BANACH-TARSKI THEOREM

The Banach-Tarski Theorem says that one can divide a ball in the three-dimensional Euclidean space into a finite number of pieces that can be re-arranged to make two balls of the same radius. In particular, it shows that one can not constuct a non-trivial finitely additive translationally invariant measure in \mathbb{R}^{3}. The proof that I give in these notes is an adaptation of the proof from [1]. The book [1] contains a lot of interesting things that are related to the Banach-Tarski Theorem, and it also contains some fun stuff. Let me give one example. Take several copies of a regular tetrahedron of, say, side 1. Put them in a sequence in such a way that two consecutive tetrahedra share exactly one face and every tetrahedron is different from its predecessor's predecessor; you will get a snake. Question: Is it possible to make a snake in such a way that the last tetrahedron is a translation of the first one? This problem was posed by Steinhaus. You can try to find a solution (this is rather difficult a problem.) Then you may look at Theorem 5.10 in [1] (you do not have to read the rest of the book to understand the proof.)

First, we have to say what the words "can be re-arranged" mean exactly. A mapping $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called an isometry if $|G(x)-G(y)|=|x-y|$ for any choice of $x, y \in \mathbb{R}^{n}$. In words, G is an isometry if it preserves distances between points. Let us give examples of isometries.
Example 1. Let $b \in \mathbb{R}^{n}$ be a fixed vector, and let $G(x)=x+b$ be a translation by the vector b. Obviously, it is an isometry.
Example 2. Let A be an $n \times n$-matrix, and let $G(x)=A x$ be the corresponding linear transformation of \mathbb{R}^{n}. It is an isometry if and only if A is an orthogonal matrix, i.e. $A^{T} A=I$ where A^{T} is the transposed of A. The set of all orthogonal matrices is denoted by $O(n)$. An example of an orthogonal transformation in \mathbb{R}^{3} is a rotation about an axis passing through the origin. Another example is a reflection about a plane passing through the origin.
One can combine examples 1 and 2: any mapping

$$
\begin{equation*}
G(x)=A x+b, \quad A \in O(n), b \in \mathbb{R}^{3} \tag{1}
\end{equation*}
$$

is an isometry. The following problem says that these are all isometries.
Problem 1. Prove that every isometry in \mathbb{R}^{n} is given by formula (1).
Hint. First, reduce the problem to the case when $G(0)=0$. If $G(0)=0$ then prove that G is a linear mapping: $G(c x)=c G(x), G(x+y)=G(x)+G(y)$ where $x, y \in \mathbb{R}^{n}, c \in \mathbb{R}$.
Isometries of \mathbb{R}^{n} are also called rigid motions, and the set of all rigid motions is usually denoted by $E(n)$. Rigid motions form a group. Let $G_{j}(x)=A_{j} x+b_{j}$, $j=1,2$. Then $G_{1} G_{2}(x)=A_{1} A_{2} x+A_{1} b_{2}+b_{1}$. The determinant of an orthogonal matrix equals either 1 or -1 . The set of all orthogonal matrices, the determinant of which equals 1 , form a subgroup of $O(n)$; this subgroup is denoted by $S O(n)$. Rigid motions (1) with $\operatorname{det} A=1$ are called directed rigid motions, and they form
a subgroup in $E(n)$; this subgroup is denoted by $E^{+}(n)$.
Problem 2. Let $A \in S O(3)$.
a) Show that $G(x)=A x$ is a rotation about a line in \mathbb{R}^{3} that passes through the origin.
b) Show that either the set of fixed points of $G(x)$ on the unit sphere, $\left\{x \in \mathbb{R}^{3}\right.$: $|x|=1, A x=x\}$, consists of exactly two points or $A=I$.
Now, I am ready to formulate the Banach-Tarski Theorem exactly. Recall that a collection of subsets S_{α} of a set S is called a partition of S if $\cup S_{\alpha}=S$ and $S_{\alpha} \cap S_{\beta}=\emptyset$ when $\alpha \neq \beta$.
Definition 1. Let S be a set in \mathbb{R}^{n}. We will say that it has doubling property if there exist numbers $k<m$, a finite partition $\left\{S_{1}, \ldots, S_{m}\right\}$ of S, and rigid motions $G_{j}(x)=A_{j} x+b_{j}, A_{j} \in S O(n), b_{j} \in \mathbb{R}^{n}$, such that $\left\{G_{1}\left(S_{1}\right), \ldots G_{k}\left(S_{k}\right)\right\}$ is a partition of S and $\left\{G_{k+1}\left(S_{k+1}\right), \ldots, G_{m}\left(S_{m}\right)\right\}$ is also a partition of S.

