as a parametric solution of (10). Hence from (9), taking the plus sign before \(\alpha \),
\[
a_1 = 7m^2 + 13mn - 30n^2.
\]
Then from (8), \(a_2 = 13m^2 - 22mn - 26n^2 \). Finally from (5),
\[
a_3 = -8m^2 + 39mn - 16n^2, \quad b_3 = -13m^2 + 24mn - 26n^2.
\]
The negative sign before \(\alpha \) only interchanges \(a_3 \) and \(a_5 \) with sign changed. If we denote the quadratic form \(am^2 + bmn + cn^2 \) by the notation \([a, b, c]\), we write the solution of the system (3) as
\[
\begin{align*}
a_1 &= [7, 13, -30], & a_2 &= [13, -22, -26], & a_3 &= [-8, 39, -16] \\
b_1 &= [-7, 13, -16], & b_2 &= [8, -13, -30], & b_3 &= [-13, 24, -26].
\end{align*}
\]
By Theorem 3, the system (2) has then the following parametric solution:
\[
\begin{align*}
A_1 &= [-7, 62, -30], & A_2 &= [7, 38, -50], & A_3 &= [5, -8, -22], \\
A_4 &= [19, -32, -42], & A_5 &= [-19, 36, -62], & B_1 &= [-9, 66, -42], \\
B_2 &= [5, 42, -62], & B_3 &= [-21, 38, -22], & B_4 &= [9, -14, -50], \\
B_5 &= [21, -36, -30].
\end{align*}
\]
References
1. L. Bastein, Sphinx-Oedipe, 8 (1913) 171–172.

PROJECTING \(m \) ONTO \(\ell_0 \)

ROBERT WHITLEY, New Mexico State University

It is a well-known result, due to Phillips, that the Banach space \(m \), of bounded sequences with the sup norm, cannot be projected continuously onto the subspace \(\ell_0 \) of sequences converging to zero [1, page 33, Corollary 4]. A typical use of this fact is found in [2]. We give a simple proof using an idea inherent in [4] and, as was pointed out by the referee, in [3]. Our method may also be used to simplify the proof of the result in [4].

Lemma [5, page 77]. Let \(I \) be a countable set. Then there is a family \(\{U_a: a \in A\} \) of subsets of \(I \) such that (1) \(U_a \) is infinite, (2) \(U_a \cap U_b \) is finite for \(a \neq b \) and (3) the index set \(A \) is uncountable.

Proof. Arthur Kruse has given the following elegant proof: Take \(I \) to be the rationals in \((0, 1)\), \(A \) the irrationals in \((0, 1)\) and, for \(a \) in \(A \), let \(U_a \) be a sequence of rationals in \((0, 1)\) converging to \(a \).

Recall that a subset of the conjugate space \(X^* \) of a Banach space \(X \) is total if the only vector annihilated by all members of the subset is the zero vector.
For brevity we say that a Banach space X has (property) B if X^* contains a countable total subset. It is easy to see that B is preserved under isomorphism, that a subspace of a space with B has B and that the space m has B.

Theorem. There is no continuous projection of m onto c_0.

Proof. Suppose that there is a continuous projection of m onto c_0. Then $m = c_0 \oplus R$, where R is a closed subspace of m. Since m/c_0 is isomorphic to R we see that m/c_0 has B. The proof consists of showing that m/c_0 does not have B.

We think of m as $B(I)$, the bounded functions on a countable set I. Let \(\{ U_a : a \in A \} \) be a family of subsets of I as in the lemma and let f_a be the coset in m/c_0 which contains the characteristic function of the set U_a.

Let g be in $(m/c_0)^*$. We will show that the set \(\{ f_a : g(f_a) \neq 0 \} \) is countable; it suffices to show that the set $C(n) = \{ f_a : |g(f_a)| \geq 1/n \}$ is countable for each natural number n. Choose f_1, \ldots, f_m in $C(n)$ and let $b_i = \text{sgn}(g(f_i)) g(f_i) / |g(f_i)|$. The vector $x = \sum b_i f_i$ is of norm one (note that as a coset x contains vectors whose norm may be greater than one), and so $\|g\| \geq |g(x)| \geq m/n$; thus $C(n)$ is finite for each n.

We conclude by noting that if $\{ h_i \}$ is a countable subset of $(m/c_0)^*$ then our argument shows that there are only countably many f_a with $h_i(f_a)$ nonzero for some i. Hence we can find a vector f_a which is mapped into zero by all the h_i, and so the set $\{ h_i \}$ is not total.

References

INTERIORITY AND THE TONELLI CONDITIONS

W. V. Caldwell, Flint College, Univ. of Michigan

In 1937, S. Stoilow proved that if f is a complex-valued function of a complex variable which has the properties: (i) point inverses are totally disconnected, and (ii) f maps interior points of its domain of definition into interior points of the image, then f is topologically equivalent to an analytic function. This result stimulated interest in light interior functions (i.e. functions satisfying (i) and (ii)) and in establishing conditions which insure that a function satisfying these conditions will be light and interior. Titus and Young proved that if $f \in C$ and