FINAL EXAM FOR MATH 527B

Problem 1

Let (X, \mathcal{B}) be a measurable space, and let $\{f_n(x)\}$ be a sequence of measurable functions on X. Prove that the set of all x for which $\lim_{n\to\infty} f_n(x)$ exists is a measurable set.

Problem 2

Let (X, \mathcal{B}, μ) be a measure space. One says that a sequence of measurable functions $\{f_n(x)\}$ converges to a function f(x) in measure if

$$\lim_{n \to \infty} \mu\{x : |f_n(x) - f(x)| > \epsilon\} = 0$$

for every $\epsilon > 0$. Assume that $\mu(X) < \infty$. Prove that a sequence $\{f_n(x)\}$ converges to f(x) in measure if and only if

$$\lim_{n \to \infty} \int_X \frac{|f_n(x) - f(x)|}{1 + |f_n(x) - f(x)|} d\mu = 0.$$
PROBLEM 3

Find the limit

 $\lim_{n \to \infty} \int_0^\infty \frac{n \sin(x/n)}{x(1+x^2)} dx.$

Justify all steps.

Problem 4

Find all values of $\alpha > 0$ for which the Lesbegue integral

$$\int_{[0,1]\times[0,1]} \frac{x^2 - y^2}{(x^2 + y^2)^{\alpha}} dm$$

exists? Here m is the Lesbegue measure. Justify your answer.

Problem 5

Let $0 < \alpha \leq 1$. A function f(x) is called Hölder continuous of order α if there exists a constant C such that

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$

for all values x and y. Let f(x) be a Hölder continuous function of order α defined on [0, 1], and let

$$\Gamma_f = \{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 1, y = f(x) \}$$

be the graph of f(x). Prove that the Hausdorff dimension of Γ_f does not exceed $2 - \alpha$.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$