
Power series solutions of ordinary di¤erential equations
Sturm-Liouville problems

Orthogonal eigenfunction expansions

Chapter 5: Expansions
Sections 5.1, 5.2, 5.7 & 5.8

Chapter 5: Expansions

Power series solutions of ordinary di¤erential equations
Sturm-Liouville problems

Orthogonal eigenfunction expansions

Power series
Radius of convergence
Power series as solutions to ODE�s

1. Power series solutions of ordinary di¤erential equations

A power series about x = x0 is an in�nite series of the form
1X
n=0

an(x � x0)n:

This series is convergent (or converges) if the sequence of
partial sums

Sn(x) =
nX
i=0

ai (x � x0)i

has a (�nite) limit, S(x), as n!1. In such a case, we write

S(x) =
1X
n=0

an(x � x0)n:

If the series is not convergent, we say that it is divergent, or
that it diverges.
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Radius of convergence

One can show (Abel�s lemma) that if a power series converges
for jx � x0j = R0, then it converges absolutely for all x�s such
that jx � x0j < R0.
This allows us to de�ne the radius of convergence R of the
series as follows:

If the series only converges for x = x0, then R = 0.
If the series converges for all values of x , then R =1.
Otherwise, R is the largest number such that the series
converges for all x�s that satisfy jx � x0j < R.

A useful test for convergence is the ratio test:

R =
1
K
; where K = lim

n!1

����an+1an
���� ;

where K could be in�nite or zero, and it is assumed that the
an�s are non-zero.
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Power series as solutions to ODE�s

Taylor series are power series.

A function f is analytic at a point x = x0 if it can locally be
written as a convergent power series, i.e. if there exists R > 0
such that

f (x) =
1X
n=0

f (n)(x0)
n!

(x � x0)n

for all x�s that satisfy jx � x0j < R.

If the functions p=h and q=h in the di¤erential equation

h(x)y 00 + p(x)y 0 + q(x) = 0 (1)

are analytic at x = x0, then every solution of (1) is analytic at
x = x0.
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Power series as solutions to ODE�s (continued)

We can therefore look for solutions to (1) in the form of a
power series.

Example: Solve y 00� 2y 0+ y = 0 by the power series method.

Many special functions are de�ned as power series solutions to
di¤erential equations like (1).

Legendre polynomials are solutions to Legendre�s equation
(1� x2)y 00 � 2xy 0 + n(n + 1)y = 0 where n is a non-negative
integer.

Bessel functions are solutions to Bessel�s equation
x2y 00 + xy 0 + (x2 � �2)y = 0 with � 2 C.

Chapter 5: Expansions

Power series solutions of ordinary di¤erential equations
Sturm-Liouville problems

Orthogonal eigenfunction expansions

Motivation from PDE
Sturm-Liouville problems
Orthogonality of eigenfunctions
Examples

Separation of variables for the wave equation

Consider the wave equation on a string of length L:

@2u
@2t

=
@2u
@x

for a function u (x ; t) de�ned on a rectangle [0; L]� [0;Tf ]:
We may try to solve the equation �rst by assuming
u (x ; t) = X (x)T (t), where X and T are functions of one
variable. Plugging this into the equation we get

X (x)T 00 (t) = X 00 (x)T (t) ;

or
T 00 (t)
T (t)

=
X 00 (x)
X (x)

:
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Wave equation, cont�d

Since one side is a function of t alone and the other is a
function of x alone, we �nd that both must be equal to some
constant, i.e.,

T 00 (t)
T (t)

=
X 00 (x)
X (x)

= k

for some constant k: (We don�t know what k is!)

If we �x the endpoints of the string, say u(0; t) = u(L; t) = 0,
then in order to solve the wave equation, we must solve the
following boundary value problem:

X 00 � kX = 0; X (0) = X (L) = 0:

for di¤erent values of k.

