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Abstract
In the framework of the equation
Yt =Ygz +1p — |¢|21/) s
the dynamics of one-dimensional lattices of Taylor vortices in Couette flow and of
rolls in weak supercritical convection is studied. It is shown that the propagation of
the defects as transition areas between stable (according to Eckhaus) and unstable
lattices depends significantly on the topological properties of the field 9(z), i.e. the
degree of mapping B! — S!. The velocity of such defects has been determined. It

has been clarified that the defects between stable lattices spread diffusively due to the
conservation of the topological invariant.

1. INTRODUCTION

This article studies the dynamics of defects described by the equation

bt = Yae + (1= [2)9. (1)
This equation arises when we study the weak modulation of a 1D vortex lattice over
z in the vicinity of the instability threshold in systems whose laminar state had the
translational symmetry along some axis. Such systems comprise a flow between two
coaxial cylinders with a fixed external and a rotating internal, Couette flow, losing
their stability at a certain critical Reynolds number Re, which results in the formation
of Taylor vortices, and a flow emerging beyond the threshold of convective instability
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of the liquid between two horizontal rigid planes. In these cases the laminar state,
i.e., the Couette flow or the stationary heat transfer due to the heat conductivity from
lower plane to the upper, is invariant with respect to spatial shift. Therefore, in the
vicinity of the threshold the instability growth rate v, dependent on the wave number
k, will have, at a certain k = kg, a maximum whose value for a weak supercriticality
¢ = (Re — Re.)/Re, is proportional to €. In the vicinity of the maximum in this case

the growth rate can be approximated by the quadratic dependence
Yk =0 — alk — ko)?, Yo ~ €.

This formula shows that at the linear stage a whole range of perturbations with small
width Ak ~ /70 < ko is excited. Therefore, to find out the structure of the nonlinear
term leading to the saturation of the instability, it is sufficient to average the original
equations of motion over “fast” spatial oscillations. This averaging, after some simple
rescaling, leads to Eq. (1) for the amplitude. (This is how this equation was derived
by Newell and Whitehead [1] for the weak supercritical convection.) Subsequently,
the same equation was obtained for the description of a modulation of a 1D chain of
Taylor vortices near the instability threshold for the Couette flow [2].
It is well known that Eq. (1) can be represented in the variational form as

0 /0t = ~8F /89", (2)
where F = [ Fdz has the meaning of the free energy, with density

F ==+ 1" /24 [v]*.

The stationary stable state corresponds to the free energy minimum. From (2) it
follows that
OF/ot = —2/ |6F/6|*dz < 0. (3)

Hence, it is clear that F' is a Lyapunov functional, and the state corresponding to
the global minimum will, according to the Lyapunov theorem, be stable. To find the
stationary point of the functional F' it is essential to know the boundary conditions.
If one studies (1) on the whole axis (—oo < # < +00), the expression for free energy
for distributions nonvanishing at infinity since, only such distributions make physical
sense, will linearly diverge with an increasing size. Therefore, in this case in order to
define the minimum of F' it is sufficient to compare the free energy densities F. If we
consider the simplest stationary solutions of (1) in the form

Y= (1 _ k2)1/2€ikz’ 0< k2 <1, (4)

the free energy density
F= _(1 - k2)2/27

will evidently be minimal at £ = 0. In this state, from a class of functions nonincreas-

ing at infinity, F' will have a global minimum and, therefore, it is stable with respect
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to not only small but also finite perturbations. Nevertheless, apart from the solution
¢ = 1 there exist other stable solutions realizing local minima of F. The study of the
stability problem with respect to small perturbations leads to the so-called Eckhaus
criterion [3]

k2 <1/3, (5)

of the stability region of solutions (4). It is important to emphasize that the analysis
of the stability of arbitrary stationary solutions of (1) showed that there are no other
stable solutions except those described above [4].

In the case when the region is finite, which is actually realized in experiments,
the question of defining stable solutions remains open. This problem is of particular
importance when we perform numerical simulations of (1) i.e., we must necessarily
solve the boundary problem.

