Power series and Taylor series 1

October 31, 2013

1. Find the radius of convergence and interval of convergence for the following power series:
 a. Easy:
 \[\sum_{n=0}^{\infty} \frac{x^n}{n^2} \]
 b. Easy:
 \[\sum_{n=0}^{\infty} \frac{(x + 3)^n}{n^2} \]
 c. Harder:
 \[\sum_{n=0}^{\infty} \frac{x^n}{n} \]
 d. Harder:
 \[\sum_{n=0}^{\infty} \frac{(x + 3)^n}{n!} \]
 e. Hard:
 \[\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{3^n} \]
 f. Hard:
 \[\sum_{n=0}^{\infty} (n!) x^n \]

2. Find the Taylor polynomial of degree 5 and the Taylor series for the following functions centered at the given points. Compute the radius of convergence.
 a. Easy: \(e^x \) centered at 0.
 b. Easy: \(1/(1 + x) \) centered at 0.
 c. Harder: \(x^3 + x^6 \) centered at 2.
 d. Harder: \(\frac{1}{x} \) centered at 1.
 e. Harder: \(\frac{1}{x} \) centered at -1.
 f. Hard: \(\sin x \) centered at 0.
 g. Hard: \(\cos x \) centered at 0.
 h. Hard: \(\ln(1 + x) \) centered at 0.
 i. Hard: \(\arctan (x) \) centered at 0.