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It is shown that the superfluorescence pulse in a laser without mirrors has a
universal self-similar shape, which is determined by a single parameter: the pulse
delay time.

PACS numbers: 42.55. — f, 42.60.Fc¢

The purpose of this paper is to construct a theory of the nonlinear stage of super-
fluorescence when this phenomenon can be described by one-dimensional semiclassical
Maxwell-Bloch equations, ignoring in so doing homogeneous and inhomogen«ous line
broadening. This theory can be applied, for example, to explain experiments on obser-
vation of superfluorescence in beams of cesium atoms.’

We shall show that the development of quantum fluctuations in an unstable popu-
lation-inverted medium results in the formation of a pulse with universal shape, de-
pending in a self-similar manner on the dimensions of the specimen and determined by
3 single parameter: the individual delay time 7,. We shall examine superfluorescence
in a cylindrical specimen of length L with transverse cross section S, satisfying the
condition F =S /AL~1 (F is the Fresnel number, 4 is the wavelength). Atoms with
dipole moment d and density n such that nSA> 1, but {27d *n/fiw)<1 (here w is the
transition frequency) are distributed in the specimen. In an infinite, population-invert-
ed medium, an instability with increment y = (27d *nw/#)'’? would develop. In a
specimen of finite length (L /¢) <y In N (N is the total number of active atoms), after
some delay, a pulse forms with characteristic duration 7, of the order of the super-
fluorescence time 7,~ 7s-(7sr = ¢/¥°L ). The average delay time is (see Refs. 2 and 3)
{1‘,) = (r4¢/16)In°N. We shall asssume that this time is much shorter than the relaxa-
tion times 7, and 7> and the inhomogeneous line broadening time 7'%. In experiments
with cesium atoms' (7;) = 10 ns, T, =70 ns, 7, = 80 ns, and 7% = 32 ns.

Under the assumptions formulated above, the Maxwell-Bloch equations can be
feduced to equations for the complex envelopes of waves traveling in different direc-
tions. However, to understand the physical picture of the phenomenon, we shall show
that it is sufficient 10 examine only waves traveling in a single direction. In this case
the medium is described by equations for dimensionless envelopes of the electric fieid
Ef{x,r), population Z (x,r) and polarization R (x,r),
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(we shall use the normalization adopted in Ref. 2). Equations (1) are defined on lh&:-
segment 0 <x < 1 with boundary condition £ (0,t) = 0 and initial conditions

Efx,00=0, R(x,0) = p(x), Z{x,0)= (1 —]|pfx)*)"? 2

plx), a Gaussian random function, is determined by the correlation function
! 4 ’
< ofx) pHx)> = }5(x -x). (3)

The sclution of the linearized (|E | €1,|R | €1,|Z — 1] €1} equations (1) with initial con-
ditions {2) has the form
x

Elx, t)= of dx' p(x 0 (= x' + vt} Io(2Vix — x' Xt — x/v +x'v)). i)

Here I(§) is the Bessel function of imaginary argument and € (x) is the Heaviside
function.

It is known (see Refs. 4-6) that Eqgs. (1) admit a self-similar formulation

E=x&(). R=R@E), Z=ZF). &= 2Vxt-xp), (5

where (£ ),R (£ ),Z (£ ) is the single-parameter family of regular solutions of the system
of equations

£&, +2&= 1R, 2R, = £&2, 27, =- ;—(&R*+ &"R) (6

which depend on the parameter &, = &|,_,.

Our basic result is the assertion that the solution of the linear problem (4) is
continued into the nonlinear region by the self-similar solution (5). Indeed, examining
the asymptotic behavior of the solution of the linearized problem with vr> 1
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[here p(0)~N ~'/? is the value of the initial polarization at the edge of the object] for
sufficiently long times (f> 7., tmin = Max{7ee,c*/L 75 }), we verify that the main
term in the expansion is purely self-similar. Setting in {7) § = 0, we find that the value
of the parameter %, = p(0).