Henceforth, we shall confine ourselves to the discussion of three versions of the
boundary conditions:

1) zero, when ¥(0) = ¢(I) = 0;

2) periodic;

3) ¥(0) = ag, ¥(l) = a1, where ao and a; are time-independent constants.
From the point of view of applications, the zero boundary conditions are typical for
hydrodynamics. For convection this means that the edge vortex near the wall has
a zero amplitude. For the Couette flow, however, the boundary conditions for ¥
should be equal to a certain constant determined by the frequency of the rotation
of the external cylinder than equal to zero. Near the edges of the interval for the
first and third boundary conditions, the stationary solution realizing a minimum of
F will significantly differ from ¢ = 1. If the boundary conditions are periodic, then,
obviously, the minimum of F' is realized at ¢ = 1. In this case among the solutions
of (4) only those hold up for which k% = (2wn/l)? with integer n. At k2 > 1/3 these
solutions will be unstable.

In this paper we study the dynamics of defects of vortex lattices which represent
transition domains between i) stable distributions of (4) and ii) unstable solutions
of (4). We investigate the development of both the nonlinear stage of instability of
solutions (4) and the influence of the boundary conditions on it. We show that the
dynamics of such defects essentially depends on topological characteristics of the field
’(x). In the case when a defect is a region of transition between stable states, this de-
fect expands diffusively. In contrast to such defects, a defect between a stable (¢p = 1)
and unstable states propagates with a certain velocity oscillating in time. The mean
velocity and the frequency of oscillations are analytically determined and the com-
parison is made with the data of numerical experiments. It is important to emphasize
that the problem of the propagation by its formulation represents a generalization
of the problem posed and solved by Kolmogorov, Petrovsky and Piskunov [5] for an
equation of the form (1) for a real field ¥(x). The method which we have used to
solve this problem is borrowed by us from the work by Kamensky and Manakov [6].
It should be noted that later and independently this method was recovered in the

paper|[7].
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2. STATIONARY STATES AND LINEAR STABILITY

Let us study the problem of stationary states and their stability.
First, let us give a brief solution of the problem of the stability of stationary

states (4) assuming the interval to be infinite. Represent i as
¥ = (o +x' +1x")e*", (6)

where 1)y = (1 —k2)'/2, ' and " are the real and imaginary part of the perturbation

and [x'], |x"| < |tbo|- Then in the linear approximation we have

Xp = Xop — 202X — 2kXY, -
X{ = Xrz + 2kX5 -

Assuming that ¥/, x" ~ el*1% for the growth rate I we get
2 _ 72 74 2 2\1/2
D12 =—0? — g £ (g +4k?0?) ", (8)
Hence, in particular, it follows that instability (' > 0) takes place [3] at
k?>1/3, (9)

and that stability occurs in the opposite case. In the case of a finite interval L and
periodic boundary conditions the criterion (9) remains if we put & = 2zxn/L, where n
1s an integer.

Now consider the case of zero boundary conditions, assuming that the length of
the interval is L > 1. Then far from the boundary the minimum of F' will be realized
by a function close to ¥ = 1 with an exponential accuracy as will be shown below.
Thus, one needs to find a stationary solution which tends to ¥ = 1 far from z = 0,

and turns into zero at x = 0. It is easy to see that this solution is

Po(z) = tanh(z//2). (10)

Now let us demonstrate that this solution is stable in the class of functions with
¥(0) = 0 and ¢ — 1 as ¢ — oo. In the linear approximation, 1) = g + &, for
perturbations £ = ¢ + ¢ ~ e~ the following spectral problem arises

B¢ =-€,,./2-(1-30)¢, (11)
Et" = =€l /2 - (1—y3)t", (12)

where &' = z/./2. The first equation, Schroedinger equation, has a stable solution
in the form of the shift mode & = 8ty/dz = 1/(,/2cosh?z'), corresponding to
the ground state £ = 0. All other eigenfunctions of (11) have £ > 0 and, conse-
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quently, are stable. The second equation of the system (11)-(12) has one bound state
¢' = cosh™ z', with E = —1/2 and a continuous spectrum with E > 0. In the absence
of the boundary these perturbations grow as e'/2. However, in the presence of the
boundary when (0) = 0, symmetric solutions do not survive; there are only anti-
symmetric solutions with E > 0, and perturbations prove to be stable. This confirms
the linear stability of this solution.

It is easy to show that this solution realizes the minimum of the functional
ot 1,
F= [l + 50 - 12 e, (13
0

on the class of functions with #(0) = 0 and #(cc) = 1, where at F' in comparison
with (2) the constant term corresponding to ¢ =1 is subtracted.

