Analysis of the U.S. Stock Market

by H. Quelle, C. Ryan, and T. Agarwal

Project Advisor: Dr. Melinda Lanius

The University of Arizona
Content

1. What is Principal Component Analysis?

2. History

3. The Math

4. Project Goals

5. State of the Project
Outline for section 1

1. What is Principal Component Analysis?
2. History
3. The Math
4. Project Goals
5. State of the Project
What is Principal Component Analysis?

- Principal Component Analysis (PCA) is a data reduction technique.
Principal Component Analysis (PCA) is a data reduction technique. Start with $A \in \mathbb{R}^{m \times n}$, with $m \gg n$.

- Principal Component Analysis (PCA) is a data reduction technique.
- Start with $A \in \mathbb{R}^{m \times n}$, with $m \gg n$.

by H. Quelle, C. Ryan, and T. Agarwal Analysis of the U.S. Stock Market The University of Arizona 4 / 24
What is Principal Component Analysis?

- Principal Component Analysis (PCA) is a data reduction technique.
- Start with \(A \in \mathbb{R}^{m \times n} \), with \(m \gg n \).
- The data is reduced to a set of \(m \) eigenvectors.
What is Principal Component Analysis?

- Principal Component Analysis (PCA) is a data reduction technique.
- Start with \(A \in \mathbb{R}^{mxn} \), with \(m \gg n \).
- The data is reduced to a set of \(m \) eigenvectors.
- These vectors are called the principal components, and we can reduce the size of data using these.
Outline for section 2

1. What is Principal Component Analysis?

2. History

3. The Math

4. Project Goals

5. State of the Project
History

- The ideas of Principal Component Analysis are based in research done by Cauchy and Jacobi in the mid 19th century.
- The first use in searching for items maximum variance was done by Harold Hotelling in 1933.
- Since then it has been used for just about anything that requires data reduction.
- It is used in research to reduce components, in genetics analysis, and in financial analysis.

Figure: Irwin Collier (2018)
The most recent use of PCA has been in facial recognition software.

For facial recognition there are eigenfaces instead of eigenvectors.

Figure: Eigenfaces
Another example is PCA used for letter recognition.

With this there are eigencharacters

Figure: Eigencharacters
Outline for section 3

1. What is Principal Component Analysis?
2. History
3. The Math
4. Project Goals
5. State of the Project
The Math

- Consider a data matrix

\[
A = \begin{bmatrix}
2 & 6 \\
7 & 9 \\
4 & 2
\end{bmatrix}
\]

(1)

Compute the average across the samples

\[
\mu = \frac{1}{2} \begin{bmatrix}
2 + 6 \\
7 \\
4 + 2
\end{bmatrix} = \begin{bmatrix}
4 \\
8 \\
3
\end{bmatrix}
\]

(2)

Subtract the mean from each sample

\[
\hat{A} = \begin{bmatrix}
-2 & 2 \\
-1 & 1 \\
1 & -1
\end{bmatrix}
\]

(3)
The Math

Consider a data matrix

\[A = \begin{bmatrix} 2 & 6 \\ 7 & 9 \\ 4 & 2 \end{bmatrix} \]

(1)

Compute the average across the samples

\[\mu = \frac{1}{2} \begin{bmatrix} 2 + 6 \\ 7 + 9 \\ 4 + 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix} \]

(2)
The Math

- Consider a data matrix

\[
A = \begin{bmatrix}
2 & 6 \\
7 & 9 \\
4 & 2
\end{bmatrix}
\]

(1)

- Compute the average across the samples

\[
\mu = \frac{1}{2} \begin{bmatrix}
2 + 6 \\
7 + 9 \\
4 + 2
\end{bmatrix} = \begin{bmatrix}
4 \\
8 \\
3
\end{bmatrix}
\]

(2)

- Subtract the mean from each sample

\[
\hat{A} = \begin{bmatrix}
-2 & 2 \\
-1 & 1 \\
1 & -1
\end{bmatrix}
\]

(3)
What does this do?
Recall the definitions of Variance and Covariance

\[\text{Var}(X) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \] and \[\text{Cov}(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \]

(4)
Recall the definitions of Variance and Covariance

\[
Var(X) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \quad \text{and} \quad Cov(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})
\]

(4)

Calculate the Covariance matrix \(C = \frac{1}{n-1} \hat{A}\hat{A}^T \)

\[
C = 1 \cdot \begin{bmatrix} -2 & 2 \\ -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -2 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 8 & 4 & -4 \\ 4 & 2 & -2 \\ -4 & -2 & 2 \end{bmatrix}
\]

