Green's Functions of the Laplacian

David Glickenstein
February 11Г2000

1. Preliminary Calculations. Suppose we are on $\mathbb{R}^{n} \Gamma$ with $n \geq 3$. Let

$$
\Gamma(x, y)=\omega_{n-1}|x-y|^{2-n}
$$

where ω_{n-1} is the volume of the ($\mathrm{n}-1$)-sphere S^{n-1}. We want to compute derivatives of this function.

$$
\begin{aligned}
\left|\frac{\partial}{\partial x^{i}} \Gamma(x, y)\right| & =\left|\omega_{n-1} \frac{\partial}{\partial x^{i}}\left(\sum_{j}\left(x^{j}-y^{j}\right)^{2}\right)^{(2-n) / 2}\right| \\
& =\omega_{n-1}(n-2)\left|\frac{x^{i}-y^{i}}{\left(\sum_{j}\left(x^{j}-y^{j}\right)^{2}\right)^{n / 2}}\right| \\
& \leq \omega_{n-1}(n-2) \frac{r}{r^{n}} \\
& =\omega_{n-1}(n-2) \frac{1}{r^{n-1}}
\end{aligned}
$$

and $\Gamma(x, y)=\omega_{n-1} r^{2-n} \leq \omega_{n-1} r^{1-n}$ for $r \leq 1$ so for a bounded domain Ω we have that $\Gamma(x, y)$ and $\frac{\partial}{\partial x^{2}} \Gamma(x, y)$ are bounded by $(n-2) r^{1-n} \Gamma$ which is integrable over $\Omega \Gamma$ so we can interchange the differentiation and integration Γ so $\frac{\partial}{\partial x^{2}} \int_{\Omega} \Gamma(x, y) f(y) d y=\int_{\Omega} \frac{\partial}{\partial x^{2}} \Gamma(x, y) f(y) d y$.

Now Γ

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x^{k} \partial x^{i}} \Gamma(x, y) & =\omega_{n-1} \frac{\partial}{\partial x^{k}}\left[(n-2) \frac{x^{i}-y^{i}}{\left(\sum_{j}\left(x^{j}-y^{j}\right)^{2}\right)^{n / 2}}\right] \\
& =\left\{\begin{array}{ll}
\omega_{n-1}(2-n) n \frac{\left(x^{i}-y^{i}\right)\left(x^{k}-y^{k}\right)}{\left(\sum_{j}\left(x^{j}-y^{j}\right)^{2}\right)^{(n+2) / 2}} \\
\omega_{n-1}(2-n) n \frac{\left(x^{2}-y^{i}\right)^{2}}{\left(\sum_{j}\left(x^{j}-y^{j}\right)^{2}\right)^{(n+2) / 2}}+(n-2) \frac{1}{\left(\sum_{j}\left(x^{j}-y^{j}\right)^{2}\right)^{n / 2}} & \text { if } i \neq k
\end{array}\right\}
\end{aligned}
$$

so $\left|\frac{\partial^{2}}{\partial x^{k} \partial x^{2}} \Gamma(x, y)\right| \leq 2 \omega_{n-1} n(n-2) \frac{1}{r^{n}} \Gamma$ but this is not integrable Γ so we cannot simply interchange the order of integration to get $\Delta \int \Gamma(x, y) f(y) d y$. We need to cut off the singularity.
2. Two proofs of $\Delta_{\operatorname{distr}(y)} \Gamma(x, y)=\delta_{x}(y)$ on \mathbb{R}^{n}. Let's first do it directly. Consider $\int \Gamma(x, y) \Delta f(y) d y$. We want to use the divergence theorem (but can't for $\left.x=y\right) \Gamma$ so let's look at $\int_{\mathbb{R}^{n} \backslash B_{\epsilon}} \operatorname{div}_{y}[\Gamma(x, y) \nabla f(y)] d y=\int_{\partial B_{\epsilon}} \Gamma(x, y) \nabla f(y) \cdot \nu(y) d s(y)$ where ν is the outward pointing normalland $B_{\epsilon}=B_{\epsilon}(x)$. Notice that the left hand side is

$$
\int_{\mathbb{R}^{n} \backslash B_{\epsilon}}\left[\nabla_{y} \Gamma(x, y) \cdot \nabla f(y)+\Gamma(x, y) \Delta f(y)\right] d y
$$