To prove this statement it is sufficient to examine all stationary points of the
functional (13) and select those that obey the necessary boundary conditions. The

stationary equation associated with (1) is

¢11 +7/)_|¢|2¢:0a

it is easy to check that it has only one solution satisfying the necessary boundary
conditions, i.e., Yo = tanh(z/./2). Hence, it follows that o (z) realizes the absolute
minimum of F (13) and consequently is stable according to the Lyapunov theorem.
In the case when the interval size [ is large (I > 1) and the boundary conditions
are zero, the solution ¥o(z) will be very close to tanh(z/4/2) in the vicinity of z =0
and to tanh((! — z)//2) near ¢ = [. In the middle of the region the solution will
approximate 1) = 1 with an exponential accuracy. In Fig.1 we see the dependence of

| on & for [ = 25 of the stationary state which arises as a result of the development
of instability of small initial data. Towards the middle of the interval, the difference of
¥ from 1 amounts to 10~¢ whereas on the edges () is described with good accuracy
by the dependence tanh(z/4/2).

Let the initial condition %¢(z) represent a defect for the infinite interval. As
T — 00, p(x) approaches the absolutely stable solution ¥ = 1, and at the other
infinity tends to one of the solutions of (4). For vortices this defect is a region of
transition between a chain of vortices having an optimal size corresponding to k = kg
and a system of vortices compressed or stretched in comparison with the optimal size
of the vortex. Since the state (4) has a larger value of the free energy density F
than ¢ = 1 such a defect will propagate in accordance with (3) towards a decrease
of F, i.e., in the given case to the right. It is clear that in a finite but sufficiently
large system the influence of the boundaries will not effect the defect if its size Al is
small in comparison with I. However, we should stress that over a long period of time
the influence of the boundaries will become significant. The most important factor

determining the dynamics of the defect is connected with topological restrictions.
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3. TOPOLOGICAL CONSTRAINTS

Let us assume the boundary conditions are periodic; then the difference of phases
on the boundary of the interval ® = ¢(1)—¢(0) = fol ¢/ 0z dz of the field Y(z) = Aei?
(A is the amplitude and ¢ is the phase) must be equal to 2a#N for some integer V.
In other words, this means that the edge of the two-dimensional vector A = (', "),
where ¥' and 1" are the real and imaginary parts of ¢ respectively, while the “motion”
along the axis z from x = 0 to x = [ describes some helical line, performing N rotations
around the z axis. In the case when the amplitude does not vanish anywhere, N
coincides with a degree of the mapping R! — S!. If as a result of the evolution in
t the vector A does not turn into zero at any point, then N is a certain integral of
motion. However, if in a certain moment of time #¢ the vector A does turn into zero in
a certain point zg, then in this case ® will change by 27. From the geometrical point
of view, this corresponds to the intersection of the curve described by the edge of the
vector A and z-axis. As a result of such an intersection, the number of rotations N
will change by one unit. This consideration shows that this effect does not depend on
the type of boundary conditions. In any case, such a topological property, if the field
¥(x) exists, its change will occur in the same manner.

Let us now consider what the solutions of (4) are from this geometrical point
of view. For these solutions the vector A describes a helix with a constant step
h =27 /k. On the other hand, as has already been pointed out, the solutions of (4)
have a smaller value of free energy than ¢ = 1 corresponding in the three-dimensional
space (¢', 9", 1) to a straight parallel to z-axis. From the point of view of energy, it
is preferable for the solutions (4) to transit into the state ¢» = 1. This transition must
be accompanied by a phase jump by the integer N in units of 27 and by vanishing
of 1) in certain moments of time ty; at a certain point zg;. This transition is possible
if a strong instability exists since the state ¢ = 0 is unstable. We should remember
that for the solution %y = tanh(z/,/2) the point » = 0 occurs as a saddle: along one
direction (real) there is attraction; along the other (imaginary) we have repulsion. In
Figs.2-4 are the results of simulations of Eq. (1) with periodic boundary conditions
for the initial data 1 = (Yox + €cos z)e** with k = 14 * 27/125 from the unstable
region, o0 = 10 * 27/125 and € = 0.02. Fig.2 shows the dependence of || on = for
thiree moments of time when [| becomes zero. Fig.3 shows the time dependence of
U = ming|1|. In the moment of time when u touches the z-axis, the phase ® changes
to 2m by a jump. The phase reduction occurs sufficiently quickly, reaching a certain
stable N, corresponding to kg = 27 Ngi/l. For this run Ny = 2. After this process

we can observe a slower diffusive relaxation tending to the state v = ¢'(kg).

