 0 as n →∞. The reason is that, as n gets
larger, the sin function becomes more and more oscillating, and the contributions to the
integral from the intervals where it is positive and contributions from the intervals where
it is negative almost cancel.

In the case when the function f has a jump at the point x, one can use∫ π

0

Dn(z)dz =
∫ 0

−π

Dn(z)dz =
1
2

(6)

and 2π-periodicity of the functin Dn to write

Sn(x)− f(x+) + f(x−)
2

=
1
2

∫ x

x−π

Dn(x− y)[f(y)− f(x−)]dy

+
1
2

∫ x+π

x

Dn(x− y)[f(y)− f(x+)]dy.
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After that, the argument is similar to the argument in the case when x is a point of
differentiability of the function f .

Let us now study the partial sum of the Fourier series for the step function h(x); it
equals 1 when 0 < x < π and it equals 0 when −π < x < 0; then it extended to be
2π-periodic. let x be a small positive number. Then

Sn(x) =
∫ π

0

Dn(x− y)dy =
∫ x

x−π

Dn(z)dz.

We use (6) to write

Sn(x) =
1
2

+
∫ x

0

Dn(z)dz −
∫ −π+x

−π

Dn(z)dz. (7)

Let us fix a number ξ > 0, and take a sequence of points xn = ξ/(n+(1/2)). We notice that
Dn(−π) = (−1)n/(2π), so, for small values of x, |Dn(z)| < (1/2) when −π ≤ z ≤ −π + x.
Therefore ∣∣∣∣ ∫ −π+xn

−π

Dn(z)dz

∣∣∣∣ ≤ xn

2
<

ξ

2n
. (8)

Let

D̃n(z) =
sin

((
n + 1

2

)
z
)

πz
.

One checks that the function
1

sin
(

z
2

) − 2
z

is continuous and differentiable at the point 0; moreover, it vanishes at the point 0. There-
fore, for small values of x, |Dn(z)− D̃n(z)| < (1/2) when 0 ≤ z ≤ x, and∣∣∣∣ ∫ xn

0

Dn(z)dz −
∫ xn

0

D̃n(z)dz

∣∣∣∣ <
xn

2
<

ξ

2n
. (9)

In the integral of D̃n(z), we make a substitution w = (n + (1/2))z:∫ xn

0

D̃n(z)dz =
∫ ξ

0

sinw

πw
dw =

Si(ξ)
π

(10)

where

Si(ξ) =
∫ ξ

0

sinw

w
dw

is called the Integral Sine function. Its maximal value is assumed when ξ = π, and
Si(π) ≈ 1.85194. It follows from (7)–(10) that if one takes a sequence of numbers

xn =
2π

2n + 1
then

lim
n→∞

Sn(xn) =
1
2

+
Si(ξ)

π
≈ 1.08949.

We see that, at the points xn that are closer and closer to 0 as n → ∞, the partial sums
of the Fourier series overshoot the maximal value of h(x) by about 9 percent. It turns out
that this is always the case when a function has a jump. This is what is called the Gibbs
phenomenon.
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