PROBLEM SET 7

Problem 1

Let X be a topological space. A (parameterized) curve in X is a continuous function $\gamma:[0,1] \rightarrow X$. The space X is called path connected if for every pair of points $x, y \in X$ there exists a curve such that $\gamma(0)=x$ and $\gamma(1)=y$.
a) Prove that if X is path connected then it is connected.
b) Let X be a subspace of \mathbb{R}^{2} with usual metric topology that is given by

$$
X=\{(x, y): x=0,-1 \leq y \leq 1\} \cup\{(x, y): x>0, y=\sin (1 / x)\}
$$

Prove that X is not path connected but it is connected.

Problem 2

Prove that \mathbb{R} is not homeomorphic to \mathbb{R}^{2}.

Problem 3

Let X and Y be topological spaces, and let $f: X \rightarrow Y$ be a continuous, one-to-one function onto (injective and surjective). Is it true that the inverse function f^{-1} is necessarily continuous? Prove or give a counterexample.

Exercises 3.2.28, 3.2.43, 3.2.44, 3.2.45, 3.2.49

