Green's Functions of the Laplacian

David Glickenstein February 11, 2000

1. Preliminary Calculations. Suppose we are on \mathbb{R}^n , with $n \geq 3$. Let

$$(x,y) = \omega_{n-1}|x-y|^{2-n}$$

where ω_{n-1} is the volume of the (n-1)-sphere S^{n-1} . We want to compute derivatives of this function.

$$\left| \frac{\partial}{\partial x^{i}}, (x, y) \right| = \left| \omega_{n-1} \frac{\partial}{\partial x^{i}} \left(\sum_{j} (x^{j} - y^{j})^{2} \right)^{(2-n)/2} \right|$$
$$= \omega_{n-1} (n-2) \left| \frac{x^{i} - y^{i}}{\left(\sum_{j} (x^{j} - y^{j})^{2} \right)^{n/2}} \right|$$
$$\leq \omega_{n-1} (n-2) \frac{r}{r^{n}}$$
$$= \omega_{n-1} (n-2) \frac{1}{r^{n-1}}$$

and , $(x, y) = \omega_{n-1}r^{2-n} \leq \omega_{n-1}r^{1-n}$ for $r \leq 1$ so for a bounded domain Ω we have that , (x, y) and $\frac{\partial}{\partial x^i}$, (x, y) are bounded by $(n-2)r^{1-n}$, which is integrable over Ω , so we can interchange the differentiation and integration, so $\frac{\partial}{\partial x^i} \int_{\Omega}$, $(x, y)f(y)dy = \int_{\Omega} \frac{\partial}{\partial x^i}$, (x, y)f(y)dy.

Now,

$$\frac{\partial^2}{\partial x^k \partial x^i}, (x, y) = \omega_{n-1} \frac{\partial}{\partial x^k} \left[(n-2) \frac{x^i - y^i}{\left(\sum_j (x^j - y^j)^2\right)^{n/2}} \right] \\ = \begin{cases} \omega_{n-1} (2-n) n \frac{(x^i - y^i)(x^k - y^k)}{\left(\sum_j (x^j - y^j)^2\right)^{(n+2)/2}} & \text{if } i \neq k \\ \omega_{n-1} (2-n) n \frac{(x^i - y^i)^2}{\left(\sum_j (x^j - y^j)^2\right)^{(n+2)/2}} + (n-2) \frac{1}{\left(\sum_j (x^j - y^j)^2\right)^{n/2}} & \text{if } i = k \end{cases} \end{cases}$$

so $\left|\frac{\partial^2}{\partial x^k \partial x^i}, (x, y)\right| \leq 2\omega_{n-1}n(n-2)\frac{1}{r^n}$, but this is not integrable, so we cannot simply interchange the order of integration to get $\Delta \int f(x, y)f(y)dy$. We need to cut off the singularity.

2. Two proofs of $\Delta_{\operatorname{distr}(y)}$, $(x, y) = \delta_x(y)$ on \mathbb{R}^n . Let's first do it directly. Consider $\int (x, y) \Delta f(y) dy$. We want to use the divergence theorem (but can't for x = y), so let's look at $\int_{\mathbb{R}^n \setminus B_{\epsilon}} \operatorname{div}_y [(x, y) \nabla f(y)] dy = \int_{\partial B_{\epsilon}} (x, y) \nabla f(y) \cdot \nu(y) ds(y)$ where ν is the outward pointing normal, and $B_{\epsilon} = B_{\epsilon}(x)$. Notice that the left hand side is

$$\int_{\mathbb{R}^n \setminus B_{\epsilon}} \left[\nabla_y, \, (x, y) \cdot \nabla f(y) + \, , \, (x, y) \Delta f(y) \right] dy$$