If we also look at

$$
\int_{\mathbb{R}^{n} \backslash B_{\epsilon}} \operatorname{div}_{y}\left[\nabla_{y} \Gamma(x, y) f(y)\right] d y=\int_{\partial B_{\epsilon}} f(y) \nabla_{y} \Gamma(x, y) \cdot \nu(y) d s(y)
$$

we can subtract the two and get
$\int_{\mathbb{R}^{n} \backslash B_{\epsilon}}\left[\Gamma(x, y) \Delta f(y)-\Delta_{y} \Gamma(x, y) f(y)\right] d y=\int_{\partial B_{\epsilon}}\left[\Gamma(x, y) \nabla f(y) \cdot \nu(y)-f(y) \nabla_{y} \Gamma(x, y) \cdot \nu(y)\right] d s(y)$
We easily see that $\Delta_{y} \Gamma(x, y)=0$. Furthermore Γ

$$
\begin{aligned}
\left|\int_{\partial B_{\epsilon}} \Gamma(x, y) \nabla f(y) \cdot \nu(y) d s(y)\right| & \leq \sup |\nabla f(y)| \operatorname{Vol}\left(\partial B_{\epsilon}\right) \frac{1}{\omega_{n-1} \epsilon^{n-2}} \\
& \leq \sup |\nabla f(y)| \epsilon^{n-1} \frac{1}{\epsilon^{n-2}} \\
& \leq \sup |\nabla f(y)| \epsilon
\end{aligned}
$$

which goes to zero as $\epsilon \rightarrow 0$.
We now have to calculate $\nabla_{y} \Gamma(x, y) \cdot \nu(y)$. This is easily done since $\nu(y)=-|x-y|$ (the minus is because it is the outward pointing normal for $\mathbb{R}^{n} \backslash B_{\epsilon}$). Thus we really have $\frac{d}{d r}\left(\omega_{n-1} r^{2-n}\right)=(2-n) \omega_{n-1} r^{1-n}$ so ${ }^{-} \int_{\partial} B_{\epsilon} f(y) \nabla_{y} \Gamma(x, y) \cdot \nu(y) d s(y)=\int_{\partial} B_{\epsilon} f(y) d s(y) \rightarrow f(x)$ as $\epsilon \rightarrow 0$. Thus if we let $\epsilon \rightarrow 0$ we get $\int_{\mathbb{R}^{n}} \Gamma(x, y) \Delta f(y) d y=f(x) \Gamma$ or $\Delta_{\operatorname{distr}(y)} \Gamma(x, y)=\delta_{x}(y)$.

Our second method uses the Fourier transform.
3. The Fundamental Solution. We now want to show that $u=Q f(x)=\int_{\mathbb{R}^{n}} \Gamma(x, y) f(y) d y$ is a solution to the equation $\Delta u=f$. First assume that f is $C^{\infty} \Gamma$ which implies that $Q f$ is C^{∞} (This is because it is a convolution). We first show that the equation is true in the sense of distributions. That is let $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and show $\int_{\mathbb{R}^{n}} \Delta Q f(x) \phi(x) d x=\int_{\mathbb{R}^{n}} f(x) \phi(x) d x$. We do this as follows:

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \Delta Q f(x) \phi(x) d x & =\int_{\mathbb{R}^{n}} Q f(x) \Delta \phi(x) d x \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \Gamma(x, y) f(y) d y \Delta \phi(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \Gamma(x, y) \Delta \phi(x) d x f(y) d y \\
& =\int_{\mathbb{R}^{n}} \phi(y) f(y) d y \\
& =\int_{\mathbb{R}^{n}} f(x) \phi(x) d x
\end{aligned}
$$

Now we have that $Q f$ is a weak solution and is $C^{\infty} \Gamma$ so elliptic regularity tells us that it is an actual solution. Thus our Green's function is $G(x, y)=\Gamma(x, y)$.

