MATH 322

TEST 3

April 28th, 2015

Name: ________________________________

Directions:

a. You may NOT use a calculator, your book, or your notes.
b. Do all problems in the spaces provided. If you do run out of space and continue a problem on the back, please indicate this.
c. Show all work. Unless otherwise noted, a solution without work is worth nothing.
d. Circle your answers.
e. Good Luck!

Score:

1. _________
2. _________
3. _________
4. _________
5. _________

Total _________
1. (10pts) Suppose $f(x)$ is a function defined on the interval $-10 < x < 10$ and suppose the Fourier series for $f(x)$ is given by the function $F(x)$ described by

$$F(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{10} x + b_n \sin \frac{n\pi}{10} x \right).$$

a. (5pts) Give a formula for the coefficient a_0. Your answer should have $f(x)$ in it and should have an integral in it.

b. (5pts) Give a formula for the coefficient b_3. Your answer should have $f(x)$ in it and should have an integral in it.
2. (15pts)
Recall the sawtooth function, which is the periodic extension of the function
\[f(x) = x + \pi \]
for \(-\pi < x < \pi\). The Fourier series (computed in class and in the book) is
\[F(x) = \pi + 2 \left(\sin x + \frac{1}{2} \sin 2x - \frac{1}{3} \sin 3x + \cdots \right). \]

What is the value of \(F(\pi) \)? Justify this in two ways: (a) using the convergence theorem for Fourier series and (b) by computing the series directly.

Extra credit (10 points maximum, very little partial credit): Compute the derivative of the Fourier series \(F(x) \) by differentiating the series term by term. Does this series converge everywhere? Is this the series of a function that we know?
3. (20pts) Consider the function \(g(x) = \sin x \) for \(0 \leq x \leq \pi \). In this problem you may find the following formula useful:

\[
\int \sin ax \cos bx \, dx = -\frac{1}{2(a+b)} \cos ((a+b)x) - \frac{1}{2(a-b)} \cos ((a-b)x) .
\]

a. (10pts) Compute the Fourier series for the odd half range Fourier expansion for \(g \) (the associated series should have period \(2\pi \)).

b. (10pts) Compute the first two nonzero terms in the Fourier series for the even half range Fourier expansion for \(g \) (the associated series should have period \(2\pi \)).
4. **(30pts)** Consider the wave equation for the function $u(x, t)$,

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

with boundary conditions $u(0, t) = 0$ and $u(L, t) = 0$. In this problem we will find $u(x, t)$ for the string of length $L = 1$ and $c^2 = 1$ when the initial velocity is zero and the initial deflection with small k (say, $k = 0.01$) is $k \left(\sin \pi x - \frac{1}{2} \sin 2\pi x \right)$.

a. (15pts) Use separation of variables to find the following solutions to the differential equation with given boundary conditions (but not the initial conditions)

$$u_n(x, t) = T_n(t)X_n(x) = (A_n \cos(n\pi t) + B_n \sin(n\pi t)) \sin(n\pi x).$$

b. (15pts) Find $u(x, t)$ that satisfy the differential equation with boundary conditions and the initial conditions (you may use Part a even if you cannot answer it).
5. (25pts)

Consider the heat equation
\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}
\]
on a metal bar of length \(\pi\) and with \(c = 1\) such that one end is kept at temperature \(u(0, t) = 0\) and the other has the property that \(\frac{\partial u}{\partial x}(\pi, t) = 0\).

a. (10pts) Using separation of variables derive two associated Sturm-Liouville equations, one with boundary conditions and one without boundary conditions.

b. (15pts) Solve the Sturm-Liouville equation with boundary conditions. (5 pts to solve either equation without boundary conditions)