If we also look at

$$\int_{\mathbb{R}^n \setminus B_{\epsilon}} \operatorname{div}_y \left[\nabla_y, \, (x, y) f(y) \right] dy = \int_{\partial B_{\epsilon}} f(y) \nabla_y, \, (x, y) \cdot \nu(y) ds(y)$$

we can subtract the two and get

$$\int_{\mathbb{R}^n \setminus B_{\epsilon}} \left[, \ (x, y) \Delta f(y) - \Delta_y, \ (x, y) f(y)\right] dy = \int_{\partial B_{\epsilon}} \left[, \ (x, y) \nabla f(y) \cdot \nu(y) - f(y) \nabla_y, \ (x, y) \cdot \nu(y)\right] ds(y) dy = \int_{\partial B_{\epsilon}} \left[, \ (x, y) \nabla f(y) \cdot \nu(y) - f(y) \nabla_y, \ (x, y) \cdot \nu(y)\right] ds(y) dy = \int_{\partial B_{\epsilon}} \left[, \ (x, y) \nabla f(y) \cdot \nu(y) - f(y) \nabla_y, \ (x, y) \cdot \nu(y)\right] ds(y) dy = \int_{\partial B_{\epsilon}} \left[, \ (x, y) \nabla f(y) \cdot \nu(y) - f(y) \nabla_y, \ (x, y) \cdot \nu(y)\right] ds(y) dy = \int_{\partial B_{\epsilon}} \left[, \ (x, y) \nabla f(y) \cdot \nu(y) - f(y) \nabla_y, \ (x, y) \cdot \nu(y)\right] dy dy = \int_{\partial B_{\epsilon}} \left[, \ (x, y) \nabla f(y) \cdot \nu(y) - f(y) \nabla_y, \ (x, y) \cdot \nu(y)\right] dy dy dy$$

We easily see that Δ_y , (x, y) = 0. Furthermore,

$$\begin{aligned} \left| \int_{\partial B_{\epsilon}}, (x, y) \nabla f(y) \cdot \nu(y) ds(y) \right| &\leq \sup |\nabla f(y)| \operatorname{Vol}(\partial B_{\epsilon}) \frac{1}{\omega_{n-1} \epsilon^{n-2}} \\ &\leq \sup |\nabla f(y)| \epsilon^{n-1} \frac{1}{\epsilon^{n-2}} \\ &\leq \sup |\nabla f(y)| \epsilon \end{aligned}$$

which goes to zero as $\epsilon \to 0$.

We now have to calculate ∇_y , $(x, y) \cdot \nu(y)$. This is easily done since $\nu(y) = -|x - y|$ (the minus is because it is the outward pointing normal for $\mathbb{R}^n \setminus B_{\epsilon}$). Thus we really have $\frac{d}{dr}(\omega_{n-1}r^{2-n}) = (2-n)\omega_{n-1}r^{1-n}$ so $-\int_{\partial} B_{\epsilon}f(y)\nabla_y$, $(x, y) \cdot \nu(y)ds(y) = \int_{\partial} B_{\epsilon}f(y)ds(y) \to f(x)$ as $\epsilon \to 0$. Thus if we let $\epsilon \to 0$ we get $\int_{\mathbb{R}^n}$, $(x, y)\Delta f(y)dy = f(x)$, or $\Delta_{\operatorname{distr}(y)}$, $(x, y) = \delta_x(y)$.

Our second method uses the Fourier transform.

3. The Fundamental Solution. We now want to show that $u = Qf(x) = \int_{\mathbb{R}^n} (x, y)f(y)dy$ is a solution to the equation $\Delta u = f$. First assume that f is C^{∞} , which implies that Qf is C^{∞} (This is because it is a convolution). We first show that the equation is true in the sense of distributions. That is let $\phi \in C_c^{\infty}(\mathbb{R}^n)$ and show $\int_{\mathbb{R}^n} \Delta Qf(x)\phi(x)dx = \int_{\mathbb{R}^n} f(x)\phi(x)dx$. We do this as follows:

$$\int_{\mathbb{R}^n} \Delta Q f(x) \phi(x) dx = \int_{\mathbb{R}^n} Q f(x) \Delta \phi(x) dx$$
$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x, y) f(y) dy \Delta \phi(x) dx$$

$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n}, (x, y) \Delta \phi(x) dx f(y) dy$$
$$= \int_{\mathbb{R}^n} \phi(y) f(y) dy$$
$$= \int_{\mathbb{R}^n} f(x) \phi(x) dx$$

Now we have that Qf is a weak solution and is C^{∞} , so elliptic regularity tells us that it is an actual solution. Thus our Green's function is G(x, y) = , (x, y).