Can we weaken the smoothness conditions?
4. The Green's Function for Δ_{g} on a Compact Manifold (M, g). We can now study the Green's function on a Riemannian manifold (M, g). Recall that this means that we would like to find a function $G(x, y)$ such that the function $Q f(x)=\int_{M} G(x, y) f(y) \mathrm{dV}(y)$ is the inverse of the Laplacian Гi.e. $\Delta Q f(x)=f(x)$ for any $f \in L^{2}(M)$ and also that $Q \Delta u(x)=u(x)$ for all $u \in H_{2}(M)$. Unfortunately Γ this is not entirely plausible Γ since it would mean that $\Delta: H_{2}(M) \rightarrow L^{2}(M)$ is injective Γ which is not true since the constants are in the kernel (note that this is not true in the case \mathbb{R}^{n} since the constants are not integrable). Thus we want

$$
\Delta Q f(x)=f(x)-\frac{(f, 1)}{(1,1)} 1=f(x)-\frac{1}{V} \int_{M} f(y) \mathrm{dV}(y)
$$

where V is the volume of M which means that $\Delta Q f(x)$ is the projection of $f(x)$ onto the orthogonal complement of the constant functions.

We first take a function $\eta(x, y)=\bar{\eta}\left(d_{g}(x, y)\right)$ where d is the distance and $\bar{\eta}$ is a function with compact support within the injectivity radius and which is identically 1 in a neighborhood of zero. Let our first approximation be $H(x, y)=\omega_{n-1} d(x, y)^{2-n} \eta(x, y)$. Notice that H is symmetric in the two variables. We want to mimic our approach to $\mathbb{R}^{n} \Gamma$ so let's compute $\Delta_{\operatorname{distr}(y)} H(x, y)$. First we will need some estimates.
5. Estimates on $\Delta_{y} H(x, y)$. We first derive the formula for the Laplacian of a radial function. Recall that in polar coordinates Γ we can write the metric as

$$
g=d r^{2}+r^{n-1} g_{i j} d \theta^{i} d \theta^{j}
$$

We then compute in polar coordinates Γ letting $\sqrt{g}=\sqrt{\operatorname{det}\left[g_{i j}\right]}$:

$$
\begin{aligned}
\Delta f(r) & =\frac{1}{r^{n-1} \sqrt{g}} \partial_{i} r^{n-1} \sqrt{g} g^{i j} \partial_{j} f(r) \\
& =\frac{1}{r^{n-1} \sqrt{g}} \partial_{r} r^{n-1} \sqrt{g} \partial_{r} f(r) \\
& =f^{\prime \prime}(r)+\frac{n-1}{r} f^{\prime}(r)+f(r) \partial_{r} \log \sqrt{g}
\end{aligned}
$$

We now apply this to $H(x, y)=\frac{1}{(2-n) \omega_{n-1}} d(x, y)^{2-n} \eta(d(x, y))$. So $H(r)=\frac{1}{(n-2) \omega_{n-1}} r^{2-n} \eta(r) \Gamma$

$$
\begin{aligned}
\partial_{r} H(r) & =\partial_{r} \frac{1}{(n-2) \omega_{n-1}} r^{2-n} \eta(r) \\
& =\frac{1}{(2-n) \omega_{n-1}}\left[(2-n) r^{1-n} \eta(r)+r^{2-n} \eta^{\prime}(r)\right]
\end{aligned}
$$

