Math. 527A
First homework assignment

1) Exercises $1.0 .10,1.0 .11,1.1 .8,1.1 .10,1.1 .12,1.1 .13,1.1 .23,1.1 .25,1.1 .26,1.1 .38,1.1 .49$, 1.1.51, 1.1.52, 1.1.56, 1.1.58, 1.1.59, 1.3.26, 1.3.27, 1.3.29, 1.3.37 from the notes.
2) For two bounded, closed subsets, A and B, of R^{n}, the Hausdorff distance between them is defined by the formula

$$
d_{H}(A, B)=\max \left\{d_{0}(A, B), d_{0}(B, A)\right\}
$$

where

$$
d_{0}(A, B)=\max _{x \in A} \min _{y \in B}\|x-y\|_{2} .
$$

Prove that d_{H} is a distance (satisfies all axioms of the distance).
3) Let (M, d) be a metric space, and let $f(t)$ be a function of one real variable that is strictly increasing, concave down, and $f(0)=0$. Set $d^{\prime}(x, y)=f(d(x, y)) . \quad x, y \in M$. Prove that $\left(M, d^{\prime}\right)$ is also a metric space.