Can we weaken the smoothness conditions?

4. The Green's Function for Δ_g on a Compact Manifold (M,g). We can now study the Green's function on a Riemannian manifold (M,g). Recall that this means that we would like to find a function G(x,y) such that the function $Qf(x) = \int_M G(x,y)f(y)dV(y)$ is the inverse of the Laplacian, i.e. $\Delta Qf(x) = f(x)$ for any $f \in L^2(M)$ and also that $Q\Delta u(x) = u(x)$ for all $u \in H_2(M)$. Unfortunately, this is not entirely plausible, since it would mean that $\Delta : H_2(M) \to L^2(M)$ is injective, which is not true since the constants are in the kernel (note that this is not true in the case \mathbb{R}^n since the constants are not integrable). Thus we want

$$\Delta Qf(x) = f(x) - \frac{(f,1)}{(1,1)} = f(x) - \frac{1}{V} \int_M f(y) dV(y)$$

where V is the volume of M, which means that $\Delta Qf(x)$ is the projection of f(x) onto the orthogonal complement of the constant functions.

We first take a function $\eta(x, y) = \overline{\eta}(d_g(x, y))$ where d is the distance and $\overline{\eta}$ is a function with compact support within the injectivity radius and which is identically 1 in a neighborhood of zero. Let our first approximation be $H(x, y) = \omega_{n-1} d(x, y)^{2-n} \eta(x, y)$. Notice that H is symmetric in the two variables. We want to mimic our approach to \mathbb{R}^n , so let's compute $\Delta_{\operatorname{distr}(y)} H(x, y)$. First we will need some estimates.

5. Estimates on $\Delta_y H(x, y)$. We first derive the formula for the Laplacian of a radial function. Recall that in polar coordinates, we can write the metric as

$$g = dr^2 + r^{n-1}g_{ij}d\theta^i d\theta^j$$

We then compute in polar coordinates, letting $\sqrt{g} = \sqrt{\det[g_{ij}]}$:

$$\Delta f(r) = \frac{1}{r^{n-1}\sqrt{g}} \partial_i r^{n-1} \sqrt{g} g^{ij} \partial_j f(r)$$

$$= \frac{1}{r^{n-1}\sqrt{g}} \partial_r r^{n-1} \sqrt{g} \partial_r f(r)$$

$$= f''(r) + \frac{n-1}{r} f'(r) + f(r) \partial_r \log \sqrt{g}$$

We now apply this to $H(x,y) = \frac{1}{(2-n)\omega_{n-1}} d(x,y)^{2-n} \eta(d(x,y))$. So $H(r) = \frac{1}{(n-2)\omega_{n-1}} r^{2-n} \eta(r)$,

$$\partial_r H(r) = \partial_r \frac{1}{(n-2)\omega_{n-1}} r^{2-n} \eta(r)$$

= $\frac{1}{(2-n)\omega_{n-1}} \left[(2-n)r^{1-n} \eta(r) + r^{2-n} \eta'(r) \right]$

and

$$\partial_r^2 H(r) = \frac{1}{(2-n)\omega_{n-1}} \left[(2-n)(1-n)r^{-n}\eta(r) + (2-n)r^{1-n}\eta'(r) + (2-n)r^{1-n}\eta'(r) + r^{2-n}\eta''(r) \right]$$

so if you fix x, we find that find that, letting r = d(x, y):

$$\begin{split} \Delta_y H(x,y) &= \Delta H(r) \\ &= \frac{1}{(2-n)\omega_{n-1}} \left[(2-n)(1-n)r^{-n}\eta(r) + (2-n)r^{1-n}\eta'(r) + (2-n)r^{1-n}\eta'(r) + r^{2-n}\eta''(r) \right] \\ &\quad + \frac{n-1}{r} \frac{1}{(2-n)\omega_{n-1}} \left[(2-n)r^{1-n}\eta(r) + r^{2-n}\eta'(r) \right] \\ &\quad + \frac{1}{(2-n)\omega_{n-1}} \partial_r \log \sqrt{g}r^{2-n}\eta(r) \\ &= \frac{\eta'(r)}{\omega_{n-1}} \left(2 + \frac{n-1}{2-n} \right) r^{1-n} \\ &\quad - \frac{1}{(2-n)\omega_{n-1}} \left(\eta''(r) + \partial_r \log \sqrt{g}\eta(r) \right) r^{2-n} \end{split}$$

