PROBLEM SET 4

Problem 1

Let $f_n(x)$ be a sequence of measurable (extended) functions on \mathbb{R}^n . Prove that the set of all points where $\lim_{n\to\infty} f(x)$ exists is measurable.

PROBLEM 2 (COURTESY OF SHELDON AXLER)

Let f(x) be a finite function on \mathbb{R} . Suppose that the derivative, f'(x), exists at every point. Prove that the function f'(x) is measurable.

Problem 3

Let $p : \mathbb{R}^2 \to \mathbb{R}$ be the projection onto the *x*-axis, p((x, y)) = x. a) Prove that if $X \subset \mathbb{R}$ is a set of measure 0 then $p^{-1}(X)$ is a set of measure 0.

b) Prove that if a set $E \subset \mathbb{R}$ is Lesbegue measurable then $p^{-1}(E)$ is Lesbegue measurable.

c) Is it true that p(Y) is Lesbegue measurable for every Lesbegue measurable set $Y \subset \mathbb{R}^2$? Prove or give a counter-example.

Exercises 28, 29. p.44.