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Agenda

• Introduction to the elastic pendulum problem

• Derivations of the equations of motion

• Real-life examples of an elastic pendulum

• Trivial cases & equilibrium states

• MATLAB models



The Elastic Problem (Simple Harmonic 
Motion)
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• Solve this differential equation to find 
𝑥 𝑡 = 𝑐1 cos 𝜔𝑡 + 𝑐2 sin 𝜔𝑡 = 𝐴𝑐𝑜𝑠(𝜔𝑡 − 𝜑)

• With velocity and acceleration 
𝑣 𝑡 = −𝐴𝜔 sin 𝜔𝑡 + 𝜑
𝑎 𝑡 = −𝐴𝜔2cos(𝜔𝑡 + 𝜑)

• Total energy of the system
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The Pendulum Problem (with some assumptions)

• With position vector of point mass  𝑥 = 𝑙 𝑠𝑖𝑛𝜃 𝑖 − 𝑐𝑜𝑠𝜃 𝑗 , 
define  𝑟 such that  𝑥 = 𝑙  𝑟 and  𝜃 = 𝑐𝑜𝑠𝜃 𝑖 + 𝑠𝑖𝑛𝜃 𝑗

• Find the first and second derivatives of the position vector:
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• From Newton’s Law, (neglecting frictional force)

𝑚
𝑑2  𝑥

𝑑𝑡2
= 𝐹𝑔 + 𝐹𝑡



The Pendulum Problem (with some assumptions)

Defining force of gravity as 𝐹𝑔 = −𝑚𝑔 𝑗 = 𝑚𝑔𝑐𝑜𝑠𝜃  𝑟 −

𝑚𝑔𝑠𝑖𝑛𝜃  𝜃 and tension of the string as 𝐹𝑡 = −𝑇 𝑟:

−𝑚𝑙
𝑑𝜃

𝑑𝑡

2

= 𝑚𝑔𝑐𝑜𝑠𝜃 − 𝑇

𝑚𝑙
𝑑2𝜃

𝑑𝑡2
= −𝑚𝑔𝑠𝑖𝑛𝜃

Define 𝜔0 = 𝑔/𝑙 to find the solution:
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Derivation of Equations of Motion

• m = pendulum mass

• mspring = spring mass

• l = unstreatched spring length

• k = spring constant

• g = acceleration due to gravity

• Ft = pre-tension of spring

• rs = static spring stretch,  𝑟𝑠 =
𝑚𝑔−𝐹𝑡

𝑘

• rd = dynamic spring stretch

• r = total spring stretch 𝑟𝑠 + 𝑟𝑑



Derivation of Equations of Motion
-Polar Coordinates

•  r = r et

• v =
dr

dt
=  r  er + r  θ eθ = vr  er + vθ eθ

• a =
dv

dt
=  r − r  θ2  er + r  θ + 2  r  θ  eθ + ar  er + aθ eθ

• vr  
magnitude change  r

direction change  r  θ

• vθ  
magnitude change r  θ +  r  θ

direction change r  θ2



Derivation of Equations of Motion
-Rigid Body Kinematics

x
y
z

=
cosθ sinθ 0
−sinθ cosθ 0
0 0 1

X
Y
Z

 i
 j
 k

=
cosθ sinθ 0
−sinθ cosθ 0
0 0 1

 I
 J
 K



Derivation of Equations of Motion 
-Rigid Body Kinematics

Free Body Diagram

After substitutions and evaluation:



Derivation of Equations of Motion
-Lagrange Equations

Kinetic Energy

Potential Energy



Derivation of Equations of Motion
-Lagrange Equations

• Lagrange’s Equation, Nonlinear equations of motion



Elastic pendulum in the real world
Pendulum… but not elastic:

Elastic… but not pendulum:



Elastic pendulum in the real world – Spring 
Swinging



Elastic pendulum in the real world 
-Bungee Jumping



Trivial Cases

• System not integrable

• Initial condition without elastic potential

• Only vertical oscillation

• Initial condition with elastic potential



Equilibrium States

• Hook’s Law 
• Gravitational Force

• At equilibrium
• System at equilibrium

Stable state
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Turning things into a handy system:

 𝑥 = −
𝜔𝑧
2 𝑟 − 𝑙0

𝑟
𝑥
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Where 𝜔𝑧 =
𝑘

𝑚
and    𝑟 = 𝑥2 + 𝑦2 + 𝑧2



Some regimes make familiar shapes!

Initial Conditions:
X = 1; Vx = 0;
Y = 0; Vy = 0;
Z = 1.1; Vz = 0;

Parameters:
w = 3; g = 9; l = 1;

So motion stays in the XZ plane
Positive Z is vertical.

Motion is shown to be relatively
changeless over 50s



What happens if we shake things up?

Initial Conditions
X = 1.1;  Vx = 0;
Y = 0; Vy = 0;
Z = 1.1;  Vz = 0;
Parameters:
w = 3; g = 9; l = 1;



Turning things up a bit…

Initial Conditions:
X = 1; Vx = 0;
Y = 0; Vy = .2;
Z = 1.1; Vz = 0;

Parameters
w = 1; g = 10; l = 1;

totalTime = 200;
stepsPerSec = 10;



Let’s take a closer look at the same regime:

This is the XZ 𝑿𝟎

plane

Z-axis↑

X-Axis →



Now look at the XY plane again.

Is it the swivel that is causing the pendulum
to avoid the center?



Awesome they almost meet!
(Quasi-awesome)

Δ𝑇 = 308𝑠

𝑌 ↑

𝑋 →

←



Dr. Peter Lynch’s model:

Initial Conditions:

x0=0.01;
xdot0=0.00;
y0=0.00;
ydot0=0.02;
zprime0=0.1;
zdot0=0.00;
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