
BANACH–TARSKI THEOREM

The Banach-Tarski Theorem says that one can divide a ball in the three-dimen-
sional Euclidean space into a finite number of pieces that can be re-arranged to make
two balls of the same radius. In particular, it shows that one can not constuct a
non-trivial finitely additive translationally invariant measure in R3. The proof that
I give in these notes is an adaptation of the proof from [1]. The book [1] contains
a lot of interesting things that are related to the Banach–Tarski Theorem, and it
also contains some fun stuff. Let me give one example. Take several copies of a
regular tetrahedron of, say, side 1. Put them in a sequence in such a way that two
consecutive tetrahedra share exactly one face and every tetrahedron is different
from its predecessor’s predecessor; you will get a snake. Question: Is it possible to
make a snake in such a way that the last tetrahedron is a translation of the first
one? This problem was posed by Steinhaus. You can try to find a solution (this is
rather difficult a problem.) Then you may look at Theorem 5.10 in [1] (you do not
have to read the rest of the book to understand the proof.)

First, we have to say what the words “can be re-arranged” mean exactly. A
mapping G : Rn → Rn is called an isometry if |G(x)−G(y)| = |x−y| for any choice
of x, y ∈ Rn. In words, G is an isometry if it preserves distances between points.
Let us give examples of isometries.
Example 1. Let b ∈ Rn be a fixed vector, and let G(x) = x + b be a translation
by the vector b. Obviously, it is an isometry.
Example 2. Let A be an n× n-matrix, and let G(x) = Ax be the corresponding
linear transformation of Rn. It is an isometry if and only if A is an orthogonal
matrix, i.e. ATA = I where AT is the transposed of A. The set of all orthogonal
matrices is denoted by O(n). An example of an orthogonal transformation in R3 is
a rotation about an axis passing through the origin. Another example is a reflection
about a plane passing through the origin.
One can combine examples 1 and 2: any mapping

(1) G(x) = Ax+ b, A ∈ O(n), b ∈ R3

is an isometry. The following problem says that these are all isometries.
Problem 1. Prove that every isometry in Rn is given by formula (1).
Hint. First, reduce the problem to the case when G(0) = 0. If G(0) = 0 then
prove that G is a linear mapping: G(cx) = cG(x), G(x+ y) = G(x) +G(y) where
x, y ∈ Rn, c ∈ R.
Isometries of Rn are also called rigid motions, and the set of all rigid motions is
usually denoted by E(n). Rigid motions form a group. Let Gj(x) = Ajx + bj ,
j = 1, 2. Then G1G2(x) = A1A2x+ A1b2 + b1. The determinant of an orthogonal
matrix equals either 1 or −1. The set of all orthogonal matrices, the determinant
of which equals 1, form a subgroup of O(n); this subgroup is denoted by SO(n).
Rigid motions (1) with detA = 1 are called directed rigid motions, and they form
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a subgroup in E(n); this subgroup is denoted by E+(n).
Problem 2. Let A ∈ SO(3).
a) Show that G(x) = Ax is a rotation about a line in R3 that passes through the
origin.
b) Show that either the set of fixed points of G(x) on the unit sphere, {x ∈ R3 :
|x| = 1, Ax = x}, consists of exactly two points or A = I.
Now, I am ready to formulate the Banach–Tarski Theorem exactly. Recall that
a collection of subsets Sα of a set S is called a partition of S if ∪Sα = S and
Sα ∩ Sβ = ∅ when α 6= β.

Definition 1. Let S be a set in Rn. We will say that it has doubling property if
there exist numbers k < m, a finite partition {S1, . . . , Sm} of S, and rigid motions
Gj(x) = Ajx + bj , Aj ∈ SO(n), bj ∈ Rn, such that {G1(S1), . . . Gk(Sk)} is a
partition of S and {Gk+1(Sk+1), . . . , Gm(Sm)} is also a partition of S.

Let S be a bounded set that has doubling property, and let b ∈ Rn be a vector
such that |b| is bigger than the diameter of S. Let

G̃j(x) =
{
Gj(x), if j ≤ k
Gj(x) + b, if j > k.

Then the sets G̃j(Sj), 1 ≤ j ≤ m form a partition of the union of two non-
intersecting sets; one of them is S, and another one is a translation of S. One can
say that the set S can be subdivided into a finite number of pieces that can be
re-arranged to make two copies of S.

Theorem (Banach–Tarski). The unit ball in R3, B = {x ∈ R3 : |x| ≤ 1} has
doubling property.