(5)
From C, we can find eigenvector and eigenvalue pairs $Cv = \lambda v$

$$\lambda_1 = 12 \text{ and } v_1 = \begin{bmatrix} -0.8165 \\ -0.4082 \\ 0.4082 \end{bmatrix}$$ (6)
From C, we can find eigenvector and eigenvalue pairs $Cv = \lambda v$

$$\lambda_1 = 12 \text{ and } v_1 = \begin{bmatrix} -0.8165 \\ -0.4082 \\ 0.4082 \end{bmatrix}$$ (6)

Projecting samples onto these eigenvectors creates a new, reduced version of the data

$$\begin{bmatrix} 2 \\ 7 \\ 4 \end{bmatrix} \approx 2.4495v_1 + \mu = \begin{bmatrix} 2 \\ 7 \\ 4 \end{bmatrix}$$ (7)

Now only a few eigenvectors, the weights, and μ have to be kept to get the original data.
Figure: Matt Brems (2017), TowardsDataScience
What’s special about the eigenvectors?

Since the Covariance matrix only scales its eigenvectors, those eigenvectors must point in the direction of greatest variance in the data. The eigenvector associated with the largest eigenvalue is the direction with the most variance in the data, the second eigenvector is the direction with the second most variance that is orthogonal to the first, and so on.
The Math

What’s special about the eigenvectors?
The eigenvectors are only scaled by the matrix, not rotated.

Figure: Murray Borne (Jan 2020), IntMath
The Math

What’s special about the eigenvectors?
The eigenvectors are only scaled by the matrix, not rotated.

Since the Covariance matrix only scales its eigenvectors, those eigenvectors must point in the direction of greatest variance in the data.

Figure: Murray Borne (Jan 2020), IntMath
What’s special about the eigenvectors?
The eigenvectors are only scaled by the matrix, not rotated.

Since the Covariance matrix only scales its eigenvectors, those eigenvectors must point in the direction of greatest variance in the data. The eigenvector associated with the largest eigenvalue is the direction with the most variance in the data, the second eigenvector is the direction with the second most variance that is orthogonal to the first, and so on.
What’s special about the weights?

The magnitude of the weight tells us how much our original sample depends on the eigenvector v_i. If the magnitude is large, then much of the sample's variance is accounted for in eigenvector v_i. If the magnitude is small, then that v_i can be ignored when examining the sample.

Figure: Jonathan Daugherty (2013)
The Math

What’s special about the weights?
The magnitude of the weight tells us how much our original sample depends on the eigenvector v_i. If the magnitude is large, then much of the sample’s variance is accounted for in eigenvector v_i. If the magnitude is small, then that v_i can be ignored when examining the sample.

Figure 1: Vector combinations.

Figure: Jonathan Daugherty (2013)
Outline for section 4

1. What is Principal Component Analysis?
2. History
3. The Math
4. Project Goals
5. State of the Project
Project Goals

1. We plan to reduce a very large set of stock data using PCA to something more predictable
2. Construct stocks using "eigenstocks"
3. Use the weights of the eigenstocks to determine the influence on the desired stock
To simplify matters, let's say there are two "eigenstocks," then looking at a stock from the original space, some linear combination of the eigenstocks will form the arbitrary stock.

Figure: Sheng Zhang and Matthew Turk (2008), Scholarpedia, 3(9):4244.
In the end, ideally we would like to group stocks based on their similarities in weights associated with eigenstocks. Hopefully within these groups we can form a better understanding of how certain stocks are affected in similar ways with stocks that fall into similar or different categories of "business."
Outline for section 5

1. What is Principal Component Analysis?
2. History
3. The Math
4. Project Goals
5. State of the Project
State of the Project

- Found a sizable data set with opening and closing values for almost every day since 1960
- The matlab can currently:
 - read data
 - create covariance matrix
 - reduce data to a set of eigenvectors
 - reduces original stocks into the space of the eigenvectors and finds the weights of the eigenvectors required for each stock.
- Still left to do:
 - Determine what the weight matrix tells us

```
weight_matrix =

Columns 1 through 15
9.6126   0.1436  1.4059 10.2495 10.2550
-1.6355  -0.5700 -2.7258 16.3045  -0.6183
-0.1488   1.1945  0.5894 -0.5089  -0.4920
-1.6767   6.4649 -3.9195  3.2229  -0.6230
-0.9435  -0.6408  2.1433 13.5451   1.5465
```

Figure: Weight Matrix

Muhammad Waqar, Hassan Dawood, Muhammad Bilal Shahnawaz, Mustansar Ali Ghazanfar, and Ping Guo, Prediction of Stock Market by Principal Component Analysis, Proceedings of the 2017 13th International Conference on Computational Intelligence and Security