PROBLEM SET 6

Problem 1

Let $C^{\infty}(\mathbb{R})$ be the set of all infinitely many times differentiable functions on the real line. For a functions $f(x) \in C^{\infty}(\mathbb{R})$, a non-negative, integer number m, and a number $R \geq 0$ we define

$$
N_{m, R}(f)=\max _{0 \leq k \leq m} \sup _{|x| \leq R}\left|f^{(k)}(x)\right|
$$

Define the distance between two functions from $C^{\infty}(\mathbb{R})$:

$$
\begin{equation*}
d(f, g)=\sum_{m=1}^{\infty} 2^{-m} \frac{N_{m, m}(f-g)}{1+N_{m, m}(f-g)} \tag{1}
\end{equation*}
$$

a) Show that $C^{\infty}(\mathbb{R})$, together with the distance (1), form a metric space.
b) Show that sets (3.1.20) on p. 122 form a local base for its metric topology. (Do problem 3.1.21 first).
c) Explain in "simple" terms what the convergence $f_{n}(x) \rightarrow f(x)$ in this topology means (you are not allowed to use the language of metric and topological spaces).

Problem 2

Let $C_{0}(\mathbb{R})$ be the space of continuous functions $f(x)$ on the real line for which there exists $R>0$ such that $f(x)=0$ for $|x| \geq R$ (the number R depends on the function.) Such functions are called functions with compact support. Let $\gamma(x)$ be a continuous, everywhere positive function on \mathbb{R}. For $f \in C_{0}(\mathbb{R})$, we define

$$
U(f, \gamma)=\left\{g \in C_{0}(\mathbb{R}):|g(x)-f(x)|<\gamma(x)\right\}
$$

a) Prove that the collection of the sets $U(f, \gamma)$ over all positive, continuous functions γ form a local base of a topology.
b) Show that a sequence $f_{n}(x)$ converges to $f(x)$ in this topology if and only if $f_{n}(x)$ uniformly converges to $f(x)$ and there exists $R>0$ such that $f_{n}(x)=0$ for all n and $|x| \geq R$ (R does not depend on $n!$).

Problem 3

Let (M, d) be a metric space, and let $x_{j, k}$ be a double sequence, $j, k \geq 1$. Suppose that. for some $x \in M$,

$$
\lim _{k \rightarrow \infty} x_{j, k}=x
$$

for every j. Prove that there exists a sequence of natural numbers n_{j} such that

$$
\lim _{j \rightarrow \infty} x_{j, n_{j}}=x
$$

Problem 4

Prove that there is no metric on the set $C_{0}(\mathbb{R})$ that induces the topology from problem 2. Hint. You may find the result of problem 3 useful.

Exercises 3.1.21, 3.1.22, 3.1.23

