1. Let
\[c_{n,k} = \frac{1}{(k+1)^\alpha + (n+1)^\beta}, \quad k, n \geq 0, \]
be a double series; here \(\alpha \) and \(\beta \) are real numbers.

a) For what values \(\alpha \) and \(\beta \) the sequence \(c = \{c_{n,k}\} \) belongs to \(l^1 \)?

b) For what values of \(\alpha \) and \(\beta \) the sequence \(c \) belongs to \(l^\infty \)?

2. a) Let \(f(x) \) be a convex (i.e. concave up) function of a real variable \(x \). Prove that for any choice of \(x_1, \ldots, x_n \) and \(t_1, \ldots, t_n \) such that \(t_j \geq 0, 1 \leq j \leq n, \) and \(t_1 + \cdots + t_n = 1, \) the following inequality holds

\[f(t_1x_1 + \cdots + t_nx_n) \leq t_1f(x_1) + t_nf(x_n). \]
(1)

Hint: Try induction in \(n \).

b) Use inequality (1) to prove *Jensen’s inequality:* if \(f(x) \) is a convex function and \(x(\tau) \) is any function then

\[f\left(\int_0^1 x(\tau)d\tau \right) \leq \int_0^1 f(x(\tau))d\tau. \]
(2)

c) Show that, in the case when \(f(x) \) is a concave (i.e. concave down) function, both inequalities (1) and (2) hold, with \(\leq \) replaced by \(\geq \).

Exercises 1.2.15, 1.2.17, 1.2.18–1.2.22, 1.3.42.