and
$\partial_{r}^{2} H(r)=\frac{1}{(2-n) \omega_{n-1}}\left[(2-n)(1-n) r^{-n} \eta(r)+(2-n) r^{1-n} \eta^{\prime}(r)+(2-n) r^{1-n} \eta^{\prime}(r)+r^{2-n} \eta^{\prime \prime}(r)\right]$
so if you fix x Гwe find that find that Γ letting $r=d(x, y)$:

$$
\begin{aligned}
\Delta_{y} H(x, y)= & \Delta H(r) \\
= & \frac{1}{(2-n) \omega_{n-1}}\left[(2-n)(1-n) r^{-n} \eta(r)+(2-n) r^{1-n} \eta^{\prime}(r)+(2-n) r^{1-n} \eta^{\prime}(r)+r^{2-n} \eta^{\prime \prime}(r)\right] \\
& +\frac{n-1}{r} \frac{1}{(2-n) \omega_{n-1}}\left[(2-n) r^{1-n} \eta(r)+r^{2-n} \eta^{\prime}(r)\right] \\
& +\frac{1}{(2-n) \omega_{n-1}} \partial_{r} \log \sqrt{g} r^{2-n} \eta(r) \\
= & \frac{\eta^{\prime}(r)}{\omega_{n-1}}\left(2+\frac{n-1}{2-n}\right) r^{1-n} \\
& \frac{1}{(2-n) \omega_{n-1}}\left(\eta^{\prime \prime}(r)+\partial_{r} \log \sqrt{g} \eta(r)\right) r^{2-n}
\end{aligned}
$$

6. Finding the Green's Function. We need

$$
\begin{aligned}
& \int_{M \backslash B_{\epsilon}} \operatorname{div}\left(\nabla_{y} H(x, y) \phi(y)\right) \mathrm{dV}(y)-\int_{M \backslash B_{\epsilon}} \operatorname{div}(H(x, y) \nabla \phi(y)) \mathrm{dV}(y) \\
= & \int_{\partial B_{\epsilon}} \nabla_{y} H(x, y) \cdot \nu(y) \phi(y) \mathrm{dV}(y)-\int_{\partial B_{\epsilon}} H(x, y) \nabla \phi(y) \cdot \nu(y) \mathrm{dV}(y)
\end{aligned}
$$

The left side is $\left.\int_{M \backslash B_{\epsilon}} \Delta_{y} H(x, y) \phi(y) \mathrm{dV}(y)-\int_{M \backslash B_{\epsilon}} H(x, y) \Delta \phi(y)\right) \mathrm{dV}(y)$. As for the right side Γ similar arguments (Do it!!!!!) to the above case show that it goes to $\phi(x)$ as $\epsilon \rightarrow 0$. Thus we find that

$$
\left.\int_{M} H(x, y) \Delta \phi(y)\right) \mathrm{dV}(y)=\phi(x)+\int_{M} \Delta_{y} H(x, y) \phi(y) \mathrm{dV}(y)
$$

or $\Delta_{\operatorname{distr}(y)} H(x, y)=\delta_{x}(y)+\Delta_{y} H(x, y)$.
Now Γ if $H(x, y)$ were the Green's function Γ then we would just form the fundamental solution $Q_{1} f(x)=\int_{M} H(x, y) f(y) \mathrm{dV}(y)$. It is not Γ however Γ which we see by computing $\Delta Q_{1} f(x)$. Again Γ let $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and we compute:

$$
\begin{aligned}
\int_{M} Q_{1} f(x) \Delta \phi(x) \mathrm{dV}(x) & =\int_{M} \int_{M} H(x, y) f(y) \mathrm{dV}(y) \Delta \phi(x) \mathrm{dV}(x) \\
& =\int_{M} \int_{M} H(x, y) \Delta \phi(x) \mathrm{dV}(x) f(y) \mathrm{dV}(y) \\
& =\int_{M}\left[\phi(y)+\int_{M} \Delta_{x} H(x, y) \phi(x) \mathrm{dV}(x)\right] f(y) \mathrm{dV}(y) \\
& =\int_{M}\left[f(x)+\int_{M} \Delta_{x} H(x, y) f(y) \mathrm{dV}(y)\right] \phi(x) \mathrm{dV}(x)
\end{aligned}
$$

