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1 Small world phenomenon

The small world phenomenon is the principle that all people are linked by short
chains of acquaintances. For instance, �six degrees of separation� is the idea
that everyone is linked by chains of people at most 6 persons long. That is,
given any persons A and B; there are a chain of people such that A knows C
who knows D who knows E who knows F who knows G whoe knows H who
knows B: Other examples are the Kevin Bacon game (that every actor can be
linked to Kevin Bacon via actors they have acted with) and the Erdos number
(related to collaborations on mathematics papers).
The �rst real empirical evidence is from an experiment by the social psychol-

ogist Stanley Milgram during the 1960s. He tested it in the following way. He
chose a target person, as stockbroker living near Boston. And he took a random
person in, say, Nebraska and asked them to get a letter to the target. Each per-
son was only allowed to forward the letter to a single acquaintance they know
on a �rst name basis. The only things the person knew about the target was
his name, occupation, address, and some personal information. One can think
of the letter as tracing a path in the graph of all people who know each other
(the acquaintance graph). Milgram found that sometimes the letters made it to
the target, and among those that did make it to the target, the median length
of the path was around 6, hence the idea of 6 degrees of separation.
For our purposes, we want to understand why a graph like the acquaintance

graph might have short paths, and then think about how to �nd short paths.
Simplistic idea: Suppose each person knows 100 others on a �rst name basis.

Then in 2 steps, one should be able to reach 10,000 people, in three steps, 100
x 100x100 = 1,000,000 people, and then by 5 steps 10 billion people.. The
population of the US is estimated just above 300 million and the population of
the world is estimated to be less than 7 billion.
This idea is a bit too simplistic, since many people who you know on a �rst

name basis also know each other. This means that, in reality, 5 steps will not
reach nearly this many people. The implicit assumption made above is that
everyone knows 100 random people of all possible people.
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Which brings us to the Watts-Strogatz model. The idea is that there is a
balance between the random association of people and the notion that people
know others based on proximity. Watts and Strogatz considered a model where
each verticex is placed around a ring, and proximity is measured by attaching
each verticex to all other vertices within some proximity (such as 2). Then,
with some probability p, each edge is rewired to a random edge, not allowing
multiple edges. Thus, for p = 0, there is no randomness, for p = 1; it is entirely
random, and for p in between there is some amount of randomness. For each
such graph, They measured two quantities:

1. The characteristic path length L: This is the typical separation between
two vertices, computed as the length of shortest paths averaged over all
pairs of vertices.

2. The clustering coe¢ cient C: For each vertex v; one can compute Cv as
the number of edges between neighbors of v; divided by the total number
possible (which is

�
kv
2

�
= kv (kv � 1) =2 if v has kv neighbors). C is the

average of these over all vertices.

One can look at Figure 2 in WS to see the relationship for di¤erent values of
p: The interesting phenomenon is that the characteristic path length decreases
well before the clustering coe¢ cient does.

Example 1 1D lattice. Say we have vertices on the number line at 1; 2; 3; : : : ; n:
Then the distance between two vertices is d (vi; vj) = ji� jj : The average path
length is
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6
:

The clustering coe¢ cient is zero.

Example 2 1D lattice, with edges between vertices a distance at most 2 apart.
The average path length is roughly half that in the 1D lattice. However, the
clustering coe¢ cient is larger, since each vertex (except the end ones) has four
adjacent vertices and these have one edge between them. So the clustering coef-
�cient is

C � 1

6
:

Notice that this does not change as n!1:
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Example 3 2D square lattice graph. We can label vertices vi;j where i and j
are integers (consider i; j are between 1 and n; so there are p = n2 vertices).
The distance between two vertices is d (vi;j ; vk;`) = ji� kj + jj � `j : There are

n2!
2(n2�2)! =

n2(n2�1)
2 pairs of vertices. Thus the average path length is

1
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p1=2:

Other than at the edges, each vertex is adjacent to 4 vertices, none of which are
adjacent to each other, so it has clustering 0:

Example 4 Random graph. Suppose we have a graph with n vertices such that
each vertex is adjacent to k random other vertices. We see that given a vertex
v; k other vertices are adjacent to it, and (since it is random), k2 vertices are
distance less than 2 to v: And so if n = ka; we see that a = logn

log k ; meaning that
essentially every vertex has distance less than a: It follows that the average path
length is proportional to log n: In terms of clustering, we see that if u and w are
vertices adjacent to v; there is a a k=n chance that u and w are adjacent. Thus
the clustering coe¢ cient is around k=n:

Thus Watts and Strogatz suggest the following de�nition of small world
phenomenon.

De�nition 5 A graph exhibits small world behavior if L & Lr and C � Cr;
where Lr and Cr are the characteristic path length and clustering coe¢ cient for
a random graph and A & B means A is larger than B but close to B and A� B
means that A is much larger than B:

In other words, small world phenomenon has a lot of clustering, but still
short paths. See WS for some estimates of L and C for several large graphs
which seem to exhibit small world behavior.
We can look at another type of graph which can exhibit small-world behavior.

