Math. 527A
Second homework assignment

1. Let

$$
c_{n, k}=\frac{1}{(k+1)^{\alpha}+(n+1)^{\beta}}, \quad k, n \geq 0
$$

be a double series; here α and β are real numbers.
a) For what values α and β the sequence $c=\left\{c_{n, k}\right\}$ belongs to l^{1} ?
b) For what values of α and β the sequence c belongs to l^{∞} ?
2. a) Let $f(x)$ be a convex (i.e. concave up) function of a real variable x. Prove that for any choice of x_{1}, \ldots, x_{n} and t_{1}, \ldots, t_{n} such that $t_{j} \geq 0,1 \leq j \leq n$, and $t_{1}+\cdots+t_{n}=1$, the following inequality holds

$$
\begin{equation*}
f\left(t_{1} x_{1}+\cdots+t_{n} x_{n}\right) \leq t_{1} f\left(x_{1}\right)+t_{n} f\left(x_{n}\right) \tag{1}
\end{equation*}
$$

Hint: Try induction in n.
b) Use inequality (1) to prove Jensen's inequality: if $f(x)$ is a convex function and $x(\tau)$ is any function then

$$
\begin{equation*}
f\left(\int_{0}^{1} x(\tau) d \tau\right) \leq \int_{0}^{1} f(x(\tau)) d \tau \tag{2}
\end{equation*}
$$

c) Show that, in the case when $f(x)$ is a concave (i.e. concave down) function, both inequalities (1) and (2) hold, with \leq replaced by \geq.

Exercises 1.2.15, 1.2.17, 1.2.18-1.2.22, 1.3.42.