Let S be a bounded set that has doubling property, and let $b \in \mathbb{R}^{n}$ be a vector such that $|b|$ is bigger than the diameter of S. Let

$$
\tilde{G}_{j}(x)= \begin{cases}G_{j}(x), & \text { if } j \leq k \\ G_{j}(x)+b, & \text { if } j>k\end{cases}
$$

Then the sets $\tilde{G}_{j}\left(S_{j}\right), 1 \leq j \leq m$ form a partition of the union of two nonintersecting sets; one of them is S, and another one is a translation of S. One can say that the set S can be subdivided into a finite number of pieces that can be re-arranged to make two copies of S.

Theorem (Banach-Tarski). The unit ball in \mathbb{R}^{3}, $B=\left\{x \in \mathbb{R}^{3}:|x| \leq 1\right\}$ has doubling property.

The proof of the Banach-Tarski Theorem is based on elementary group theory. A free group of rank k consists of the unity e and the collection of finite words using letters $\sigma_{1}, \ldots, \sigma_{k}, \sigma_{1}^{-1}, \ldots, \sigma_{k}^{-1}$, with the only cancellation rules $\sigma_{j} \sigma_{j}^{-1}=\sigma_{j}^{-1} \sigma_{j}=$ e. The product of two words w_{1} and w_{2} is their concatination; the word w_{2} is placed on the right. A word that does not contain combinations $\sigma_{j} \sigma_{j}^{-1}$ or $\sigma_{j}^{-1} \sigma_{j}$ is called a reduced word. Every element of F_{k} has a unique representation as a reduced word. The first ingredient of the proof is given by the following proposition
Proposition 1. The group $S O(3)$ contains a subgroup that is isomorphic to F_{2}.
Proof. Let σ and τ be counterclockwise rotation through the angle $\arccos (1 / 3)$ around the z-axis and x-axis, respectively. Then

$$
\sigma^{ \pm 1}=\left(\begin{array}{ccc}
\frac{1}{3} & \mp \frac{2 \sqrt{2}}{3} & 0 \tag{2}\\
\pm \frac{2 \sqrt{2}}{3} & \frac{1}{3} & 0 \\
0 & 0 & 1
\end{array}\right), \quad \tau^{ \pm 1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{3} & \mp \frac{2 \sqrt{2}}{3} \\
0 & \pm \frac{2 \sqrt{2}}{3} & \frac{1}{3}
\end{array}\right)
$$

Let F be the subgroup of $S O(3)$ that is generated by σ and τ. Every element of F can be represented by a word

$$
\begin{equation*}
w=\alpha_{k} \cdots \alpha_{1} \tag{3}
\end{equation*}
$$

where $\alpha_{j}=\sigma^{ \pm 1}$ or $\alpha_{j}=\tau^{ \pm 1}$. To show that F is a free group of rank 2 generated by σ and τ one has to check that $w \neq e$ if w is a reduced word of positive length.

Recall that a reduced word is such a word that σ is never adjacent to σ^{-1} and τ is never adjacent to τ^{-1}. Let (3) be a reduced word. Suppose that $\alpha_{1}=\sigma^{ \pm 1}$ (the case $\alpha_{1}=\tau^{ \pm 1}$ is similar.) Let $m \leq k$ and $w_{m}=\alpha_{m} \cdots \alpha_{1}$. I claim that

$$
w_{m}\left(\begin{array}{l}
1 \tag{4}\\
0 \\
0
\end{array}\right)=3^{-m}\left(\begin{array}{c}
a_{m} \\
b_{m} \sqrt{2} \\
c_{m}
\end{array}\right)
$$

where a_{m}, b_{m}, and c_{m} are integer numbers; moreover, b_{m} is not divisible by 3 . We prove (4) by induction. First,

$$
\sigma^{ \pm 1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}
1 \\
\pm 2 \sqrt{2} \\
0
\end{array}\right)
$$

so (4) holds for $m=1$ with $a_{1}=1, b_{1}= \pm 2$, and $c_{1}=0$. Secondly, a simple computation shows that if the representation (4) holds for w_{m} then it also holds for w_{m+1} with

$$
a_{m+1}=a_{m} \mp 4 b_{m}, \quad b_{m+1}= \pm 2 a_{m}+b_{m}, \quad c_{m+1}=3 c_{m}
$$

