PROOF OF RADEMACHER'S THEOREM

Theorem. Let \(f(x) \) be a Lipschitz function in \(\mathbb{R}^n \). Then \(f(x) \) is differentiable almost everywhere.

Proof. I will break the proof of the theorem into several steps.

Step 1. In the case \(n = 1 \), the theorem follows from the fact that a Lipschitz function have bounded variation on any finite interval.

Step 2. Let \(v \) be a non-zero vector in \(\mathbb{R}^n \). The directional derivative

\[
 f_v(x) = \lim_{\tau \to 0} \frac{f(x + \tau v) - f(x)}{\tau}
\]

exists a.e.. In fact, let \(D_v \) be the set of all points where \(f_v(x) \) exists. Then the one-dimensional measure of the intersection of \(\mathbb{R}^n \setminus M_v \) with any line that is parallel to \(v \) equals 0 (step 1.) It is an easy exercise to show that the set \(M_v \) is measurable.

Then Fubini's theorem implies \(m(\mathbb{R}^n \setminus M_v) = 0 \).

Step 3. By \(f_j(x) \) I will denote partial derivatives \(\partial f/\partial x_j \). Let \(v = (v_1, \ldots, v_n) \) be a non-zero vector, and let

\[
 S_v = \{ x : f_v(x), f_1(x), \ldots, f_n(x) \text{ exist, and } f_v(x) = v_1f_1(x) + \cdots + v_nf_n(x) \}.
\]

Then \(m(\mathbb{R}^n \setminus S_v) = 0 \). It follows from step 2 that the derivatives \(f_v(x) \) and \(f_j(x) \), \(j = 1, \ldots, n \), exist almost everywhere. Take a function \(\phi(x) \in C_0^\infty(\mathbb{R}^n) \). By the Dominated Convergence Theorem,

\[
 \int f_v(x)\phi(x)dx = \lim_{\tau \to 0} \int \frac{f(x + \tau v) - f(x)}{\tau} \phi(x)dx
 = \lim_{\tau \to 0} \int f(x) \frac{\phi(x - \tau v) - \phi(x)}{\tau} dx
 = -\int f(x) \sum_{j=1}^n v_j \frac{\partial \phi(x)}{\partial x_j} dx = \int \left(\sum_{j=1}^n v_jf_j(x) \right) \phi(x)dx.
\]

The last equality is valid for an arbitrary function \(\phi(x) \); therefore \(f_v = \sum v_jf_j \) a.e..

Step 4. Let \(\Omega \) be a countable, dense set on the unit sphere in \(\mathbb{R}^n \). Take a point \(x \in S = \cap_{\omega \in \Omega} S_\omega \). I will show that the function \(f(x) \) is differentiable at the point \(x \). For an arbitrary unit vector \(\omega \) and \(\tau > 0 \), I define

\[
 r(\omega, \tau) = \frac{f(x + \tau\omega) - f(x) - \tau \sum \omega_jf_j(x)}{\tau}.
\]

One has

\[
 |r(\tilde{\omega}, \tau) - r(\omega, \tau)| \leq C|\tilde{\omega} - \omega|
\]

Typeset by \texttt{AM\TeX}.
because the function $f(x)$ is Lipschitz. The constant C in (1) depends on the Lipschitz constant of f only. It follows from step 3 that for every finite set of unit vectors Ω' and for every $\epsilon > 0$ there exists a number $\tau_0(\Omega', \epsilon)$ such that

$$\text{(2)} \quad |r(\omega', \tau)| < \frac{\epsilon}{2} \text{ when } \tau < \tau_0(\Omega', \epsilon).$$

The set Ω is dense in the unit sphere, so one can find its finite subset Ω' such that $\text{dist}(\omega, \Omega') < \epsilon/2C$ for every unit vector ω. Here C is the constant from (1). Then, for every unit vector ω there exists a vector $\omega' \in \Omega'$ such that $|\omega - \omega'| < \epsilon/2C$, and, for $\tau < \tau_0(\Omega', \epsilon)$, one has

$$|r(\omega, \tau)| \leq |r(\omega', \tau)| + |r(\omega, \tau) - r(\omega', \tau)| < \epsilon.$$

The last inequality means that for every $\epsilon > 0$

$$\left| f(x + v) - f(x) - \sum v_j f_j(x) \right| < \epsilon$$

when $|v|$ is small enough. This implies differentiability of the function f at the point x.
