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to neutron capture in which a compound-nuclear
state decays via gamma emission to many low-
lying states.'’ Agreement of nuclear spectra with
GOE theory implies that the capturing state is
very complex and, as a result, the total capture
width I'", is assumed to be a statistically inde-
pendent sum of partial widths I',, to low-lying
states, I' =), I',;. Application of the central
limit theorem of statistics to the sum leads to a
Gaussian distribution for I'", which is relatively
narrow. Similar considerations should apply to
the bound states of atoms, especially as the ex-
citation energy increases.

IC. E. Porter, Statistical Theovies of Spectra: Fluc-
tuations (Academic, New York, 1965). M. L. Mehta,
Random Matvices and the Statistical Theory of Enevgy
Levels (Academic, New York, 1967).

2T, A. Brody, J. Flores, J. B. French, P. A. Mello,
A. Pandey, and S. S. M. Wong, Rev. Mod. Phys. 53,
385 (1981).

3R. U. Hag, A. Pandey, and O. Bohigas, Phys. Rev.
Lett. 48, 1086 (1982).

‘H. 1. Liou, H. S. Camarada, S. Wynchank, M. Slago-
witz, G. Hacken, F. Rahn, and J. Rainwater, Phys.
Rev. C 5, 974 (1972).

5G. Hacken, R. Werbin, and J. Rainwater, Phys.
Rev. C 17, 43 (1978). This paper contains a complete
set of references to earlier papers by the Columbia
group.

N. Rosenzweig and C. E. Porter, Phys. Rev. 120,
1698 (1960).

"W. C. Martin, Romuald Zalubas, and Lucy Hagan,
Atomic Enevgy Levels —The Rave -Earth Elements,
U. S. National Bureau of Standards, National Standard
Reference Data Series—60 (U.S. GPO, Washington,
D.C., 1978).

8A Cov(S;,S;,) of —0.253 was originally calculated
for a 3x 3 matrix by C. E. Porter, Nucl. Phys. 40, 167
(1963). For matrices of higher dimension the value
tends toward — 0.27 (see Ref. 4).

°F. Dyson and M. L. Mehta, J. Math. Phys. (N.Y.) 4,
701 (1963).

9y, S. Camarda, H. I. Liou, F. Rahn, G. Hacken,
M. Slagowitz, W. W. Havens, Jr., J. Rainwater, and
S. Wynchank, in Statistical Propevties of Nuclei, ed-
ited by J. B. Garg (Plenum, New York, 1972), p. 205.

111, M. Bollinger, in Expevimental Neutron Resonance

Spectroscopy, edited by J. A. Harvey (Academic, New
York, 1970), p. 235.

Propagation of Ultrashort Optical Pulses in Degenerate Laser Amplifiers

I R,

Gabitov

L. D. Landau Institute for Theoretical Physics, Moscow V334, U. S. S. R.

S. V.

and

Manakov

L. D. Landau Institute for Theovetical Physics, Moscow V334, U. S. S. R., and Depavtment of Mathematics,
University of Manchestey Institute of Science and Technology, Manchester M601QD, United Kingdom
(Received 29 July 1982)

The shape and area of the output from physically realizable amplifiers of inverted
Q (2)-degenerate two-level atoms are calculated analytically. The (41 — 6)- or é-pulse
output is made up from a sequence of + 41 double-humped pulses followed by + (47 — 26)

pulses, where 6 =2 cos™1(—1).

PACS numbers: 42.60.He, 42.50.+q

The output from very long systems of initially

scattering method® in both cases. Results for
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the attenuator are well known,* but the analysis!:?
was the first consistent application of the method
to amplifiers in the sharp-~line limit.>® In the
degenerate cases, the MB equations are not inte-
grable’ and so the inverse method cannot be used.
We show in this Letter, nevertheless, how the
output from an inverted two-level atomic medium
can be calculated whether or not the atomic tran-
sition is degenerate.

inverted nondegenerate two-level atoms has al-
ready been described analytically™? and was
shown to be a 7 pulse made up of alternating 27
pulses. The calculations made use of the com-
plete integrability of the Maxwell-Bloch (MB)
envelope and phase equations which apply to both
nondegenerate attenuators and amplifiers with
suitable changes of sign. This integrability
meant that they could be solved by the inverse
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The problem can still be solved in both cases
because the similarity solution is the important
part. In the nondegenerate case®? the inverse
method showed that the similarity solution was
involved in a way independent of the shape of the
input pulse together with a part depending only on
a sufficiently small region at the front of the in-
put pulse and therefore depending linearly upon it.
The input influenced the output only in this way
and we called the resultant solution “semi-self-
similar.” Here we show that semi-self-similar
solutions are obtained for both degenerate and
nondegenerate amplifiers and that the inverse
method need not be used to find them, In any
case, the inverse method most easily finds solu-
tions for amplifiers of physically impractical
lengths I such that In(Z/7,) > 1 while [, proves (for
solid-state amplifiers for example, see below)
to be about 10 cm. The methods used here read-
ily apply to amplifiers in the physically accessi-
ble regime where [ =/,