The self-similar solution for different values of # , can easily be found by solving
the ordinary equations (6) on a computer. This solution has a first maximum at
{~1,~(1s/4In*(1/| p(0})]). From the requirement that 7,»f,,,, we have the condi-
tion on the length of the specimen, for which joining of the linear solution and the self-
similar solution occurs for all x,

2vL fe << VinN'- (8)

We compared the self-similar pulse with the pulse observed experimentally.' The
parameter %, can be determined from the experimentally observed delay time of the
first pulse 7, according to the equation
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FIG. 1. The solid line is the self-similar solution with &, = 0.015,75. = 0.5 ns. The dashed line corresponds
to the experiment in Ref. 1.
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derived with logarithmic accuracy. The ratio of parameters 7,/1,,,, was of the order of
20 and, in this case, the shape of the computed pulse exhibited good agreement with
the experimental shape (Fig. 1) in the region of the first maximum. The increasing
disagreement for large 7 is apparently related to ignoring inhomogeneous line broaden-
ing and diffraction losses.

We have thus established that under our assumptions the development of the
superfluorescence process results in the formation of a self-similar pulse with some
[small) value of the parameter & ,, determined by fluctuations and polarizations at one
end of the specimen.

For any t, each value of the self-similar variable corresponds to two values of the
¢oordinate x. For 7— oo, one of them propagates forward with velocity approaching
the velocity of light and the other propagates backwards according to the law x = &,/
44, so that the self-similar solution describes an “unloading wave,” whose leading and
n‘gﬁmg edges move in different directions. Under our assumption (8] concerning the
Eﬂgth of the specimen, only the trailing edge, whose group velocity is opposite to the
phase velocity, fits within the length of the specimen. In this sense, the situation in the
Case of superfluorescence is opposite to the situation in an amplifier,” where a quasi-
*@*ﬁimilar solution also forms, but the main role is played by its leading edge.

" The latter circumstance explains the possibility of using waves traveling in one
direction. With simultaneous “illumination” of the specimen from both ends, counter-
Moving unloading waves form. These waves interact weakly until the regions in which
‘ﬁepopuiation of the medium changes sign collide. The radiation from the specimen
“lug rapidly ceases. We also note that simultaneous ignition from both ends is quite
@nlikely, since the dispersion of an individual delay time (see Ref. 2} is of the same
of magnitude as this time.

" The result that the superfluorescent pulse has a self-similar nature can be addi-
liy justified with the help of the method of the inverse scattering problem (MISP).
scheme of MISP, which is capable of solving the mixed boundary value problem
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for superfluorescence even when inhomogeneous broadening is taken into 2
will be published elsewhere.

In conclusion, we thank S. I. Anisimov, A. P. Kazantsev, and E. D. Trifonov n,‘-i-'
useful discussions. 5.
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Concentrations of H and D atoms, stabilized in a molecular matrix, up to 1< 10%®
cm ~? are achieved by condensation of an atomic beam in superfluid helium.
Transformation of D atoms into H atoms is observed, indicating the occurrence of
tunneling chemical exchange reactions between atomic and molecular hydrogen
isotopes.

PACS numbers: 35.10. — d, 67.90. + z, 82.30.Hk

Collective quantum effects must be manifested most strongly for hydrogen atoms.
For this reason, the problem of accumulating high concentrations of H (ny) at low
temperatures is currently being persistently studied. Work on stabilizing H atoms in
the gas phase, spin-oriented in strong magnetic fields (B=11T for T=0.3 K], has been
very successful.' However, only concentrations of 10'” cm ™~ have now been achieved
and for a number of reasons it is difficult to expect a large improvement.

For the more traditional method of stabilizing hydrogen atoms in a solid molecu-
lar matrix, the most important factor restricting ny; to the 10'® cm™? level is the
instability of a finite 'specimen relative to thermal explosion, initiated by the slow,
“dark™ recombination of atoms.? For this reason, when H atoms are frozen out of a
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