if $\alpha_{m+1}=\sigma^{ \pm 1}$ or

$$
a_{m+1}=3 a_{m}, \quad b_{m+1}=b_{m} \mp 2 c_{m}, \quad c_{m+1}= \pm 4 b_{m}+c_{m}
$$

if $\alpha_{m+1}=\tau^{ \pm 1}$. To show that b_{k} is not divisible by 3 we will reduce integers a_{j}, b_{j}, and $c_{j} \bmod 3$. Introduce vectors $x_{m}=\left(a_{m}, b_{m}, c_{m}\right)^{T}(\bmod 3)$. Then

$$
x_{m+1}=\left(\begin{array}{ccc}
1 & \mp 1 & 0 \\
\mp 1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) x_{m}=A_{ \pm} x_{m}, \quad \text { if } \quad \alpha_{m+1}=\sigma^{ \pm 1}
$$

or

$$
x_{m+1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & \pm 1 \\
0 & \pm 1 & 1
\end{array}\right) x_{m}=B_{ \pm} x_{m}, \quad \text { if } \quad \alpha_{m+1}=\tau^{ \pm 1}
$$

The word w can be represented as

$$
w=\tau^{p_{l}} \sigma^{p_{l-1}} \tau^{p_{l-2}} \cdots \sigma^{p_{1}}
$$

where p_{j} are integer numbers and $p_{j} \neq 0$ if $j \leq l-1$. Then

$$
x_{k}=B_{ \pm}^{\left|p_{p_{l}}\right|} A_{ \pm}^{\left|p_{l-1}\right|} \cdots A_{ \pm}^{\left|p_{1}\right|}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

Notice that matrices $A_{ \pm}$and $B_{ \pm}$have rank 1 and their non-zero eigenvalue equals $2=-1(\bmod 3)$. Therefore

$$
A_{ \pm}^{n}=(-1)^{n} A_{ \pm} \quad(\bmod 3) \quad \text { and } \quad B_{ \pm}^{n}=(-1)^{n} B_{ \pm} \quad(\bmod 3) ;
$$

here n is a positive, integer number. We conclude that

$$
x_{k}=(-1)^{k} B_{ \pm} A_{ \pm} \cdots B_{ \pm} A_{ \pm}\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right) \quad \text { or } \quad x_{k}=(-1)^{k} A_{ \pm} B_{ \pm} \cdots B_{ \pm} A_{ \pm}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

I claim that

$$
A_{ \pm} B_{ \pm} \cdots B_{ \pm} A_{ \pm}\left(\begin{array}{l}
1 \tag{5}\\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
0
\end{array}\right)
$$

and

$$
B_{ \pm} A_{ \pm} \cdots B_{ \pm} A_{ \pm}\left(\begin{array}{l}
1 \tag{6}\\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
b \\
c
\end{array}\right)
$$

where $b \neq 0$. This fact can be proved by induction in the length of the word. Firstly,

$$
A \pm\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
\mp 1 \\
0
\end{array}\right)
$$

If (5) holds, and one applies $B_{ \pm}$to both sides of (5) then one gets

$$
B_{ \pm} \cdots A_{ \pm}\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right)=B_{ \pm}\left(\begin{array}{c}
a \\
b \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
b \\
\pm b
\end{array}\right)
$$

If (6) holds, and one applies $A_{ \pm}$to both sides of (6) then one gets

$$
A_{ \pm} \cdots A_{ \pm}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=A_{ \pm}\left(\begin{array}{l}
0 \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
\mp b \\
b \\
0
\end{array}\right)
$$

Actually, the value of the second component of the vector $(a, b, c)^{T}$ does not change, so $b_{k}= \pm(-1)^{k}(\bmod 3)$. In particular,

$$
w\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \neq\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

and, therefore, $w \neq I$.

The next Proposition says, roughly speaking, that one can partition a free group of rank 2 in four pieces that can be rearranged to make two groups of the same size. To formulate the Proposition, let me introduce some notations. For a subset S of a group Γ and for $x \in \Gamma$, we write $x S=\{x y: y \in S\}$.

Proposition 2. There exists a partition $\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ of a free group F_{2} generated by σ and τ such that $\tau G_{2}=F_{2} \backslash G_{1}$ and $\sigma G_{4}=F_{2} \backslash G_{3}$.