So we get that $\Delta_{\text {distr }} Q_{1} f(x)=f(x)+\int_{M} \Delta_{x} H(x, y) f(y) \mathrm{dV}(y)$.
Thus we need to understand the regularity of $\int_{M} \Delta_{x} H(x, y) f(y) \mathrm{d} V(y)$ and change our operator Q_{1} to get the fundamental solution. We will try to find a new operator Q_{2} so that $\Delta\left(Q_{1}+Q_{2}\right)=f(x)$. To do this Γ we simply need to solve $\Delta u={ }^{-} \int_{M} \Delta_{x} H(x, y) f(y) \mathrm{dV}(y)$ weakly.

Now Tif we had that $f_{2}(x)={ }^{-} \int_{M} \Delta_{x} H(x, y) f(y) \mathrm{dV}(y)$ is in $L^{2}(M)$ and that it integrates to zero「then we

Let's follow the same program we did before. We want to solve $\Delta u=f_{2}$. Let $Q_{2} f(x)=$ $\int_{M} H(x, y) f_{2}(y) \mathrm{dV}(y)$. We now check to see how close this is to the solution we want. By the last calculation we see that we get

$$
\begin{aligned}
\Delta_{\operatorname{distr}} Q_{2} f(x) & =f_{2}(x)+\int_{M} \Delta_{x} H(x, y) f_{2}(y) \mathrm{dV}(y) \\
& =f_{2}(x)-\int_{M} \Delta_{x} H(x, y) \int_{M} \Delta_{y} H(y, z) f(z) \mathrm{dV}(z) \mathrm{dV}(y) \\
& =f_{2}(x)-\int_{M} \int_{M} \Delta_{x} H(x, y) \Delta_{y} H(y, z) \mathrm{dV}(y) f(z) \mathrm{dV}(z)
\end{aligned}
$$

So we find that

$$
\Delta_{\mathrm{distr}}\left(Q_{1}+Q_{2}\right) f(x)=f(x)-\int_{M} \int_{M} \Delta_{x} H(x, y) \Delta_{y} H(y, z) \mathrm{dV}(y) f(z) \mathrm{dV}(z)
$$

We can Γ of course Γ continue this course of action indefinitely.
Now Twe look at Q_{2} :

$$
\begin{aligned}
Q_{2} f(x) & =\int_{M} H(x, y) f_{2}(y) \mathrm{dV}(y) \\
& =-\int_{M} H(x, y) \int_{M} \Delta_{y} H(y, z) f(z) \mathrm{dV}(z) \mathrm{dV}(y) \\
& =-\int_{M} \int_{M} H(x, y) \Delta_{y} H(y, z) \mathrm{dV}(y) f(z) \mathrm{dV}(z)
\end{aligned}
$$

Thus our second approximation to the Green's function is

$$
G_{2}(x, y)=H(x, y)-\int_{M} H(x, z) \Delta_{z} H(z, y) \mathrm{d} V(z)
$$

Now Γ if we could solve $\Delta_{\operatorname{distr}_{(x)}} F(x, y)=R_{2}=\int_{M} \Delta_{x} H(x, z) \Delta_{z} H(z, y) \mathrm{dV}(z)$ where R_{2} is continuous Γ then we would take $G(x, y)=G_{2}(x, y)+F(x, y)$ and we would be done. Unfortunately ΓR_{2} is not necessarily continuous Γ so we continue until we become continuous using the following lemma.

