PROBLEM SET 1

Let $f(x)$ be a function that is defined on \mathbb{R}^{n}. It is called upper semi-continuous at a point x if for every $\epsilon>0$ there exists $\delta>0$ such that $f(y)<f(x)+\epsilon$ as long as $|y-x|<\delta$. A function is called upper semi-continuous if it is upper semi-continuous at every point.

Let $f(x)$ and $g(x)$ be upper semi-continuous functions. For each of the following statements, give a proof or a counter-example.

1. $f(x)+g(x)$ is upper semi-continuous.
2. $f(x)-g(x)$ is upper semi-continuous.
3. $f(x) g(x)$ is upper semi-continuous.
4. The set $\{x: f(x)<0\}$ is open.
5. The set $\{x: f(x)>0\}$ is open.
6. The set $\{x: f(x) \leq 0\}$ is closed.
7. The set $\{x: f(x) \geq 0\}$ is closed.
8. Let $K \subset \mathbb{R}^{n}$ be a compact set. Then $\max _{x \in K} f(x)$ exists.
9. Let $K \subset \mathbb{R}^{n}$ be a compact set. Then $\min _{x \in K} f(x)$ exists.