The proof of the Banach–Tarski Theorem is based on elementary group theory.
A free group of rank k consists of the unity e and the collection of finite words using
letters σ1, . . . , σk, σ

−1
1 , . . . , σ−1

k , with the only cancellation rules σjσ−1
j = σ−1

j σj =
e. The product of two words w1 and w2 is their concatination; the word w2 is placed
on the right. A word that does not contain combinations σjσ−1

j or σ−1
j σj is called a

reduced word. Every element of Fk has a unique representation as a reduced word.
The first ingredient of the proof is given by the following proposition

Proposition 1. The group SO(3) contains a subgroup that is isomorphic to F2.

Proof. Let σ and τ be counterclockwise rotation through the angle arccos(1/3)
around the z-axis and x-axis, respectively. Then

(2) σ±1 =

 1
3 ∓ 2

√
2

3 0
± 2
√

2
3

1
3 0

0 0 1

 , τ±1 =

 1 0 0
0 1

3 ∓ 2
√

2
3

0 ± 2
√

2
3

1
3

 .

Let F be the subgroup of SO(3) that is generated by σ and τ . Every element of F
can be represented by a word

(3) w = αk · · ·α1

where αj = σ±1 or αj = τ±1. To show that F is a free group of rank 2 generated
by σ and τ one has to check that w 6= e if w is a reduced word of positive length.
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Recall that a reduced word is such a word that σ is never adjacent to σ−1 and τ
is never adjacent to τ−1. Let (3) be a reduced word. Suppose that α1 = σ±1 (the
case α1 = τ±1 is similar.) Let m ≤ k and wm = αm · · ·α1. I claim that

(4) wm

 1
0
0

 = 3−m

 am
bm
√

2
cm


where am, bm, and cm are integer numbers; moreover, bm is not divisible by 3. We
prove (4) by induction. First,

σ±1

 1
0
0

 =
1
3

 1
±2
√

2
0

 ,

so (4) holds for m = 1 with a1 = 1, b1 = ±2, and c1 = 0. Secondly, a simple
computation shows that if the representation (4) holds for wm then it also holds
for wm+1 with

am+1 = am ∓ 4bm, bm+1 = ±2am + bm, cm+1 = 3cm

if αm+1 = σ±1 or

am+1 = 3am, bm+1 = bm ∓ 2cm, cm+1 = ±4bm + cm

if αm+1 = τ±1. To show that bk is not divisible by 3 we will reduce integers aj , bj ,
and cj mod 3. Introduce vectors xm = (am, bm, cm)T (mod 3). Then

xm+1 =

 1 ∓1 0
∓1 1 0
0 0 0

xm = A±xm, if αm+1 = σ±1

or

xm+1 =

 0 0 0
0 1 ±1
0 ±1 1

xm = B±xm, if αm+1 = τ±1.

The word w can be represented as

w = τplσpl−1τpl−2 · · ·σp1

where pj are integer numbers and pj 6= 0 if j ≤ l − 1. Then

xk = B
|pl|
± A

|pl−1|
± · · ·A|p1|±

 1
0
0

 .

Notice that matrices A± and B± have rank 1 and their non-zero eigenvalue equals
2 = −1 (mod 3). Therefore

An± = (−1)nA± (mod 3) and Bn± = (−1)nB± (mod 3);
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here n is a positive, integer number. We conclude that

xk = (−1)kB±A± · · ·B±A±

 1
0
0

 or xk = (−1)kA±B± · · ·B±A±

 1
0
0

 .

I claim that

(5) A±B± · · ·B±A±

 1
0
0

 =

 a
b
0


and

(6) B±A± · · ·B±A±

 1
0
0

 =

 0
b
c


where b 6= 0. This fact can be proved by induction in the length of the word.
Firstly,

A±

 1
0
0

 =

 1
∓1
0

 .

If (5) holds, and one applies B± to both sides of (5) then one gets

B± · · ·A±

 1
0
0

 = B±

 a
b
0

 =

 0
b
±b

 .

If (6) holds, and one applies A± to both sides of (6) then one gets

A± · · ·A±

 1
0
0

 = A±

 0
b
c

 =

∓bb
0

 .

Actually, the value of the second component of the vector (a, b, c)T does not change,
so bk = ±(−1)k (mod 3). In particular,

w

 1
0
0

 6=
 1

0
0

 ,

and, therefore, w 6= I.

�
The next Proposition says, roughly speaking, that one can partition a free group

of rank 2 in four pieces that can be rearranged to make two groups of the same
size. To formulate the Proposition, let me introduce some notations. For a subset
S of a group Γ and for x ∈ Γ, we write xS = {xy : y ∈ S}.
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Proposition 2. There exists a partition {G1, G2, G3, G4} of a free group F2 gen-
erated by σ and τ such that τG2 = F2 \G1 and σG4 = F2 \G3.

Proposition 2 implies F2 = G1 ∪ τG2 = G3 ∪ σG4; in other words, the group
F2 can be obtained by rearranging G1 and G2, and it can be also obtained by
rearranging G3 and G4.