Lemma 6.1. Let $F(x, y)=\int_{M} G(x, z) H(z, y) d V(z)$ and suppose that $|G(x, z)| \leq$ Const. $d(x, z)^{a-n}$ and $|H(z, y)| \leq$ Const $\cdot d(z, y)^{b-n}$, where $0<a, b<n$, then

$$
|F(x, y)| \leq\left\{\begin{array}{ll}
\text { Const } \cdot d(x, y)^{a+b-n} & \text { if } a+b<n \\
\text { Const } \cdot(1+|\log d(x, y)|) & \text { if } a+b=n \\
\text { Const } & \text { if } a+b>n
\end{array}\right\}
$$

Proof: Let $d=d(x, y) / 2$. We now compute the integral in 3 parts:

$$
\int_{m}=\int_{B_{d}(x)}+\int_{B_{3 d}(y) \backslash B_{d}(x)}+\int_{M \backslash B_{3 d}(y)}
$$

Now we compute separately:

$$
\begin{aligned}
\left|\int_{B_{d}(x)} G(x, z) H(z, y) \mathrm{dV}(z)\right| & \leq \int_{B_{d}(x)}|G(x, z) H(z, y)| \mathrm{dV}(z) \\
& \leq \text { Const } \int_{B_{d}(x)} d(x, z)^{a-n} d(z, y)^{b-n} \mathrm{dV}(z) \\
& \leq \text { Const } \cdot d^{b-n} \int_{B_{d}(x)} d(x, z)^{a-n} \mathrm{dV}(z) \\
& =\text { Const } \cdot d^{b-n} \int_{S^{n-1}} \int_{0}^{d} r^{a-n} r^{n-1} d r d \theta \\
& =\text { Const } \cdot d^{b-n} \operatorname{Vol}\left(S^{n-1}\right) \frac{1}{a} d^{a} \\
& =\text { Const } \cdot d^{a+b-n}
\end{aligned}
$$

where the constant depends on a and n.

$$
\begin{aligned}
\left|\int_{B_{3 d}(y) \backslash B_{d}(x)} G(x, z) H(z, y) \mathrm{dV}(z)\right| & \leq \int_{B_{3 d}(y) \backslash B_{d}(x)}|G(x, z) H(z, y)| \mathrm{dV}(z) \\
& \leq \text { Const } \int_{B_{3 d}(y) \backslash B_{d}(x)} d(x, z)^{a-n} d(z, y)^{b-n} \mathrm{dV}(z) \\
& \leq \text { Const } \cdot d^{a-n} \int_{B_{3 d}(y) \backslash B_{d}(x)} d(z, y)^{b-n} \mathrm{dV}(z) \\
& \leq \text { Const } \cdot d^{a-n} \int_{S^{n-1}} \int_{0}^{3 d} r^{b-n} r^{n-1} d r d \theta \\
& =\text { Const } \cdot d^{a-n} \operatorname{Vol}\left(S^{n-1}\right) \frac{1}{b} 3^{b} d^{b} \\
& =\text { Const } \cdot d^{a+b-n}
\end{aligned}
$$

where the constant depends on b and n. And finally Γ

$$
\begin{aligned}
\left|\int_{M \backslash B_{3 d}(y)} G(x, z) H(z, y) \mathrm{dV}(z)\right| & \leq \int_{M \backslash B_{3 d}(y)}|G(x, z) H(z, y)| \mathrm{dV}(z) \\
& \leq \mathrm{Const} \int_{M \backslash B_{3 d}(y)} d(x, z)^{a-n} d(z, y)^{b-n} \mathrm{dV}(z) \\
& \leq \text { Const } \int_{M \backslash B_{3 d}(y)}(d(z, y)-2 d)^{a-n} d(z, y)^{b-n} \mathrm{dV}(z) \\
& =\mathrm{Const} \int_{S^{n-1}} \int_{3 d}^{K}(r-2 d)^{a-n} r^{b-n} r^{n-1} d r d \theta \\
& \leq \text { Const } \int_{3 d}^{K}(r-2 d)^{a+b-2 n} r^{n-1} d r
\end{aligned}
$$