Similarity solutions of the MB equations have
been investigated for 7 pulses in nondegenerate
amplifiers®® and in the theory of superfluores-
cence.® Degeneracy introduces qualitatively new
features: In the case of Q(2) symmetry there are
four attenuators and four amplifiers® and 4w, 25,
(4m—206), and O7 pulses can propagate depending
on initial conditions in agreement with the area
theorem*%7° §=2cos™! (-3). Superfluorescent
pulses from totally inverted Q(2)-degenerate sys-
tems are 0 or (47 — 6) pulses not 7 pulses.® In
this Letter we study sharp-line, strictly resonant,
optical pulse propagation in amplifiers containing
@(2)-degenerate two-level atoms. We study both
the physical regime [ =/, and, for mathematical
reasons, the regime where In(Z /1) >1. We find
that oscillatory 6 and (47 — 6) pulses propagate
for 7=, Butfor In(//l,) »>1 these can be seen |

to congist of trains of alternating +47 pulses fol-
lowed by +(47 - 26) pulses, and these features are
retained to some degree as /-1,

For @(2) symmetry there are two Bloch equa-
tions coupled through the incident field envelope
E(x, ¢).>7®1° At strict resonance in the sharp-
line limit the MB equations reduce to® 7! (with
v = P/ 3, ete.)

Pis + @1 = 4%y (asing + $bsing¢) , (1)

with E(x, ¢) =(1/2p)¢,. We use Q,2= 31w p?y; »
=a+3b, a=0_,+0, b=0_,+0y, 0,=N, " =N,"; w,
is the frequency of the transition; the magnitudes
of the nonvanishing matrix elements are || p
(m=%2,+1); and N,,* are the initial numbers of
atoms per unit volume in their upper states la-
beled by m =+1 or +2; N, ~ are the numbers in
their lower states.’? The mathematical problem
to be solved is as follows: For £<0, E =0 in the
half-space x >0 occupied by atoms. The field E
enters at x =0 at =0, Given E(0,¢)=0, <0,

and E(0, ¢) =E(¢), t=0, we want to find E(x, t)
for x >0. We suppose the front of the incoming
pulses is such that Ey(¢) =E (¢ 71" [1+0(t77) |;

T and v are real and positive and 7 is a rise time.
For large enough x this is all the information that
we need about the input at x =0 in order to deter-
mine the output at x. From E(x, t)=(1/2p)¢, the
corresponding information on ¢ is

@(0,8) = @y(t)=2pT(v +1)T'E (¢77H)Y T, (2)

and the boundary and initial-value problem for (1)
is ¢(0, t) = ¢ (t); ¢lx,0)=0, x -0, This is just
the Cauchy problem g¢(x, 0) =0, x>0; (0, ¢)

= @,(t), t>0 in which ¢ and x interchange.

Since ¢, describes the front of the input pulse,
it is small and sing, =~ ¢,. Equation (1) can now
be solved near the light cone x =/ in linear ap-
proximation, and

olx,t) =8Q%xz " je To(892xz"\) exp{ —i3(A =17z }anr, (3)

where z =4Q,[x(¢ —x)]¥?

’

t>x, and @,(w) is the Fourier transform of ¢,(¢). The path of integration e

joins A = —w to A =+ through the upper half-plane so that (3) is causal; and because ¢,(¢) =0, ¢<0,
@o(\) is analytic in the upper half-plane while ¢,~x"(" " for large . Thus (3) can be evaluated by

stationary phase as

@lx, 1) =8Q%xz " Go(892x iz ") {e?(212) "2} 1+ 0(z7Y)]
=E,T(v+1)2p1(8Q.21xz 1) "V "{e*(272) V214027 ], (4)

and this is valid for ¢(x, ¢)<1 and so for large enough x. The similarity variable z=48,[x(¢ - x)]'/? ap-
pears alone in the curly brackets, while the input data (2) influence the solution only through the factor
(zx-!)”**. This combination of factors is characteristic of the semi-self-similar solutions.""?> When
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the input is E (¢)=E., 6(¢ 77", v==1,and (4) de-
pends only on the self-similar solution.

If we set £=1n(zx "', ") the basic equation (1)
becomes

(sz'*'Z-I(Pg"Z '2g)§§=y_l(asin(p+%b8i.n%(ﬁ) (5)

and solutions independent of ¢ are self-similar,
satisfying

Qet2 t, =y Hasing + 3bsingy) . (6)

Self -similar solutions regular at z =0 form a one-
parameter family ¢ = ¥(y,, 2) determined by the
value of ¢ at 2=0: W, 0) =¢,. When ¢, <1,

W o, 2) = wly(2) and I,(2z) is the Bessel function of
imaginary argument.>®? For large z, I(z)~e*
x(272)"¥2[1+0(z"Y)] and therefore y is O(1) only
for z ~In|y,| ™ and the self-similar solution dif-
fers significantly from zero only for z >1, so
that 272, in (5) can be dropped and (5) reduces
to (6). This means that the solution of (5) is

olx, 1) = ¢[ ¥o(2x™1), 2] and ¢, is determined by the
compatibility of (4) with the asymptotic form
Wty 2) ~ Y2 *(272) "2 of the linearized self-simi-
lar solutions. Plainly,

%(Zx'l)=Ey F(V+1)2PT(Z/890279‘)U”’ (7
which completes the solution. It is valid for
1<z<In[BRz2x7)" /2T (v +1)7pE , |=1nd, ,

a condition we discuss below, Thus it remains
only to find the self-similar solutions ¢(y,, z)
which are solutions of the ordinary differential
equation (6).

