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1. Partial differential equations

@ A partial differential equation (PDE) is an equation giving a
relation between a function of two or more variables, u, and
its partial derivatives.

@ The order of the PDE is the order of the highest partial
derivative of u that appears in the PDE.

@ A PDE is linear if it is linear in u and in its partial derivatives.
A linear PDE is homogeneous if all of its terms involve either
u or one of its partial derivatives.

@ A solution to a PDE is a function u that satisfies the PDE.

e Finding a specific solution to a PDE typically requires an
initial condition as well as boundary conditions.
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2. The one-dimensional wave equation

The wave equation

@ Check that u = f(x + ct) + g(x — ct), where f and g are two
smooth functions, is a solution (called d'Alembert’s solution)
to the one-dimensional wave equation,

Pu_ o

a2 = ax2
@ Is the two-dimensional wave equation (given below) linear?
%u , (0%u  O%u
ot2 Ox2  Oy?
0 02
@ What is the order of the heat equation au_ —u?
ot 0x?

@ The Laplace equation reads Au = 0, where A is the two- or
three-dimensional Laplacian. Is this equation homogeneous?
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@ The one-dimensional wave equation models the 2-dimensional
dynamics of a vibrating string which is stretched and clamped
at its end points (say at x =0 and x = L).

@ The function u(x, t) measures the deflection of the string and

satisfies
9%u 9%u ) )
e = C2W, c? x T, T = tension of the string
X

with Dirichlet boundary conditions

u(0,t) = u(L,t) =0, for all t > 0.

@ In what follows, we assume that the initial conditions are
u(x,0) = f(x),

ur(x,0) = %(X, 0) = g(x), for x € [0, L].
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The wave equation

@ We look for a solution u(x, t) in the form u(x, t) = F(x)G(t).
@ Substitution into the one-dimensional wave equation gives
1 &6 _1aF
c2G(t) dt2  F dx?’
Since the left-hand side is a function of t only and the

right-hand side is a function of x only, and since x and t are
independent, the two terms must be equal to some constant k.

@ Imposing the boundary conditions gives solutions of the form

up(x,t) = [an cos <cn %) + b, sin (cn%)] sin (n W—LX) ,

nm\2 ) ,
forn=1, 2, -~-,wherek:—<T> , and the a,’s and b,'s

are arbitrary constants.
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Solution by separation of variables (continued)

@ The functions up(x, t) are called the normal modes of the
vibrating string. The n-th normal mode has n — 1 nodes,
which are points in space where the string does not vibrate.

@ The general solution to the one-dimensional wave equation
with Dirichlet boundary conditions is therefore a linear
combination of the normal modes of the vibrating string,

i Chun(x, t)
n=1

Tt . t . TX
= Z [A,,cos (ch) + B, sin (chﬂ sin (nT> ,

n=1

u(x,t) =

where A, = Cpa, and B, = C,b,.
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Solution by separation of variables (continued)

@ The coefficients of the above expansion are found by imposing
the initial conditions.

: 0 : :
@ Since uy(x,0) and %(X,O) are proportional to sin(nmx/L),
imposing the initial conditions amounts to finding the
orthogonal expansions of the functions f(x) and g(x) on

{sin(nmx/L), n=1,2,---}.

: : X
@ Therefore, with U,(x) = sin (n T>
(u(x,0), Un(x)) 2 /L _ X
A, = = - f(x) sin{n—) dx,
| Un |1 L Jo () ( L)
L (us(x,0), Un(x)) 2/LL [ TX
n — = — _— —_ d
cnm | Un()| L), cnr g(x)sin (" L) X
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Solution by separation of variables (continued)

2y ,0%u
e Example: Show that the solution to 2 = c ) with
Dirichlet boundary conditions on [0, 1] and initial condition
X ifo<x<05
u(x,0) = ° @(X 0)=0
’ - 1 I (91‘. ) - Y
— if05<x<1

is of the form

4 1
u(x,t) = o2 sin(mx) cos(cmt) — 9 sin(37x) cos(3cmt)

1
+% sin(57x) cos(5cmt) + -+ | .

@ Experiment with the Vibrating String MATLAB GUI.
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3. The two-dimensional wave equation

@ The two-dimensional wave equation models the 3-dimensional
dynamics of a stretched elastic membrane clamped at its
boundary.

@ The function u(x, y, t) measures the vertical displacement of
the membrane (think of a drum for instance) and satisfies

Pu_ o (Fu | Pu
o2 ox2 " Oy?)

where ¢? is proportional to the tension of the membrane.

C2V2u,

@ The boundary conditions (Dirichlet) are u = 0 on the
boundary of the membrane and the initial conditions are of
the form

0
u(x,y,0) = F(x,y),  u(x,y,0) = 5o(x,y.0) = g(x.y).
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Rectangular membrane

@ For a rectangular membrane, we use separation of variables in
cartesian coordinates, i.e. we let

u(x,y,t) = F(x,y)G(t),
where the functions F, and G are to be determined.
@ Substitution into the wave equation leads to

1 d°G 1_, 5
- P IWF =
2Gde FV v
where v is a real constant.

@ The function F therefore satisfies Helmholtz's equation,
V2F + v?F = 0, which can also be solved by separation of
variables, i.e. by letting F(x,y) = Hi(x)Ha2(y).
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Rectangular membrane (continued)

The wave equation

@ As before, imposing the boundary conditions leads to a
collection of normal modes for the square membrane, which

are
Unn(X,¥,t) = [amncos(Amnt) + bmnSin(Amnt)]
_ (m7rx> _ (mry)
sin sin ,
a b
where
2 2
)\mn = CTr 5 + ?

and the membrane is the rectangle 0 < x < a, 0 <y < b.