Proof. Let w be any reduced word written in the alphabet σ±1, τ±1. By W (w) we
denote the set of all reduced words that start with w (on the left.) Define

G1 = W (τ), G2 = W (τ−1),

G3 = W (σ) ∪ {e, σ−1, σ−2, . . . }, G4 = W (σ−1) \ ∪∞k=1σ
−k.

One has W (τ−1) = {τ−1w} where w is any word that does not start with the
letter τ (in particular, it can be e.) In other words, G2 = W (τ−1) = τ−1(F2 \G1).
Therefore, τG2 = F2 \G1. Similarly, σW (σ−1) = F2 \W (σ). Therefore,

σG4 = σ(W (σ−1) \ {e, σ−1, σ−2, . . . }) = F2 \ (W (σ) ∪ ∪∞k=1σ
−k) = F2 \G3.

�
Now, I will briefly discuss group actions. Let Γ be a group, and let X be an

arbitrary set. A Γ-action on X is a correspondence Γ 3 γ 7→ Tγ where Tγ : X → X
is a mapping of X into itself such that Tγ1γ2(x) = Tγ1(Tγ2(x)) for every γ1, γ2 ∈ Γ
and x ∈ X and Te is the identity mapping.

Remark. Actually, the above definition is the definition of a right action. In the
literature, you may (and will) see the definition with Tγ1γ2(x) = Tγ2(Tγ1(x)); that
will be the definition of a left action.

It follows from the definition that all the maps Tγ are bijections (Tγ−1 is both
the left inverse and the right inverse to Tγ .) I will use the common convension to
drop the letter T and to write γx for Tγx. Let x ∈ X. Then the orbit of the point
x is the set O(x) = {γx : γ ∈ Γ}.
Problem 3. a) Prove that O(x) = O(y) if and only if y ∈ O(x).
b) Let Γ = SO(3) and X = R3. The action of Γ on X is given by applying a matrix
to a vector. Describe geometrically all orbits of this action.
c) The same question as b), with SO(3) replaced by GL(3), the group of all real-
valued 3× 3-matrices, the determinant of which is different from 0.
You can see from Problem 3(b,c) that different orbits may look differently. However,
in some cases all the orbits look the same. An action of Γ on X is called a free
action if γx 6= x whenever γ 6= e and x ∈ X.

Fact. Every orbit of a free action of a group Γ on a set X is in a one-to-one
correspondence with the group Γ.

In fact, let O(x) be an orbit of the action. One can define a mapping Γ→ O(x)
by γ 7→ γx. This mapping is surjective by the definition of an orbit. It is injective
because γ1x = γ2x implies γ−1

2 γ1x = x, and, therefore, γ−1
2 γ1 = e (the action is

free.) This correspondence Γ→ O(x) is not canonical: it depends upon the choice
of a point in the orbit.

The unit sphere S = {x ∈ R3 : |x| = 1} is an orbit of the SO(3)-action (see
Problem 3(b).) In Proposition 1, we constructed a subgroup F of SO(3) that is
isomorphic to F2; this group is generated by rotations σ and τ (see (2).) The
subgroup F acts on S. The following proposition is a version of a theorem that is
due to Hausdorff.
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Proposition 3. There exist a countable set D ⊂ S and a partition {A1, A2, A3, A4}
of S \D such that τA2 = A2 ∪A3 ∪A4 and σA4 = A1 ∪A2 ∪A4 where σ and τ are
given by (2).

The statement of Proposition 3 is already rather close to the statement of the
Banach–Tarski Theorem. It deals with a sphere, not a ball. It says that one can
throw away a countable set from a sphere (and a countable set is a tiny subset!) in
such a way that the difference, S \D can be partitioned in four pieced. Moreover,
S \D = A1 ∪ τA2 = A3 ∪ σA4. Keep in mind that both σ and τ are rigid motions.
In particular, S \D has doubling property.

Proof. The group F is countable: there exists only a finite number of words of fixed
length, so the set of all words of finite length is countable. Each rotation γ ∈ F
that is different from the identity has exactly two fixed points on S (Problem 2(b).)
Let us collect all these fixed points together to form a set Y ⊂ S. The set Y
is countable. Let D = ∪y∈YO(y) where O(y) is the orbit of the F -action on S.
The cardinality of O(y) can not exceed the cardinality of F (which is countable.)
Therefore the set D is countable. The set X = S \D is invariant under the action
of F . Moreover, the action of F on X is free. Let O be the set of all orbits of the
F -action on X. For every orbit o ∈ O, we pick a pont xo ∈ O (here the axiom of
choice is used in a significant way!) This choice gives rise to a mapping Fo : F → o:
Fo(γ) = γxo. Let {G1, G2, G3, G4} be the partition of F ≡ F2 that was constructed
in Proposition 2. One sets Aj = ∪o∈OFo(Gj).

