1. Easy: Show that $y = x^2$ is a solution to $xy' = 2y$.

 Harder: Find the values of k for which $y = x^2 + k$ is a solution to $2y - xy' = 6$.

2. Easy: Show that $y = e^{kx}$, where k is a constant, is a solution to $\frac{dy}{dx} = ky$.

 Harder: Show that for any constants A, $y = Ae^{kx}$ is a solution to $\frac{dy}{dx} = ky$.

 Hard: Find a solution to $\frac{dy}{dx} = ky$ that satisfies $y(0) = 6$.

3. Easy: Show that $y = \sin \omega t$, where ω is a constant, is a solution to $\frac{d^2y}{dt^2} + \omega^2 y = 0$.

 Easy: Show that $y = \cos \omega t$, where ω is a constant, is a solution to $\frac{d^2y}{dt^2} + \omega^2 y = 0$.

 Harder: Show that for any constants A and B, $y = A\sin \omega t + B\cos \omega t$ is a solution to $\frac{d^2y}{dt^2} + \omega^2 y = 0$.

 Hard: Find a solution to $\frac{d^2y}{dt^2} + \omega^2 y = 0$ that satisfies $y(0) = 2$, $\frac{dy}{dt}(0) = 3$.

4. Harder: For which of the following differential equations is $y = 2x$ a solution?
 a. $\frac{dy}{dx} = 2$
 b. $\frac{dy}{dx} = y/x$
 c. $\frac{d^2y}{dx^2} = 0$
 d. $\frac{d^2y}{dx^2} = y - x$
 e. $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} = 6$