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Radius of convergence

@ One can show (Abel’'s lemma) that if a power series converges
for |x — xo| = Ry, then it converges absolutely for all x's such
that [x — xo| < Ro.

@ This allows us to define the radius of convergence R of the

series as follows:

o If the series only converges for x = xp, then R = 0.

o If the series converges for all values of x, then R = oo.

o Otherwise, R is the largest number such that the series
converges for all x's that satisfy |x — x| < R.

@ A useful test for convergence is the ratio test:
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R= ra where K = |im
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where K could be infinite or zero, and it is assumed that the
a,'s are non-zero.
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@ A power series about x = xp is an infinite series of the form

[e.o]
Z an(x — xo)".
n=0

@ This series is convergent (or converges) if the sequence of

partial sums
n

Sa(x) = ai(x — x)’
i=0
has a (finite) limit, S(x), as n — oo. In such a case, we write
o0
S(x) = an(x — xp)".
n=0

@ If the series is not convergent, we say that it is divergent, or
that it diverges.
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Power series as solutions to ODE's

@ Taylor series are power series.

@ A function f is analytic at a point x = xq if it can locally be
written as a convergent power series, i.e. if there exists R > 0
such that

£ (x
Fx) =3 00 gy

n!
n=0

for all x's that satisfy |x — x| < R.

e If the functions p/h and g/h in the differential equation

h(x)y" + p(x)y’ +q(x) = 0 (1)

are analytic at x = xp, then every solution of (1) is analytic at
X = Xp.
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Sturm-Liouville problems

Power series as solutions to ODE's (continued)

@ We can therefore look for solutions to (1) in the form of a
power series.

e Example: Solve y” — 2y’ + y = 0 by the power series method.

@ Many special functions are defined as power series solutions to
differential equations like (1).
e Legendre polynomials are solutions to Legendre’s equation
(1 —x?)y” —2xy’ + n(n+ 1)y = 0 where n is a non-negative
integer.

e Bessel functions are solutions to Bessel's equation
x2y" 4+ xy' + (x*> — v?)y = 0 with v € C.
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Wave equation, cont'd

Separation of variables for the wave equation

@ Consider the wave equation on a string of length L:

O?u  u
2t Ox
for a function u (x, t) defined on a rectangle [0, L] x [0, T¢].
o We may try to solve the equation first by assuming
u(x,t) = X (x) T (t), where X and T are functions of one
variable. Plugging this into the equation we get

X)T"(8) = X" () T (1),
or T//(t) _ Xl/ (X)
()  X(x)°
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2. Sturm-Liouville problems

@ Since one side is a function of t alone and the other is a
function of x alone, we find that both must be equal to some
constant, i.e.,

T/l (t) B XI/ (X)
T(t)  X(x)

for some constant k. (We don't know what k is!)

=k

e If we fix the endpoints of the string, say u(0,t) = u(L,t) =0,
then in order to solve the wave equation, we must solve the
following boundary value problem:

X"~ kX =0, X(0)=X(L)=0.

for different values of k.

@ This is a Sturm-Liouville problem.
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@ A regular Sturm-Liouville problem is an eigenvalue problem of
the form

Ly=-Xo(x)y, Ly=I[px)y] +ax)y, (2)

p, g and o are real continuous functions on [a, b], a, b € R,
p(x) > 0 and o(x) > 0 on [a, b], and y(x) is square-integrable
on [a, b] and satisfies given boundary conditions.

@ In what follows, we will use separated boundary conditions
Giy(a) + Gy'(a) =0,  Gy(b)+ Gy'(b)=0.  (3)

@ An eigenvalue of the Sturm-Liouville problem is a number A
for which there exists an eigenfunction y(x) # 0 that satisfies
(2) and (3).
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Sturm-Liouville problems

Sturm-Liouville problems

Sturm-Liouville problems (continued)

@ One can show that with separated boundary conditions, all @ Legendre's and Bessel's equations are examples of singular
eigenvalues of the Sturm-Liouville problem are real (assuming Sturm-Liouville problems.
they exist).
o Legendre's equation (1 — x?)y” —2xy’ + n(n+ 1)y = 0 can
@ In such a case, eigenfunctions associated with different be written as
eigenvalues are orthogonal (with respect to the weight [p(x)y’]’ +q(x)y = Ay
function o).

where p(x) =1 —x?, g(x) =0 and A = n(n+1). In this case
e Two functions yj(x) and y»(x) are orthogonal with respect to there are no boundary conditions and [a, b] = [-1, 1].
the weight function o (o(x) > 0 on [a, b]) if

@ Bessel's equation x2y” + xy’ + (x> — v?)y = 0 can be written
b in the form (2) by setting p(x) = o(x) = x, A =1, and
<y >= / y1(x) y2(x) o (x) dx = 0. g(x) = —12/x. In this case, [a,b] = [0, R], R > 0 and y(x)
’ is required to vanish at x = R.
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3. Orthogonal eigenfunction expansions Orthogonal eigenfunction expansions (continued)
@ Recall that if A is a square n x n matrix with real entries, then @ Similarly, there exist special linear differential operators, such
the (genuine and generalized) eigenvectors of A, as Sturm-Liouville operators, whose eigenfunctions form a
Uy, Up, -+, U,, form a basis of R". complete orthonormal basis for a space of functions satisfying

) ) ) given boundary conditions.
@ This means that every vector X € R" can be written in the

form @ We can then use such a complete orthonormal basis,

X =a Uy +aylUs + -+ ay U, (4) {yl,yg,'- .- } to write any fgnctlon in the‘space as a uniquely
determined linear combination of the basis functions. Such an
expansion is called an orthonormal expansion or a generalized
Fourier series.

where the coefficients a; are uniquely determined.

e Moreover, if the U;'s are orthonormal (i.e. orthogonal and of

norm one), then each coefficient a; can be found by taking @ In such a case, for every function f in the space, we can write
the dot product of X with U;, i.e. a;, =< X, U; >. o
e In this case, (4) is an orthogonal expansion of X on the flx) = Za,-y,-(x), ai =<f,yi>, lyill = 1.
i=1

eigenvectors of A.
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Trigonometric series

@ Trigonometric series are the most important example of
Fourier series.

e Consider the Sturm-Liouville problem with periodic boundary
conditions (p(x) =1, g(x) =0, o(x) =1),

Y'+dy=0, y(m)=y(-n), y(x)=y'(-n).

@ The eigenfunctions are 1, cos(x), sin(x), cos(2x),
sin(2x), ---, cos(mx), sin(mx), ---, and correspond
to the eigenvalues 0, 1, 1, 4, 4, --- , m?>, m?, - --.

@ The above eigenfunctions are orthogonal but not of norm one.
They can be made orthonormal by dividing each eigenfunction
by its norm. They form a complete basis of the space of
square integrable functions on [—m, 7.
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