6. Finding the Green's Function. We need

$$\int_{M \setminus B_{\epsilon}} \operatorname{div}(\nabla_{y} H(x, y) \phi(y)) \mathrm{dV}(y) - \int_{M \setminus B_{\epsilon}} \operatorname{div}(H(x, y) \nabla \phi(y)) \mathrm{dV}(y)$$
$$= \int_{\partial B_{\epsilon}} \nabla_{y} H(x, y) \cdot \nu(y) \phi(y) \mathrm{dV}(y) - \int_{\partial B_{\epsilon}} H(x, y) \nabla \phi(y) \cdot \nu(y) \mathrm{dV}(y)$$

The left side is $\int_{M \setminus B_{\epsilon}} \Delta_y H(x, y) \phi(y) dV(y) - \int_{M \setminus B_{\epsilon}} H(x, y) \Delta \phi(y) dV(y)$. As for the right side, similar arguments (Do it!!!!!) to the above case show that it goes to $\phi(x)$ as $\epsilon \to 0$. Thus we find that

$$\int_{M} H(x,y)\Delta\phi(y))\mathrm{d}\mathcal{V}(y) = \phi(x) + \int_{M} \Delta_{y}H(x,y)\phi(y)\mathrm{d}\mathcal{V}(y)$$

or $\Delta_{\operatorname{distr}(y)}H(x,y) = \delta_x(y) + \Delta_y H(x,y).$

Now, if H(x,y) were the Green's function, then we would just form the fundamental solution $Q_1f(x) = \int_M H(x,y)f(y)dV(y)$. It is not, however, which we see by computing $\Delta Q_1f(x)$. Again, let $\phi \in C_c^{\infty}(\mathbb{R}^n)$ and we compute:

$$\begin{split} \int_{M} Q_{1}f(x)\Delta\phi(x)\mathrm{d}\mathbf{V}(x) &= \int_{M} \int_{M} H(x,y)f(y)\mathrm{d}\mathbf{V}(y)\Delta\phi(x)\mathrm{d}\mathbf{V}(x) \\ &= \int_{M} \int_{M} H(x,y)\Delta\phi(x)\mathrm{d}\mathbf{V}(x)f(y)\mathrm{d}\mathbf{V}(y) \\ &= \int_{M} \left[\phi(y) + \int_{M} \Delta_{x}H(x,y)\phi(x)\mathrm{d}\mathbf{V}(x)\right]f(y)\mathrm{d}\mathbf{V}(y) \\ &= \int_{M} \left[f(x) + \int_{M} \Delta_{x}H(x,y)f(y)\mathrm{d}\mathbf{V}(y)\right]\phi(x)\mathrm{d}\mathbf{V}(x) \end{split}$$

So we get that $\Delta_{\operatorname{distr}} Q_1 f(x) = f(x) + \int_M \Delta_x H(x, y) f(y) dV(y)$.

Thus we need to understand the regularity of $\int_M \Delta_x H(x,y) f(y) dV(y)$ and change our operator Q_1 to get the fundamental solution. We will try to find a new operator Q_2 so that $\Delta (Q_1 + Q_2) = f(x)$. To do this, we simply need to solve $\Delta u = -\int_M \Delta_x H(x,y) f(y) dV(y)$ weakly.