4. DEFECT PROPAGATION

From the aforementioned it becomes clear that the propagation of the defects

with some velocity is possible only if one of the states is unstable. If both states
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Fig.1-4. Dependencies of || in successive moments of time, dependencies of U =
ming || and phase @ in 27 units as functions of time for the instability development
of the solution ¥4 = (1 — k2)1/2¢?%* with k = 14 » 27/125. The vanishing of U and

the jumps in phase ® of 27 take place at the same moments of tine.
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are stable, there is no reason for the defect to move. Its dynamics will be essentially
different from the first case.

Let the initial conditions be such that ¥y — 1 as z — —oo and ¥y — Y =
(1 — k2)1/2ei** as z — oo, |k| > 1/4/3. Then the interface will propagate to the
right with a certain velocity. To find the velocity we shall assume that far from
the front in the unstable phase the initial conditions will differ only slightly from
t. Slightly means that A = In(|yx/6%|) > 1 where 6t is the perturbation. This
assumption permits us to consider that the linear stage of the instability (8) lasts
long enough and can be described by means of the saddle point method. Knowing
the solution before the front it is necessary to match it to the main wave coming onto
the asymptotics ¥ — 1 as ¢ — —oo. This problem is analogous by its formulation to
the Kolmogorov-Petrovsky-Piskunov problem [5] but has a principal difference. As is
shown by the numerical experiment, the defect moves, on average, with a constant
velocity V. In Figs.5-9 are the data for version £ = 0.95. At the motion of the
defect in its front, we can observe periodic variations with a frequency which can be
estimated as wp = kV. In this situation, after each period of oscillations there occurs
a phase-slip of 2w, i.e., the spiral uncoils (Figs.5,6). Thus on the front of the wave
there are complicated nonlinear oscillations. Apart from them in the value of the
velocity we can also observe certain oscillations, but with a smaller frequency. After
the main front is gone, the state after the front is different from ¥ = 1, and there is
still a certain residual rotation (Figs.8,9). To define the value of the mean velocity
of the defect let us use the method proposed in [6]. For this purpose, consider a
solution far from the front in the region of instability, where perturbations are small:
A =1In|ye/b¢| > 1. To find the velocity, let us require that in the reference system,
moving with the velocity of the defect V, perturbations do not grow exponentially in
time. In this instance, we shall select the solutions that will grow exponentially over
z while approaching the main front of the defect. It is principally important that to
find the velocity of the defect it is not necessary to solve the problem of matching with
the main wave; the velocity is obtained from the analysis of only the linear problem.

So, transforming to the reference system moving with the velocity V, from
Eqgs.(7)-(8) for the perturbations x', x"" we get

( ) / [(Flzjl;;) i(0)exp (T1(0)t +ioz' +ioVt)

T ' .
+ ( 222'—}1;: ) Ca(o)exp (Dz(0)t +ioz’ + th)

Here ' = z — V't, and the functions C;(o) and C3(o) are defined from the initial
conditions.
Since the initial noise is small (A > 1), the linear stage of the instability lasts a

long time ATl . Therefore, far from the front we can confine ourselves to the linear

ma.x
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approximation and find the solution in terms of the integral (14) as t — oo by using
the saddle point method. In this case, it is necessary to make the cut through the
points ¢ = Fih2/2k and to glue the edges of the cut. After this, we can use the
saddle point method.

The saddle point is found from the condition

I'(c)+iV =0. (15)

This equation reduces to the equation of the fourth power with respect to ¢. Among
the roots of this equation we should choose a 0., for which the value of Re(T'(0)+i0V)
could be maximal.

This saddle point gives the maximal contribution to the integral (14). As a result,
the perturbation with the accuracy up to the preexponential factor (irrelevant for our

further investigation) behaves as

exp {Re(T(om) + iom V)t + iwpa’ + ik(z' + V1)}, (16)
wm = Im(T(om) + 1o, V).

We have included in this expression the exponential factor connected with the change
(6).
The absence of the exponential growth over ¢ in (16) determines the value of the

velocity of the wave:

Re(T'(om) +i0mV)=0. (17)

At a velocity smaller than V', defined from (17), perturbations will grow exponentially
and, consequently, the process of the propagation will not be of a quasi-stationary
character. Given a large V', perturbations will not have time to develop into a wave.
Therefore, the requirement (17) defines the value of the velocity of the wave. It should
be noted that Imo,, > 0. This means that, at the approach to the front of the defect,
the solution grows exponentially as a function of x. From (16) it is also evident that
perturbations, apart from the Doppler frequency &V, have the frequency wp,.
Egs.(15),(17) can be studied analytically in two limits:

1-k = |y|* < 1,

and
P -1/3=e< 1.

