Chapter Check for Chapter 1

September 16, 2015

1. Let $\mathcal{F}(X, F)$ denote the set of functions from the set X to the field F.

 a. Describe the usual vector space structure for $\mathcal{F}(X, F)$ (you do not have to show it is a vector space).

 b. Let $x_0 \in X$ and for each $a \in F$, consider the set $S_a = \{ f \in \mathcal{F}(X, F) : f(x_0) = a \}$. For which values of a is S_a a subspace? Justify your answer.

 c. If X is a finite set, show that the dimension of $\mathcal{F}(X, F)$ is equal to the number of elements in X.

2.

 a. Find a basis for \mathbb{R}^3 that contains the vector $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Justify your answer.

 b. Is the set $\left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -5 \\ 2 \end{pmatrix} \right\}$ a basis for \mathbb{R}^3? Why or why not?

3. (Comprehensive/graduate option only) Consider the subspace $W = \{(t, t, t) \in \mathbb{R}^3 : t \in \mathbb{R} \}$ of \mathbb{R}^3. Give an explicit basis for \mathbb{R}^3/W. Justify your answer.