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Outline

Figure: Hanging Chain [2].
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Model Continuum Chain
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Model Continuum Chain

Hanging Chain Classical Model
Governing Equation

Figure: [1].

Model, u(x , t)

u Transverse displacement [m]

x Vertical height [m]

t Time [s]

ν Linear Density [kgm ]

g Gravitational Acceleration [m
s2 ]

Boundary Condition

u(L, t) ≡ 0

Assumptions

Small Oscillations.

Uniform Density.
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Model Continuum Chain

Hanging Chain Classical Model
Governing Equation

Observation

T(x)·ŷ=νgxtan(θ) ≈ νgx ∂u∂x

Apply Newton’s Third Law,
∑

F · ŷ = ma · ŷ

lim
∆x→0

T (x + ∆x)− T (x)

∆x
= ν∆x

∂2u

∂t2

∂

∂x

[
νgx

∂u

∂x

]
= ν

∂2u

∂t2

Figure: Hanging Chain [1].
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Model Continuum Chain

Hanging Chain
Governing Equation

Governing Equation

utt = g(ux + xuxx)

Let X = x
L , U = u

L , τ = t√
g
L

.

Thus, X ∈ [0, 1], U ∈ [0, 1],
√

g
L characteristic time

Non-Dimensionalized Governing Equation

Uττ = UX + XUXX U(1, τ) ≡ 0
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Model Continuum Chain

Hanging Chain
Classical Solution

Governing Equation*

Utt = Ux + xUxx u(1, t) ≡ 0

Apply Separation of Variables. Let U(X , τ) = X (x) · T (t), thus

T ′′

T
=

X ′ + x · X ′′

X
= −λ2 λ ∈ R

Let z2 = 4x , use chain rule,{
T”+λ2T = 0

z2X ′′ + zX ′ + z2λ2X = 0
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Model Continuum Chain

Hanging Chain
Classical Solution

Governing Equations*{
T”+λ2T = 0

z2X ′′ + zX ′ + z2λ2X = 0

Time Oscillation

{
sin(|λ|t)

cos(|λ|t)
Spacial ODE is well known, Bessel Equation of zeroth order with solutions
of Bessel function of the first and second kind
.

Spacial Profile,

{
J0(λz) = J0(2λ

√
x)

Y0(λz) = Y0(2λ
√
x))
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Model Continuum Chain

Hanging Chain
Bessel Function

Y0(x) has an asymptote at x = 0.

Figure: J0(x), Y0(x) [3]
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Model Continuum Chain

Hanging Chain
Superposition

By linearity, u(x , t) = X (x) · T (t) is,

u(x , t) =
∞∑
n=0

{
An sin(λnt) + Bncos(λnt)

}
J0(2λn

√
x)

Recall the boundary condition, u(1, t) = 0,

∞∑
n=0

{
An sin(λnt) + Bncos(λnt)

}
J0(2λn

√
x) = 0

For non-trivial result, An,, Bn 6= 0, thus J0(2λn) = 0, e.g. roots of J0

determine λn.
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Model Continuum Chain

Harmonic Frequencies

Figure: Modes 1-3, first three Bessel zeros [1]
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Model N-Pendulum

Outline
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Model N-Pendulum

N-Pendulum

Figure:
N-Pendulum [4].

Discrete Model, ui (t).

u Transverse displacement [m]

t Time [s]

g Gravitational Acceleration [m
s2 ]

Assumptions

Small Oscillations.

Equal
Length and Mass, e.g. mi = mj lq = lp∀i , j , p, q
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Model N-Pendulum

N-Pendulum
Governing Equations

Figure:
N-Pendulum [4].

∑
F = ma, for small oscillations,

motion in y direction is negligible, and tan(θ) ≈ θ

Fi − Fi−1 = mi üi

n∑
j=i+1

mjgtan(θi )−
n∑
j=i

mjgtan(θi−1) = mi üi

(n − i)gθi − (n − i + 1)gθi−1 = ẍ

Using the small angle approximation, θi ≈ ui
l , we find,

üi =
g

l
[(n − i)(ui+1 − 2ui + ui−1)− ui + ui ]
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Model N-Pendulum

N-Pendulum
Governing Equations

N-Pendulum Governing Equation

Üi = g
l [(n − i)(ui+1 − 2ui + ui−1)− ui + ui ]

Let U = u
nL , τ = t√

g
L

.

