PROBLEM SET 1

Let f(x) be a function that is defined on \mathbb{R}^n . It is called upper semi-continuous at a point x if for every $\epsilon > 0$ there exists $\delta > 0$ such that $f(y) < f(x) + \epsilon$ as long as $|y-x| < \delta$. A function is called upper semi-continuous if it is upper semi-continuous at every point.

Let f(x) and g(x) be upper semi-continuous functions. For each of the following statements, give a proof or a counter-example.

- 1. f(x) + g(x) is upper semi-continuous.
- 2. f(x) g(x) is upper semi-continuous.
- 3. f(x)g(x) is upper semi-continuous.
- 4. The set $\{x : f(x) < 0\}$ is open.
- 5. The set $\{x : f(x) > 0\}$ is open.
- 6. The set $\{x : f(x) \leq 0\}$ is closed.
- 7. The set $\{x : f(x) \ge 0\}$ is closed.
- 8. Let $K \subset \mathbb{R}^n$ be a compact set. Then $\max_{x \in K} f(x)$ exists.
- 9. Let $K \subset \mathbb{R}^n$ be a compact set. Then $\min_{x \in K} f(x)$ exists.

Typeset by \mathcal{AMS} -T_EX