The nondegenerate case of (6) is b=0, a=+n,
the number of atoms per unit volume, and the re-
sults in the physical regime are well known.* 58
The pulse is a 7 pulse made up of successive
damped oscillations®® '3: The distance between
successive peaks ~Inlnd,. Thus the oscillations
are resolved but substantially damped for realis-
tic amplifiers for which 1 «Inlnd,, while in the
nonphysical regime for which 1 «lInlnd, the out-
put becomes a series of isolated pulses initially
each of area +27 with speed >1 (>¢)."% The
net area of this sequence remains 7 and a front
which “piles up” develops in the usual way.!®
Some of these features should be observable in
the physical regime and in particular the areas
of the leading pulses will be close to 27,15+

A new feature is present in the degenerate case.
Equation (6) formally describes the motion of a
particle in the potential U(¢)=acosy+bcossy
with 4a>b>0 and 0 < ¢ <4m The z7'¢, is then

a “damping” term., There are degenerate minima
at 6=2cos" (-5 ba"?) and 47 - 6, and the damping
means that ¢, which starts at ¢ =, <1, eventual-
ly reaches 6 or 47 — 6 and the pulse areas are &
or 47 — 6. Numerical results for ¢ in the realis-
tic case a=0 are given in Fig. 1. The fields are
calculated from ¢, (shown in inget). The form of
U(¢) means that there are critical values such
that if y,®® <y, <y,®* ") the system reaches ¢

=0 and otherwise 47 - 6, Figure 1 shows that if
Y=107% 1078 then y reaches b; if ¢,=107% 1071

¢ reaches 47 — 6, But the solution (6) depends on
dolzx=1). So that, as z (i.e., ) changes at fixed
x, @lx,t) itself jumps by (47 —26). Near such
$,®) the derivatives ¢ are large and 2 2¢, in
(5) is not negligible, Still, jumps plainly occur

at some definite £,’s and ¢,(£,) =¢,*). Then
since £ depends only on x¢~' each such jump has

a velocity V, given by e *k=4(V,”* = 1)¥2 and V,
<1.

Figure 1 shows that, for small enough y,, at
least one double-humped pulse determined by
U.(¢o, 2) of area = 47 will be emitted. This cor-
responds to the exact but unstable 47-pulse solu-
tion for the Q(2)-degenerate “full amplifier” whose
speed is >1,° but its area is <47 and it is asym-
metric through the damping z "¢, in (6). Thus in
the nonphysical regime Inlnd,> 1 the output is a
series of +47-type asymmetric double-humped
pulses traveling at speeds >1 and piling up. The

100 120 140 160 180

FIG. 1. Similarly solutions ¢ (¢y,2), solutions of Eq.
(6), against z for ¥(=10"4-10"1%, Note the two equilib-
rium states 6 =2cos™!(-1) and 47 —6; for ¥,=10"%,10"8
¥ converges on 6; for $,=10"%,10"1%y converges on 4r
—4. Inset is ¢, (g,2) for $=10"%,1076,10"8,
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sequence damps out and the system settles on to
a (47 - 6) or 6 attenuator as defined in Ref. 9.
These attenuators propagate (47 —20) pulses
with speeds V,<1 and the new feature of the @(2)-
degenerate amplifier is that a sequence of these
pulses now propagates, apparently without damp-
ing, but with pulse spacing increasing as lnlnd,.!

In the physically realizable regime for which
Ind,> 1 (Ref. 14) this sequence of pulses for E(x,
¢) becomes a damped oscillatory wave train head-
ed by one or more discernibly double-humped
asymmetric pulses of the 47 type characteristic
of @(2) symmetry and this will still be followed
by jumps of (47 - 26) which can be seen in a plot
of ¢lx,t) =2p]_tw E(x, t")at'. For Q(2)-degenerate
iodine on the 2P,;, —2P,/,(F =2 —~ F = 2) transition,
Ind,=1 (and no better) for x =100 ¢cm and Rabi
frequency pE ~10%,'* But for solid-state ampli-
fiers, Ind,~10 for 1=x =100 cm.
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points added to the content of the paper. We are
grateful to M. Ismail for Fig, 1. One of us
(S.V.M.) is grateful to the Science and Engineer-
ing Research Council of the United Kingdom for
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