Chapter Check for Chapters 3 and 4

November 3, 2015

1. Consider the matrix

\[A = \begin{pmatrix} 1 & 2 & -1 & 3 & 1 \\ 2 & 1 & 2 & -1 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}. \]

a. Using row and column operations, find invertible matrices \(P \) and \(Q \) such that \(PAQ \) is of the block form

\[\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \]

for a certain size identity matrix \(I \) where the other matrices have all zero entries.

b. Put \(A \) in reduced row echelon form.

c. Use the reduced row echelon form of \(A \) to find a collection of columns of \(A \) that form a basis for the column space.

2. a. Compute the determinant of the matrix

\[\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 6 & 12 & 9 \\ 3 & 6 & 10 & 15 \\ 4 & 8 & 12 & 14 \end{pmatrix} \]

by using row operations (Hint: Recall the determinant of an upper triangular matrix).

b. Recall a matrix \(A \in F^{n \times n} \) is skew-symmetric if \(A^T = -A \). If the field is not of characteristic 2, use the determinant to show that \(A \) has rank less than \(n \) if \(n \) is odd.

3. (Comprehensive/graduate option only) Let \(A \in F^{m \times n} \) and \(B \in F^{n \times m} \). Show that \(\det(I_m + AB) = \det(I_n + BA) \) by showing that

\[
\begin{pmatrix} I_m & -A \\ B & I_n \end{pmatrix} = \begin{pmatrix} I_m & 0 \\ B & I_n \end{pmatrix} \begin{pmatrix} I_m & -A \\ 0 & I_n + AB \end{pmatrix} = \begin{pmatrix} I_m + BA & -A \\ 0 & I_n \end{pmatrix} \begin{pmatrix} I_m & 0 \\ B & I_n \end{pmatrix}
\]

and using properties of determinants. [This is called Sylvester’s determinant theorem.]