This is a Sturm-Liouville problem.
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2. Sturm-Liouville problems

A regular Sturm-Liouville problem is an eigenvalue problem of
the form

L y = ���(x) y ; L y =
�
p(x)y 0

�0
+ q(x)y ; (2)

p, q and � are real continuous functions on [a; b], a, b 2 R,
p(x) > 0 and �(x) > 0 on [a; b], and y(x) is square-integrable
on [a; b] and satis�es given boundary conditions.

In what follows, we will use separated boundary conditions

C1y(a) + C2y 0(a) = 0; C3y(b) + C4y 0(b) = 0: (3)

An eigenvalue of the Sturm-Liouville problem is a number �
for which there exists an eigenfunction y(x) 6= 0 that satis�es
(2) and (3).
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Sturm-Liouville problems (continued)

One can show that with separated boundary conditions, all
eigenvalues of the Sturm-Liouville problem are real (assuming
they exist).

In such a case, eigenfunctions associated with di¤erent
eigenvalues are orthogonal (with respect to the weight
function �).

Two functions y1(x) and y2(x) are orthogonal with respect to
the weight function � (�(x) > 0 on [a; b]) if

< y1; y2 >�
Z b

a
y1(x) y2(x)�(x) dx = 0:
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Sturm-Liouville problems (continued)

Legendre�s and Bessel�s equations are examples of singular
Sturm-Liouville problems.

Legendre�s equation (1� x2)y 00 � 2xy 0 + n(n + 1)y = 0 can
be written as �

p(x)y 0
�0
+ q(x)y = ��y

where p(x) = 1� x2, q(x) = 0 and � = n(n+ 1). In this case
there are no boundary conditions and [a; b ] = [�1; 1].

Bessel�s equation x2y 00 + xy 0 + (x2 � �2)y = 0 can be written
in the form (2) by setting p(x) = �(x) = x , � = 1, and
q(x) = ��2=x . In this case, [a; b ] = [0;R ], R > 0 and y(x)
is required to vanish at x = R.
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3. Orthogonal eigenfunction expansions

Recall that if A is a square n� n matrix with real entries, then
the (genuine and generalized) eigenvectors of A,
U1;U2; � � � ;Un, form a basis of Rn.

This means that every vector X 2 Rn can be written in the
form

X = a1U1 + a2U2 + � � �+ anUn; (4)

where the coe¢ cients ai are uniquely determined.

Moreover, if the Ui�s are orthonormal (i.e. orthogonal and of
norm one), then each coe¢ cient ai can be found by taking
the dot product of X with Ui , i.e. ai =< X ;Ui >.

In this case, (4) is an orthogonal expansion of X on the
eigenvectors of A.
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Orthogonal eigenfunction expansions (continued)

Similarly, there exist special linear di¤erential operators, such
as Sturm-Liouville operators, whose eigenfunctions form a
complete orthonormal basis for a space of functions satisfying
given boundary conditions.

We can then use such a complete orthonormal basis,
fy1; y2; � � � g, to write any function in the space as a uniquely
determined linear combination of the basis functions. Such an
expansion is called an orthonormal expansion or a generalized
Fourier series.

In such a case, for every function f in the space, we can write

f (x) =
1X
i=1

ai yi (x); ai =< f ; yi >; jjyi jj = 1:
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Trigonometric series

Trigonometric series are the most important example of
Fourier series.

Consider the Sturm-Liouville problem with periodic boundary
conditions (p(x) = 1; q(x) = 0; �(x) = 1),

y 00 + �y = 0; y(�) = y(��); y 0(�) = y 0(��):

The eigenfunctions are 1; cos(x); sin(x); cos(2x),
sin(2x); � � � ; cos(mx); sin(mx); � � � , and correspond
to the eigenvalues 0; 1; 1; 4; 4; � � � ; m2; m2; � � � .

The above eigenfunctions are orthogonal but not of norm one.
They can be made orthonormal by dividing each eigenfunction
by its norm. They form a complete basis of the space of
square integrable functions on [��; �].
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