Now 1 if we change variables to $s=r-2 d$ we get

$$
\begin{aligned}
\int_{d}^{K-2 d} s^{a+b-2 n}(s+2 d)^{n-1} d s & \leq \int_{d}^{K-2 d} s^{a+b-2 n}\left[(2 s)^{n-1}+(4 d)^{n-1}\right] d s \\
& =\int_{d}^{K-2 d}\left[s^{a+b-n-1}+(4 d)^{n-1} s^{a+b-2 n}\right] d s
\end{aligned}
$$

The second term is

$$
(4 d)^{n-1} \frac{1}{a+b-2 n+1}\left[(K-2 d)^{a+b-2 n+1}-d^{a+b-2 n+1}\right]
$$

where the constant depends on . The third inequality follows from the fact that $d(z, y)-$ $2 d \leq d(x, z)$.
7. Axiomatic approach to the Green's function. It may be easier to understand the derivation by showing the properties that we require of our Green's Function. We shall need the following:

Theorem 7.1. If we can find a function $G(x, y)$ such that

1. $\Delta_{\operatorname{distr}(y)} G(x, y)=\delta_{x}(y)-\frac{1}{V}$
2. $\Delta_{y} G(x, y)=0$
3. $G(x, y) \sim d(x, y)^{2-n}$

Then $G(x, y)$ is the Green's Function for the Laplacian, i.e. if we define $Q f(x)=$ $\int_{M} G(x, y) f(y) \mathrm{dV}(y)$ then

- $\Delta Q f(x)=f(x)-\frac{1}{V} \int_{M} f(y) \mathrm{dV}(y)$ and
- $Q \Delta f(x)=f(x)-\frac{1}{V} \int_{M} f(y) \mathrm{dV}(y)$
for appropriate f.
Proof: Let us just check to see if $Q \Delta f(x)=f(x)-\frac{1}{V} \int_{M} f(y) \mathrm{dV}(y)$. We first look weakly.

$$
\begin{aligned}
(Q \Delta f(x), \phi(x)) & =\int Q \Delta f(x) \phi(x) \mathrm{dV}(y) \\
& =\iint G(x, y) \Delta f(y) \mathrm{dV}(y) \phi(x) \mathrm{dV}(x) \\
& =\int \Delta_{\operatorname{distr}_{(y)} G(x, y) f(y) \mathrm{dV}(y) \phi(x) \mathrm{dV}(x)} \\
& =\int\left(f(x)-\frac{1}{V} \int f(y) \mathrm{dV}(y)\right) \phi(x) \mathrm{dV}(x)
\end{aligned}
$$

Proof: Although we have already done the proof let's do it again for old time's sake. Let's first compute $\Delta_{\text {distr }} Q f(x)$. We consider the divergence theorem on $M \backslash B_{\epsilon}(x)$:

$$
\begin{aligned}
& \int_{M \backslash B_{\epsilon}(x)} \operatorname{div}_{y}\left(\nabla_{y} G(x, y) \phi(y)\right) \mathrm{dV}(y)-\int_{M \backslash B_{\epsilon}(x)} \operatorname{div}_{y}(G(x, y) \nabla \phi(y)) \mathrm{dV}(y) \\
& =\int_{\partial B_{\epsilon}(x)} \nabla_{y} G(x, y) \cdot \nu(y) \phi(y) \mathrm{dV}(y)-\int_{\partial B_{\epsilon}(x)} G(x, y) \nabla \phi(y) \cdot \nu(y) \mathrm{dV}(y)
\end{aligned}
$$

and the left hand term is

$$
\begin{aligned}
\int_{M \backslash B_{\epsilon}(x)} \Delta_{y} G(x, y) \phi(y) \mathrm{dV}(y) & -\int_{M \backslash B_{\epsilon}(x)} G(x, y) \Delta \phi(y) \mathrm{d} V(y) \\
= & -\int_{M \backslash B_{\epsilon}(x)} G(x, y) \Delta \phi(y) \mathrm{d} V(y)
\end{aligned}
$$

because of property 2.