�
It is useful to introduce the following definition.

Definition 2. Two sets S and S̃ in Rn will be called equidecomposable if there
exists a partition {M1, . . . ,Mp} of S, a partition {M̃1, . . . , M̃p} of S̃, and rigid
motions Hj(x) = Ajx + bj , Aj ∈ SO(n), bj ∈ Rn, j = 1, . . . , p, such that M̃j =
Hj(Mj).

Proposition 4.. Let S and S̃ be equidecomposable sets in Rn. Suppose that S has
doubling property. Then S̃ also has doubling property.

Proof. In the proof, I will use notations from Definitions 1 and 2. Let i, j = 1, . . . , p
and l = 1, . . .m. Let

S̃ijl = {x ∈ M̃j : H−1
j (x) ∈ Sl, GlH−1

j (x) ∈Mi}.

The sets S̃ijl form a partition of S̃. Let G̃ijl = HiGlH
−1
j . I claim that

(7) {G̃ijl(S̃ijl), 1 ≤ i, j ≤ p, 1 ≤ l ≤ m}

is a partition of S̃ and

(8) {G̃ijl(S̃ijl), 1 ≤ i, j ≤ p,m+ 1 ≤ l ≤ k}

is also a partition of S̃. Let us deal with the sets (7). The fact that they are
mutually disjoint is left as an exercise. Let us combine the maps Hj into one map
H : S → S̃: H(x) = Hj(x) when x ∈Mj . Then

∪pj=1H
−1
j (S̃ijl) = {x ∈ Sl : Gl(x) ∈Mi}.



BANACH–TARSKI THEOREM 7

The sets {Gl(Sl), 1 ≤ l ≤ k} form a partition of S, so

∪kl=1 ∪
p
j=1 GlH

−1
j (S̃ijl) = Mi,

and
∪pi=1 ∪

k
l=1 ∪

p
j=1HiGlH

−1
j (S̃ijl) = S̃.

�

Remark. Notice that if all maps Gl in Definition 1 and all maps Hj in definition 2
are linear (all the b’s vanish) then the maps G̃ijl are also linear.

Proposition 3 tells us that the unit sphere, with a countable set D removed has
doubling property. The next proposition implies that the unit sphere itself has
doubling property.

Proposition 5. Let D be a countable subset of the unit sphere S in R3. Then S
and S \D are equidecomposable.

Proof. Choose a line that passes through the origin, and that intesects S in the
points that do not belong to D. By ρθ I denote the counterclockwise rotation
throught the angle θ around this line. For a given point x ∈ D and given n > 0 the
set Sn,x = {θ : ρnθ(x) ∈ D} is countable. Then the set

S = ∪x∈D ∪∞n=1 Sn,x

is countable. Let θ 6∈ S, and let ρ = ρθ. Then ρn(D) ∩ D = ∅ for every positive,
integer n. Therefore ρm(D) ∩ ρn(D) = ∅ if m 6= n (ρm(D) ∩ ρn(D) = ρm(D ∩
ρn−m(D)) if m < n.) Let

D̄ = D ∪ ρ(D) ∪ ρ2(D) ∪ · · · .

Clearly, ρ(D̄) = D̄ \D and

S \D = (S \ D̄) ∪ ρ(D̄).

On the other hand,
S = (S \ D̄) ∪ D̄.

�

Corrolary. The unit ball in R3 with the center removed, B′ = {x ∈ R3 : 0 < |x| ≤
1} has doubling property.

Proposition 5 tells us that there exist a partition {Sj , 1 ≤ j ≤ m} of the unit
sphere and rigid motions Gj such that {Gj(Sj), 1 ≤ j ≤ k} form a partition of S
and {Gj(Sj), k + 1 ≤ j ≤ m} also form a partition of S. Here k < m. It follows
from the remark after the proof of Proposition 4 that one can assume all Gj ’s to
be linear maps, Gj(x) = Ajx, A ∈ SO(3). Then one takes

S̄j =
{
x ∈ B′ :

x

|x|
∈ Sj

}
and Ḡj = Gj .

The following proposition finishes the proof of the Banach–Tarski Theorem.
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Proposition 6. The unit ball B in R3 and the set B′ = B \ {0} are equidecom-
posable.

Proof. Let l be the line x = 1/2, y = 0 in R3 and let ρ be a counterclockwise rotation
around l through an angle θ such that θ/π is an irrational number. Denote the origin
(0, 0, 0) by P . Notice that all the points ρk(P ) are different. Let M = {ρk(P ), k ≥
0}, and let M ′ = {ρk(P ), k > 0} = M \ {P}. Then

B = (B \M) ∪M and B′ = (B \M) ∪M ′

are decompositions of B and B′;

id : B \M → B \M and ρ : M →M ′

are the corresponding rigid motions.

�
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