Proposition 2 implies $F_{2}=G_{1} \cup \tau G_{2}=G_{3} \cup \sigma G_{4}$; in other words, the group F_{2} can be obtained by rearranging G_{1} and G_{2}, and it can be also obtained by rearranging G_{3} and G_{4}.
Proof. Let w be any reduced word written in the alphabet $\sigma^{ \pm 1}, \tau^{ \pm 1}$. By $W(w)$ we denote the set of all reduced words that start with w (on the left.) Define

$$
\begin{aligned}
G_{1}=W(\tau), & G_{2}=W\left(\tau^{-1}\right), \\
G_{3}=W(\sigma) \cup\left\{e, \sigma^{-1}, \sigma^{-2}, \ldots\right\}, & G_{4}=W\left(\sigma^{-1}\right) \backslash \cup_{k=1}^{\infty} \sigma^{-k}
\end{aligned}
$$

One has $W\left(\tau^{-1}\right)=\left\{\tau^{-1} w\right\}$ where w is any word that does not start with the letter τ (in particular, it can be e.) In other words, $G_{2}=W\left(\tau^{-1}\right)=\tau^{-1}\left(F_{2} \backslash G_{1}\right)$. Therefore, $\tau G_{2}=F_{2} \backslash G_{1}$. Similarly, $\sigma W\left(\sigma^{-1}\right)=F_{2} \backslash W(\sigma)$. Therefore,

$$
\sigma G_{4}=\sigma\left(W\left(\sigma^{-1}\right) \backslash\left\{e, \sigma^{-1}, \sigma^{-2}, \ldots\right\}\right)=F_{2} \backslash\left(W(\sigma) \cup \cup_{k=1}^{\infty} \sigma^{-k}\right)=F_{2} \backslash G_{3} .
$$

Now, I will briefly discuss group actions. Let Γ be a group, and let X be an arbitrary set. A Γ-action on X is a correspondence $\Gamma \ni \gamma \mapsto T_{\gamma}$ where $T_{\gamma}: X \rightarrow X$ is a mapping of X into itself such that $T_{\gamma_{1} \gamma_{2}}(x)=T_{\gamma_{1}}\left(T_{\gamma_{2}}(x)\right)$ for every $\gamma_{1}, \gamma_{2} \in \Gamma$ and $x \in X$ and T_{e} is the identity mapping.
Remark. Actually, the above definition is the definition of a right action. In the literature, you may (and will) see the definition with $T_{\gamma_{1} \gamma_{2}}(x)=T_{\gamma_{2}}\left(T_{\gamma_{1}}(x)\right)$; that will be the definition of a left action.

It follows from the definition that all the maps T_{γ} are bijections ($T_{\gamma^{-1}}$ is both the left inverse and the right inverse to T_{γ}.) I will use the common convension to drop the letter T and to write γx for $T_{\gamma} x$. Let $x \in X$. Then the orbit of the point x is the set $O(x)=\{\gamma x: \gamma \in \Gamma\}$.
Problem 3. a) Prove that $O(x)=O(y)$ if and only if $y \in O(x)$.
b) Let $\Gamma=S O(3)$ and $X=\mathbb{R}^{3}$. The action of Γ on X is given by applying a matrix to a vector. Describe geometrically all orbits of this action.
c) The same question as b), with $S O(3)$ replaced by $G L(3)$, the group of all realvalued 3×3-matrices, the determinant of which is different from 0 .
You can see from Problem 3(b,c) that different orbits may look differently. However, in some cases all the orbits look the same. An action of Γ on X is called a free action if $\gamma x \neq x$ whenever $\gamma \neq e$ and $x \in X$.

Fact. Every orbit of a free action of a group Γ on a set X is in a one-to-one correspondence with the group Γ.

In fact, let $O(x)$ be an orbit of the action. One can define a mapping $\Gamma \rightarrow O(x)$ by $\gamma \mapsto \gamma x$. This mapping is surjective by the definition of an orbit. It is injective because $\gamma_{1} x=\gamma_{2} x$ implies $\gamma_{2}^{-1} \gamma_{1} x=x$, and, therefore, $\gamma_{2}^{-1} \gamma_{1}=e$ (the action is free.) This correspondence $\Gamma \rightarrow O(x)$ is not canonical: it depends upon the choice of a point in the orbit.

The unit sphere $S=\left\{x \in \mathbb{R}^{3}:|x|=1\right\}$ is an orbit of the $S O(3)$-action (see Problem 3(b).) In Proposition 1, we constructed a subgroup F of $S O(3)$ that is isomorphic to F_{2}; this group is generated by rotations σ and τ (see (2).) The subgroup F acts on S. The following proposition is a version of a theorem that is due to Hausdorff.