Thus U ∈ [0, 1],
√

g
L characteristic time

N-Pendulum Governing Equation*

Uττ = (n − i)(Ui+1 − 2Ui + Ui−1)− Ui + Ui
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Model N-Pendulum

N-Pendulum
Harmonic Frequencies

N-Pendulum Governing Equation**

Ü = (n − i)(Ui+1 − 2Ui + Ui−1)− Ui + Ui

In matrix form, d2

dt2U = AU, where, A is given as,

A =



1− 2n n − 1 . . .
n − 1 3− 2n n − 2 . . .

n − 2 5− 2n n − 3 . . .
...

...
...

. . .
...

2 −3 1
1 −1
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Model N-Pendulum

N-Pendulum
Harmonic Frequencies

N-Pendulum Matrix Equation

d2

dt2U = AU

Let U take a resonant form of U = veωi t . Thus, d2

dt2U = ω2
i U. Thus,

(A− ω2
i 1)U = 0

For non-trivial solution, we solve,

det(A− ω2
i 1) = 0
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Model N-Pendulum

N-Pendulum

https://www.youtube.com/watch?v=XVIi7-u9wl4 [10]
https://youtu.be/-ztU56yG6aY
https://youtu.be/4FrdYwOlbjw
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Model N-Pendulum

N-Pendulum

Figure: N=20 Pendulum Simulation [10]
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Other Literature

Other Literature

Concentrated tip-mass
T (x) = mg + gx , same equation up to translation
New Boundary Conditions

Control Systems
Flatness
Spring Feedback

Figure: Modified Problems [10][?] [11]
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Summary

Summary

The classical hanging chain results in zeroth order first-kind Bessel
function, J0, standing waves.

Natural frequencies are determined by zeroes of J0.

The lim
n→∞

n-pendulum approaches similar behavior.

Outlook
Verify Model

Numerically, Experimentally, Analytically

Introduce Complications

Air Drag
Non-uniform Density
Driven System (water hose)
Sliding Chain
Control Theory Stabilization
Magnetic Chains [6]

Engel, Lily; Granzier-Nakajima, Shawtaroh; Templin, Jasmin; Cutillas, Philippe, Mentor: Champlin, Loren (Universities of Somewhere and Elsewhere)Hanging Chain Vibration Modes
Mid-Term Presentations, May 13th, 2018 21

/ 24



Appendix For Further Reading

For Further Reading I

Daniel A. Russel
acs.psu.edu/drussell/Demos/HangChain/HangChain.html

Daniel B. Friedman
sjs.org/friedman/PDE/Examples/Hanging chain.pdf

Charles Byrne
sjs.org/friedman/PDE/course/bessel.pdf

Steven P. Weibel John Baillieul (2010) Open-loop oscillatory
stabilization of an n -pendulum, International Journal of Control, 71:5,
931-957, DOI: 10.1080/002071798221641
https://www.tandfonline.com/doi/abs/10.1080/002071798221641

S. Weibel ; J. Baillieul ; B. Lehman, ”Equilibria and stability of
an n-pendulum forced by rapid oscillations,” Decision and Control, 1997
http://ieeexplore.ieee.org/abstract/document/657602/?reload=true
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Appendix For Further Reading

For Further Reading II

S. Weibel ; J. Baillieul ; B. Lehman, ”Stability of vertical magnetic
chains,” The Royal Society, 2017
http://rspa.royalsocietypublishing.org/content/473/2198/20160703F1

S. Weibel, J. Baillieul and B. Lehman, ”Equilibria and stability of an
n-pendulum forced by rapid oscillations,” Proceedings of the 36th
IEEE Conference on Decision and Control, San Diego, CA, 1997, pp.
1147-1152 vol.2. doi: 10.1109/CDC.1997.657602
http://ieeexplore.ieee.org/abstract/document/657602/?reload=true

fake crayonphysics, srli, GitHub
https://github.com/srli/fake crayonphysics

Boundary Conditions and Modes of the Vertically Hanging Chain Y.
Verbin, 2014 arXiv:1412.1846 [physics.class-ph]
https://arxiv.org/pdf/1412.1846.pdf
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Appendix For Further Reading

For Further Reading III

C. Y. Wang C. M. Wang (2010) Exact solutions for vibration of a
vertical heavy string with a tip mass, The IES Journal Part A: Civil
Structural Engineering, 3:4, 278-281, DOI:
10.1080/19373260.2010.521623
https://www.tandfonline.com/doi/pdf/10.1080/19373260.2010.521623

Flatness of Heavy Chain Systems, Nicolas Petit and Pierre Rouchon,
SIAM 1995 https://doi.org/10.1137/S0363012900368636
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