@ The next step is to impose the initial conditions.
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@ Since the wave equation is linear, the solution u can be
written as a linear combination (i.e. a superposition) of the
normal modes for the given boundary conditions. In other
words, we write

Z Z Cmn Umn(X7Y7 t)

1 n=1

> ([Amncos(Amnt) + Bannsin(Amat)]

1n=1
in (723 (757)).

where Amn = Cmn @mn and Bmn = Cin bmn.

ulx,y,t) =

3
Il

I
NE

3
I
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Circular membrane

Rectangular membrane (continued)

@ The coefficients A, and Bp,, are found by writing the
orthogonal expansions of the initial conditions f(x,y) and
g(x, y) as double Fourier sine series. The corresponding dot
product is defined by

a b
(f,g) :/o /0 f(x,y)g(x,y) dy dx.

@ The presence of nodal lines in the normal modes may lead to
the existence of nodal curves in the solution u(x,y, t).

@ Experiment with the Rectangular Elastic Membrane MATLAB
GUL.
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@ For a circular membrane, it is more appropriate to write the
Laplacian in polar coordinates, so that u = u(r, 0, t) solves
0%u _ 2 82u+ lau+ 1 9%u
otz or2  rdr  r2o0?)°
@ If the membrane has radius R, the boundary conditions are

u(R,0,t) =0, for all t.

e For radially symmetric solutions (i.e. if up(r,0,t) = 0), the
method of separation of variables leads to normal modes in
terms of Bessel functions. Finding a specific solution amounts
to finding an orthogonal expansion of the initial conditions,
this time in terms of Fourier-Bessel series.

e Experiment with the Circular Elastic Membrane MATLAB
GUL.
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The one-dimensional heat equation (continued)

@ The one-dimensional heat equation models the diffusion of
heat (or of any diffusing quantity) through a homogeneous
one-dimensional material (think for instance of a rod).

@ The function u(x, t) measures the temperature of the rod at
point x and at time t. It satisfies the heat equation,
ou  ,0%u :
— ==, c® = diffusion coefficient.
ot Ox?
@ Typical boundary conditions are of one of the following types,
e Dirichlet: u(0,t) = u(L,t) =0 for all t > 0;

3} 0
e Neumann: a—u(O, t) = —U(L, t) = C for all t > 0, where C is
X X
a given constant (often, C = 0);
where we assume that the end points of the rod are at x =0

and x = L.
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@ One can also consider mixed boundary conditions, for instance
Dirichlet at x = 0 and Neumann at x = L.

@ The initial condition is given in the form
u(x,0) = f(x),
where f is a known function.

@ In this section, we solve the heat equation with Dirichlet
boundary conditions. As for the wave equation, we use the
method of separation of variables.

@ Setting u(x,t) = F(x)G(t) gives

1 dG 1 d?F B
c2G dt  Fdx2
where k is some constant to be determined.

Chapter 12: Partial Differential Equations




The one-dimensional heat equation on a finite interval
The one-dimensional heat equation on the whole line

The heat equation
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Separation of variables

@ As for the wave equation, the boundary conditions can only
be satisfied if we impose k < 0, say k = —12.

2

F
@ The solution to d—2 = k F = —1%F is then
dx

n=1,2,--

F(x) = bpsin (n3> , R
L
where v has to satisfy v = nm/L.

@ After solving for G(t), we obtain an infinite number of modes,

un(x, t) = bysin (nW—LX) exp {— (cerr>2 t] .

where n=1,2,---.
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Separation of variables (continued)
@ Since the heat equation is linear, its general solution in the

presence of Dirichlet boundary conditions is given by a linear
combination (or superposition) of the modes up, i.e.

i Chun(x, t)
n=1

= ansin (nW—LX> exp {—(Czﬂft},

where B, = C,b,,.

u(x,t) =

o0
@ The initial condition reads f(x) = Z B, sin <n7T—LX) and the
1

n=
coefficients B, can therefore be obtained by finding the
half-range sine expansion of f(x).
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Separation of variables (continued)

@ In other words, we have

5 L
B,,:Z/O f(x)sin (nW—LX> dx.

@ For an insulated rod (i.e. for Neumann boundary conditions
with C = 0), the solution is of the form

) =3 Ancos (07 o[- (5177,
n=0

and the A, are found by writing the half-range cosine
expansion of the initial condition f(x).

@ Experiment with the One-dimensional Heat Equation
MATLAB GUI.
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5. The one-dimensional heat equation on the whole line

@ To solve the one-dimensional heat equation on the whole line,
one first formally takes the Fourier transform of the heat
equation,

o _ 2

212
E—C8X2 =—c“k ug.

dt
e The initial condition, u(x,0) = f(x) reads Gx(0) = f(k), and
the solution is therefore

u(x,t) = \/% /::?(k) exp(—c?k?t) exp(i k x) dk.

@ We can recognize this integral as the inverse Fourier transform
of a product of two Fourier transforms, f(k) and g(k), where
g(k) = exp(—c?k?t).
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Method of convolution

X2

1
——e ———— |, and since
V2C2t Xp( 4C2t) !

the inverse Fourier transform of a product is the convolution

V2r

u(x,t) = 2c\l/ﬁ /_O; f(y)exp (—%) dy.

e Example: Solve the heat equation on the whole line with
initial condition u(x,0) =1 if |x| <1 and u(x,0) =0
otherwise.

@ Since we know that g(x) =

of the inverse transforms times , we therefore have

@ Experiment with the Heat Equation on the Whole Line
MATLAB GUI.
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