Proposition 3. There exist a countable set $D \subset S$ and a partition $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ of $S \backslash D$ such that $\tau A_{2}=A_{2} \cup A_{3} \cup A_{4}$ and $\sigma A_{4}=A_{1} \cup A_{2} \cup A_{4}$ where σ and τ are given by (2).

The statement of Proposition 3 is already rather close to the statement of the Banach-Tarski Theorem. It deals with a sphere, not a ball. It says that one can throw away a countable set from a sphere (and a countable set is a tiny subset!) in such a way that the difference, $S \backslash D$ can be partitioned in four pieced. Moreover, $S \backslash D=A_{1} \cup \tau A_{2}=A_{3} \cup \sigma A_{4}$. Keep in mind that both σ and τ are rigid motions. In particular, $S \backslash D$ has doubling property.
Proof. The group F is countable: there exists only a finite number of words of fixed length, so the set of all words of finite length is countable. Each rotation $\gamma \in F$ that is different from the identity has exactly two fixed points on S (Problem 2(b).) Let us collect all these fixed points together to form a set $Y \subset S$. The set Y is countable. Let $D=\cup_{y \in Y} O(y)$ where $O(y)$ is the orbit of the F-action on S. The cardinality of $O(y)$ can not exceed the cardinality of F (which is countable.) Therefore the set D is countable. The set $X=S \backslash D$ is invariant under the action of F. Moreover, the action of F on X is free. Let O be the set of all orbits of the F-action on X. For every orbit $o \in O$, we pick a pont $x_{o} \in O$ (here the axiom of choice is used in a significant way!) This choice gives rise to a mapping $F_{o}: F \rightarrow o$: $F_{o}(\gamma)=\gamma x_{o}$. Let $\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ be the partition of $F \equiv F_{2}$ that was constructed in Proposition 2. One sets $A_{j}=\cup_{o \in O} F_{o}\left(G_{j}\right)$.

It is useful to introduce the following definition.
Definition 2. Two sets S and \tilde{S} in \mathbb{R}^{n} will be called equidecomposable if there exists a partition $\left\{M_{1}, \ldots, M_{p}\right\}$ of S, a partition $\left\{\tilde{M}_{1}, \ldots, \tilde{M}_{p}\right\}$ of \tilde{S}, and rigid motions $H_{j}(x)=A_{j} x+b_{j}, A_{j} \in S O(n), b_{j} \in \mathbb{R}^{n}, j=1, \ldots, p$, such that $\tilde{M}_{j}=$ $H_{j}\left(M_{j}\right)$.
Proposition 4.. Let S and \tilde{S} be equidecomposable sets in \mathbb{R}^{n}. Suppose that S has doubling property. Then \tilde{S} also has doubling property.

Proof. In the proof, I will use notations from Definitions 1 and 2 . Let $i, j=1, \ldots, p$ and $l=1, \ldots m$. Let

$$
\tilde{S}_{i j l}=\left\{x \in \tilde{M}_{j}: H_{j}^{-1}(x) \in S_{l}, G_{l} H_{j}^{-1}(x) \in M_{i}\right\} .
$$

The sets $\tilde{S}_{i j l}$ form a partition of \tilde{S}. Let $\tilde{G}_{i j l}=H_{i} G_{l} H_{j}^{-1}$. I claim that

$$
\begin{equation*}
\left\{\tilde{G}_{i j l}\left(\tilde{S}_{i j l}\right), 1 \leq i, j \leq p, 1 \leq l \leq m\right\} \tag{7}
\end{equation*}
$$

is a partition of \tilde{S} and

$$
\begin{equation*}
\left\{\tilde{G}_{i j l}\left(\tilde{S}_{i j l}\right), 1 \leq i, j \leq p, m+1 \leq l \leq k\right\} \tag{8}
\end{equation*}
$$

is also a partition of \tilde{S}. Let us deal with the sets (7). The fact that they are mutually disjoint is left as an exercise. Let us combine the maps H_{j} into one map $H: S \rightarrow \tilde{S}: H(x)=H_{j}(x)$ when $x \in M_{j}$. Then

$$
\cup_{j=1}^{p} H_{j}^{-1}\left(\tilde{S}_{i j l}\right)=\left\{x \in S_{l}: G_{l}(x) \in M_{i}\right\} .
$$

The sets $\left\{G_{l}\left(S_{l}\right), 1 \leq l \leq k\right\}$ form a partition of S, so

$$
\cup_{l=1}^{k} \cup_{j=1}^{p} G_{l} H_{j}^{-1}\left(\tilde{S}_{i j l}\right)=M_{i}
$$

and

$$
\cup_{i=1}^{p} \cup_{l=1}^{k} \cup_{j=1}^{p} H_{i} G_{l} H_{j}^{-1}\left(\tilde{S}_{i j l}\right)=\tilde{S}
$$

Remark. Notice that if all maps G_{l} in Definition 1 and all maps H_{j} in definition 2 are linear (all the b 's vanish) then the maps $\tilde{G}_{i j l}$ are also linear.

