Problem

Find the Hausdorff dimension of the set $S \subset[0,1]$ of numbers the decimal expansion of which does not contain digit 3 .

Solution

Let S_{n} be the set of numbers from $[0,1]$, the first n digits of which are different from 3 . The set S_{1} is the union of $(0,0.3)$ and $(0.4,1)$. To get S_{2}, one has to remove from $(0,0.3) 3$ intervals: $[0.03,0.04],[0.13,0.14]$, and $[0.23,0.24]$; from $(0.4,1)$ one has to remove 6 intervals. The interval $(0,0.3)$ will produce one interval of length 0.03 , one interval of length 0.06 , and 2 interval of length 0.09 . The interval $(0.4,1)$ will produce one interval of length 0.03 , one interval of length 0.06 , and 5 interval of length 0.09 . So, S_{2} consists of 2 intervals of length $0.03,2$ intervals of length 0.06 , and 7 intervals of length 0.09 . Let us show inductively that the set S_{n} consists of a_{n} intervals of length 3×10^{-n}, a_{n} intervals of length 6×10^{-n}, and b_{n} intervals of length 9×10^{-n}. As one passes from S_{n} to S_{n+1}, one removes from each interval of length $c 10^{-n}(c=3,6.9) c$ intervals of length $!0^{-(n+1)}$; it produces one interval of length $3 \times 10^{-(n+1)}$, one interval of length $6 \times 10^{-(n+1)}$, and $c-1$ intervals of length $9 \times 10^{-(n+1)}$. Therefore S_{n+1} consists of intervals of length $3 \times 10^{-(n+1)}$, of length $6 \times 10^{-(n+1)}$, and of length $3 \times 10^{-(n+1)}$. Moreover, we get recursive relations

$$
a_{n+1}=2 a_{n}+b_{n}, \quad b_{n+1}=7 a_{n}+8 b_{n} .
$$

These relations can be written in the form $x_{n+1}=A x_{n}$ where

$$
x_{n}=\binom{a_{n}}{b_{n}}, \quad \text { and } \quad A=\left(\begin{array}{cc}
2 & 1 \\
7 & 8
\end{array}\right)
$$

The matrix A has eigenvalues 1 and 9 ; the corresponding eigenvectors are $(1,-1)^{t}$ and $(1,7)^{t}$. Therefore,

$$
A=D\left(\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right) D^{-1}
$$

where

$$
D=\left(\begin{array}{cc}
1 & 1 \\
-1 & 7
\end{array}\right), \quad \text { and } \quad D^{-1}=\frac{1}{8}\left(\begin{array}{cc}
7 & -1 \\
1 & 1
\end{array}\right)
$$

Therefore, $x_{n}=A^{n-1} x_{1}=\operatorname{Diag}\left(1,9^{n-1}\right) D^{-1} x_{1}$. One has $x_{1}=(0,1)^{t}$, so

$$
\binom{a_{n}}{b_{n}}=\frac{1}{8}\left(\begin{array}{cc}
1 & 1 \\
-1 & 7
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 9^{n-1}
\end{array}\right)\left(\begin{array}{cc}
7 & -1 \\
1 & 1
\end{array}\right)\binom{1}{0} .
$$

this yields

$$
a_{n}=\frac{7+9^{n-1}}{8}, \quad b_{n}=\frac{7\left(9^{n-1}-1\right)}{8} .
$$

Let us recall that S_{n} is the union of a_{n} intervals of radius $1.5 \times 10^{-n}, a_{n}$ intervals of radius 3×10^{-n}, and b_{n} intervals of radius 4.5×10^{-n}, so

$$
\begin{equation*}
\sum r_{j}^{\alpha}=a_{n}\left(1.5^{\alpha}+3^{\alpha}\right) 10^{-n \alpha}+b_{n} 4.5^{\alpha} 10^{-n \alpha} \tag{1}
\end{equation*}
$$

The quantity on the right in (1) has a finite, non-zero limit when $n \rightarrow \infty$ when $10^{\alpha}=9$ or

$$
\alpha=\log _{10} 9
$$

This is the Hausdorff dimension of S.

