PROBLEM SET 11

Problem 1

Let M be a compact metric space, and let $0<\alpha<1$ Prove that the set of all continuous functions $f(x)$ on M such that $\|f\| \leq 1$ ans

$$
\sup _{x, y \in M ; x \neq y} \frac{|f(x)-f(y)|}{d(x, y)^{\alpha}} \leq 1
$$

is compact in $C(M)$. Here $\|\cdot\|$ is the norm in $C(M)$ and $d(x, y)$ is the distance between x and y.

Problem 2

Let $K(x, y) \in C([0,1] \times[0,1])$. Prove that the set of all functions $f(x)$ on $[0,1]$ that can be represented as

$$
f(x)=\int_{0}^{1} K(x, y) u(y) d y
$$

with $u(x) \in L^{1}([0,1])$ and

$$
\int_{0}^{1}|u(x)| d x \leq 1
$$

is precompact in $C([0,1])$.

Problem 3

Let $f_{n}(z)$ be a sequence of holomorphic functions in the unit disc $\{z:|z|<1\}$, and $\left|f_{n}(z)\right| \leq 1$ for all n and for all $z,|z|<1$.
a) Prove that one can find a subsequence that converges uniformly in $\{z:|z| \leq 1 / 2\}$.
b) Prove that one can find a subsequence that converges pointwise to a holomorphic function in the whole unit disc.

Problem 4

Let M and N be compact metric spaces. Prove that finite linear combinations of functions of the type $f(x) g(y)$ with $f \in C(M)$ and $g \in C(N)$ are dense in $C(M \times N)$.

Problem 5

Prove that finite linear combinations of the functions $\sin (k x)$ with positive, integer k are dense in $C([\epsilon, \pi-\epsilon])$ for every $\epsilon>0$. Are they dense in $C([0, \pi])$?

Problem 6

Let M be a compact metric space, and let \mathcal{A} be a unital subalgebra od $C(M)$. One does not assume that it separates points. We say that two points $x, y \in M$ are equivalent, $x \sim y$, if $f(x)=f(y)$ for every $f \in \mathcal{A}$. Prove that the closure of \mathcal{A} in $C(M)$ is the set of all continuous functions such that $f(x)=f(y)$ for $x \sim y$. Hint. For each $x \in M$ define $F_{x}=\{y \in M: x \sim y\}$. Show that the sets F_{x} are closed, define a metric space the elements of which are these sets F_{x}, and prove that it is compact.