Proposition 3 tells us that the unit sphere, with a countable set D removed has doubling property. The next proposition implies that the unit sphere itself has doubling property.
Proposition 5. Let D be a countable subset of the unit sphere S in \mathbb{R}^{3}. Then S and $S \backslash D$ are equidecomposable.

Proof. Choose a line that passes through the origin, and that intesects S in the points that do not belong to D. By ρ_{θ} I denote the counterclockwise rotation throught the angle θ around this line. For a given point $x \in D$ and given $n>0$ the set $S_{n, x}=\left\{\theta: \rho_{n \theta}(x) \in D\right\}$ is countable. Then the set

$$
S=\cup_{x \in D} \cup_{n=1}^{\infty} S_{n, x}
$$

is countable. Let $\theta \notin S$, and let $\rho=\rho_{\theta}$. Then $\rho^{n}(D) \cap D=\emptyset$ for every positive, integer n. Therefore $\rho^{m}(D) \cap \rho^{n}(D)=\emptyset$ if $m \neq n\left(\rho^{m}(D) \cap \rho^{n}(D)=\rho^{m}(D \cap\right.$ $\left.\rho^{n-m}(D)\right)$ if $m<n$.) Let

$$
\bar{D}=D \cup \rho(D) \cup \rho^{2}(D) \cup \cdots .
$$

Clearly, $\rho(\bar{D})=\bar{D} \backslash D$ and

$$
S \backslash D=(S \backslash \bar{D}) \cup \rho(\bar{D})
$$

On the other hand,

$$
S=(S \backslash \bar{D}) \cup \bar{D}
$$

Corrolary. The unit ball in \mathbb{R}^{3} with the center removed, $B^{\prime}=\left\{x \in \mathbb{R}^{3}: 0<|x| \leq\right.$ 1\} has doubling property.

Proposition 5 tells us that there exist a partition $\left\{S_{j}, 1 \leq j \leq m\right\}$ of the unit sphere and rigid motions G_{j} such that $\left\{G_{j}\left(S_{j}\right), 1 \leq j \leq k\right\}$ form a partition of S and $\left\{G_{j}\left(S_{j}\right), k+1 \leq j \leq m\right\}$ also form a partition of S. Here $k<m$. It follows from the remark after the proof of Proposition 4 that one can assume all G_{j} 's to be linear maps, $G_{j}(x)=A_{j} x, A \in S O(3)$. Then one takes

$$
\bar{S}_{j}=\left\{x \in B^{\prime}: \frac{x}{|x|} \in S_{j}\right\}
$$

and $\bar{G}_{j}=G_{j}$.
The following proposition finishes the proof of the Banach-Tarski Theorem.

Proposition 6. The unit ball B in \mathbb{R}^{3} and the set $B^{\prime}=B \backslash\{0\}$ are equidecomposable.
Proof. Let l be the line $x=1 / 2, y=0$ in \mathbb{R}^{3} and let ρ be a counterclockwise rotation around l through an angle θ such that θ / π is an irrational number. Denote the origin $(0,0,0)$ by P. Notice that all the points $\rho^{k}(P)$ are different. Let $M=\left\{\rho^{k}(P), k \geq\right.$ $0\}$, and let $M^{\prime}=\left\{\rho^{k}(P), k>0\right\}=M \backslash\{P\}$. Then

$$
B=(B \backslash M) \cup M \quad \text { and } \quad B^{\prime}=(B \backslash M) \cup M^{\prime}
$$

are decompositions of B and B^{\prime};

$$
\mathrm{id}: B \backslash M \rightarrow B \backslash M \quad \text { and } \quad \rho: M \rightarrow M^{\prime}
$$

are the corresponding rigid motions.

References

1. S. Wagon, The Banach-Tarski Paradox, Cambridge University Press, 1985.
2. K. Stomberg, The Banach-Tarski Paradox, American Mathematical Monthly 86 (1979), 151161.