In the first limit I'(o) can be written approximately in the form
I(o) ~ —0* — 2ko — 9% .
Substituting this expression in (15), we find the quantity

om = —1V/2—k.
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The insertion of o, into (17) for the velocity V yields
V=21 - [def).
Then the Doppler frequency equals
w = 2k(1 = [P

To calculate the frequency wy,, it is necessary to retain the following corrections over

[¥x|? in the expression for I'(¢). Simple calculations yield
wm = |[Yi]*/4.

In the other limit the growth rate can be replaced by

In this case it is convenient in the expression
L(o) +ioV = f(o),
to introduce new variables 8 and y: o = (12¢)1/2y, V = 8¢3/29,/12. As a result,
f(o) =108¢%g(y),

9(y) =y* /2~ y' /4 +iby.
After simple transformations, Eqs.(15,(17) can be solved as

1/2

y=((vT+3)/4)"" +i((vT-1)/12)'"*,
0 = (VT +2)(V/7—1/3)'/%/3.

The results of the numerical calculation of Eqs.(15),(17) are given in Figs.10-12. In
Fig.10 the solid line corresponds to the values of the velocity V', calculated from (15),
(17). The asterisks mark the values of the velocity measured in numerical experiments.
The mean velocity has been defined as the ratio of the distance propagated by a
defect per a period to the period of oscillations. This period of oscillations has been
measured as the time between two successive phase jumps (see Fig.6). In Fig.11
the solid line stands for the Doppler frequency, calculated by means of Eqs.(15),(17).
The asterisks mark the frequency determined by the period of oscillations of the
quantity « = min, |¢(x,t)|. In both graphs for V and wp, there is good agreement
between theory and numerical experiments. Finally, Fig.12 shows the dependence of
the frequency wm, on the wave number k. In numerical experiments we have observed
a frequency close to wp,, which corresponds to oscillations of the velocity V' with
respect to the mean value. These oscillations amount to 5% and have a tendency to

decay.
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Fig.10-12.

Now let us briefly study what effects occur for the defects between two stable
vortex lattices. The principal distinction of the defects studied above consists of the
abscnce of a strong instability. Therefore the defect cannot propagate by virtue of
the topological constraints. In this case, there occurs a slow diffusive unwinding of
the lLelix. Figs.13-15 give the spatial distributions for ||, the real part ¢', and the
imaginary part ¥". On the edges of the interval i(z) was constant: ¥|,— = 1,
Y|r=1 = ¥&(l). The transition region was expanding in time, which corresponded to
the unwinding of the helix. In the region where 3 was equal to one, there was rotation,
which is absolutely clear from Fig.14-15. The real part in this region became smaller
than one, and the imaginary part, on the contrary, grew. These results are in full
agrecment with the conclusion of the paper [8] — such defects expand diffusively in

time.
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Fig. 16. Distributions of || for the decay of the initial condition (dotted line) in
the form of defect with k; = 0.5 and k; = 0.8. Boundary conditions: ¥(0) = ¥k, (0),

B(1) = v, (1).

Let us consider now how the defect with arbitrary values &y and k» will decay
if k; lies in the unstable region but if k; belongs to the stable one. As numerical
experiments showed (see Fig.16), the defect begins to propagate into the unstable
region with the parameters defined with the help of formulae (16),(17). The state
behind the defect front has the amplitude close to |3| = 1 with some residual rotation.
Between this state and the wave defined by £, from the stable region, the defect of the
first type forms with a diffusive spreading front. The decay of such initial conditions
leads, thus, to the formation of two types of defects. The parameters of the defects

can be defined independently.
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5. CONCLUSION

We have clarified that the dynamical properties of the defects for vortex lattices
depend on whether the topological invariant of the complex field ¥(z), coinciding
up to the constant multiplier 2 with the integral phase difference of ¥(z) on the
interval edges, conserves or does not conserve. The reason for defect propagation
is just connected with nonconservation of the invariant, i.e., its reduction. If the
topological invariant conserves then the defect will spread diffusively.

It should be noted also the considered in this paper topological effects are intrinsic
for two-dimensional (141) models for a complex field. For such cases the transition
mechanism from we state with the invariant N; to the other with N; is common -
the phase of this field 1) has to change by 27 with each touching of the z-axis by |¢|. It
should be emphasized that such a transition is only possible for the strong instability
existence. The nonlinear Schroedinger equation with attraction and repulsion and its

different generalizations represent the examples of such systems.
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