Consider an n � n grid, and suppose there are edges between every other grid
point within radius r; that is, any other edge which can be reached by r steps
by moving along the grid. This gives a nice notion of geometric proximity.
Now suppose that every vertex is connected to k vertices which are randomly
distributed throughout the entire network. Then each vertex has roughly r2+k
edges. Notice that by using only random edges, one can reach k2 vertices in two
steps, and kj vertices in j steps. Thus, on the average, one could reach all n2

vertices in 2 logk n = c log n steps. Note that by using nonrandom edges only,
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it would take on average a multiple of n steps. Thus for large n; the shortest
paths act like random edges. However, the clustering is quite high. Considering
only the grid vertices, clustering is like

C >
1
2r
2
�
r2 � 1

�
1
2 (r

2 + k) (r2 + k � 1)
� 1

if k is small compared with r2: Note that if k is large compared to r2; as for a
random graph, the clustering is

Crand <
k + 1

2r
2
�
r2 � 1

�
1
2 (r

2 + k) (r2 + k � 1)

which goes to zero.
In fact, one could consider a network where k is a number between 0 and 1;

representing a fact that we are actually only allowing random edges for some
vertices (not every vertex). Conceptually, we can group parts of the n � n
grid into �towns,�each of which has some number of random edges. We then
produce a di¤erent graph which is similar to our original formulation. One can
get from one person to another in the town quite easily using the edges based
on proximity.

2 Decentralized search

How was it that participants in the Milgram experiment were able to get the
letters to their targets without any centralized help? They did not �nd paths
and choose the shortest, but were able to �nd a short path knowing only minimal
information. Our next task is to try to �nd models for this.
The model is that we have a starting node s and a target node t: Suppose

s only knows where t is, but not how to reach t quickly (because s does not
know about the random edges). This is also true for each intermediate node
along the path. Of course, an obvious strategy is to just use the edges based on
proximity and move closer and closer to where t is located. This will produce
a delivery time on the order of the distance from s to t: (Delivery time is the
number of edges in the path from s to t:) We wish to �nd an algorithm that
has, on the average, a faster delivery time than this naive algorithm. Since we
already know that the shortest path is, on the average, proportional to log n;
we would hope to �nd an algorithm which acheives this.
It turns out that our grid model does not admit such an algorithm. Kleinberg

was able to show that it takes at least n2=3: The main idea is that it is quite
hard to choose which random edges to pick.
We use a new model which is slightly more general than the network model.

Instead of adding k random edges to the nodes within r grid steps, for each pair
of edges v and w; we add an edge between them with probability proportional
to d (v; w)�q ; for some value q: We call q the clustering exponent. If q = 0;
then we have equal probabilities and so we have the previous grid model. If q
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is very large, then we have very few random edges at all. So q = 0 has the most
randomness and the randomness decreases as q increases.
Henceforth, let�s assume that r = 1; and so each vertex is attached to 4

other vertices (unless the vertex is on the boundary). So for a �xed vertex v;
there are 4 vertices a distance 1 away from v, 8 vertices a distance 2 away, 12
vertices a distance 3 away, and, in general, 4n vertices a distance n away from
v: Also, let�s assume that each vertex has one random edge. The algorithm is
quite simple, choose the adjacent vertex which is closest to the target. This is
called the myopic search. The key fact we will show is that this does �nd the
target on average in time (log n)2 :
The problem we will �nd is that if there is too much randomness, it is hard

to exploit it in an algorithm. But if there is not enough randomness, there
aren�t enough short paths.

Theorem 6 (Kleinberg) If q = 2 then there is an algorithm for a decen-
tralized search with delivery time proportional to (log n)2 : If q 6= 2; then any
algorithm for a decentralized search has a delivery time proportional to nc for
some c (which depends on q).

We will give an idea of why q = 2 allows for a good decentralized search
algorithm. We will consider only lattices of radius 1; but higher radius is similar.
We �rst note that for the probability to be proportional to d (v; w)�q ; we must
have that the probability of there being a directed edge (v; w) is

P(v;w) =
d (v; w)

�qP
u d (v; u)

�q :

This makes the probability 1 that there is some edge from v to another vertex.
Now, we will measure progress by looking at the domain in phases.

De�nition 7 The search is in phase j if the distance of the current vertex to t
is between 2j and 2j+1: We denote by Bj the set of vertices at most a distance
2j away from t: (So the search is in phase j if it is in Bj+1 but not Bj :

Note that the largest value of j is equal to the least integer greater than
log2 n� 1; so there are roughly log n phases. If we could should that the search
is not in any phase for too long, then we just add that up over the log n phases
and get our result. Thus we need to show that the search is not in any phase
for too long.
Let�s consider the probability that if the search is in phase j at a vertex v

that it jumps into Bj in one step by the random edges only (so it moves into
phase j � 1). We want this probability to not be too small, so we need a lower
bound on P(v;w) if w 2 Bj : Note that d (v; w) � 2j + 2j+1 = 3

�
2j
�
and so
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d (v; w)
�q � 3�q2�qj : Furthermore,X
u

d (v; u)
�q � 4

�
1�q

�
+ 8

�
2�q

�
+ 12

�
3�q

�
+ � � � 4 (2n) (2n)�q

= 4
2nX
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j1�q

Notice that this is bounded above by a constant if q > 2: If q = 2 we get that a
bound that X

u

d (v; u)
�2 � c log n

and if q < 2 we get a bound thatX
u

d (v; u)
�2 � c 1

1� qn
2�q

using integral estimates. Let�s restrict to q = 2:
We just showed that if the message is at v in phase j and w 2 Bj then the

probability P(v;w) bounded by

P(v;w) � c
2�2j

log n

for some constant c that is independent of v; w; and j: Note that this is inde-
pendent of v and w: So the probability Pj that the message jumps into Bj after
one step is

Pj =
X
w2Bj

P(v;w) � c22j
2�2j

log n
=

c

log n
:

So the probability that it does not is 1� c
logn : The expected time spent in phase

j is then

1� c

log n
+

�
1� c

log n

�2
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�
1� c

log n

�3
+ � � �

This is a geometric series, so the expected time is less than

1

c
log n:

This says that the total expected length is a constant times (log n)2 since there
are log n phases and each phase expects to last log n jumps.
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