Now, if we had that $f_2(x) = -\int_M \Delta_x H(x,y) f(y) dV(y)$ is in $L^2(M)$ and that it integrates to zero, then we

Let's follow the same program we did before. We want to solve $\Delta u = f_2$. Let $Q_2 f(x) = \int_M H(x, y) f_2(y) dV(y)$. We now check to see how close this is to the solution we want. By the last calculation we see that we get

$$\begin{aligned} \Delta_{\text{distr}} Q_2 f(x) &= f_2(x) + \int_M \Delta_x H(x, y) f_2(y) dV(y) \\ &= f_2(x) - \int_M \Delta_x H(x, y) \int_M \Delta_y H(y, z) f(z) dV(z) dV(y) \\ &= f_2(x) - \int_M \int_M \Delta_x H(x, y) \Delta_y H(y, z) dV(y) f(z) dV(z) \end{aligned}$$

So we find that

$$\Delta_{\text{distr}}(Q_1 + Q_2)f(x) = f(x) - \int_M \int_M \Delta_x H(x, y) \Delta_y H(y, z) dV(y) f(z) dV(z)$$

We can, of course, continue this course of action indefinitely.

Now, we look at Q_2 :

$$Q_{2}f(x) = \int_{M} H(x, y)f_{2}(y)dV(y)$$

= $-\int_{M} H(x, y)\int_{M} \Delta_{y}H(y, z)f(z)dV(z)dV(y)$
= $-\int_{M} \int_{M} H(x, y)\Delta_{y}H(y, z)dV(y)f(z)dV(z)$

Thus our second approximation to the Green's function is

$$G_2(x,y) = H(x,y) - \int_M H(x,z)\Delta_z H(z,y) d\mathbf{V}(z)$$

Now, if we could solve $\Delta_{\operatorname{distr}(x)}F(x,y) = R_2 = \int_M \Delta_x H(x,z)\Delta_z H(z,y) dV(z)$ where R_2 is continuous, then we would take $G(x,y) = G_2(x,y) + F(x,y)$ and we would be done. Unfortunately, R_2 is not necessarily continuous, so we continue until we become continuous using the following lemma.

Lemma 6.1. Let $F(x,y) = \int_M G(x,z)H(z,y)dV(z)$ and suppose that $|G(x,z)| \leq \text{Const} \cdot d(x,z)^{a-n}$ and $|H(z,y)| \leq \text{Const} \cdot d(z,y)^{b-n}$, where 0 < a, b < n, then

$$|F(x,y)| \le \left\{ \begin{array}{ll} \operatorname{Const} \cdot d(x,y)^{a+b-n} & \text{if } a+b < n\\ \operatorname{Const} \cdot (1+|\log d(x,y)|) & \text{if } a+b=n\\ \operatorname{Const} & \text{if } a+b > n \end{array} \right\}$$

Proof: Let d = d(x, y)/2. We now compute the integral in 3 parts:

$$\int_{m} = \int_{B_{d}(x)} + \int_{B_{3d}(y) \setminus B_{d}(x)} + \int_{M \setminus B_{3d}(y)}$$

Now we compute separately:

$$\begin{aligned} \left| \int_{B_d(x)} G(x,z) H(z,y) \mathrm{dV}(z) \right| &\leq \int_{B_d(x)} |G(x,z) H(z,y)| \, \mathrm{dV}(z) \\ &\leq \operatorname{Const} \int_{B_d(x)} d(x,z)^{a-n} d(z,y)^{b-n} \mathrm{dV}(z) \\ &\leq \operatorname{Const} \cdot d^{b-n} \int_{B_d(x)} d(x,z)^{a-n} \mathrm{dV}(z) \\ &= \operatorname{Const} \cdot d^{b-n} \int_{S^{n-1}} \int_0^d r^{a-n} r^{n-1} dr d\theta \\ &= \operatorname{Const} \cdot d^{b-n} \operatorname{Vol}(S^{n-1}) \frac{1}{a} d^a \\ &= \operatorname{Const} \cdot d^{a+b-n} \end{aligned}$$

where the constant depends on a and n.

$$\begin{aligned} \left| \int_{B_{3d}(y) \setminus B_d(x)} G(x, z) H(z, y) \mathrm{d} \mathcal{V}(z) \right| &\leq \int_{B_{3d}(y) \setminus B_d(x)} |G(x, z) H(z, y)| \, \mathrm{d} \mathcal{V}(z) \\ &\leq \operatorname{Const} \int_{B_{3d}(y) \setminus B_d(x)} d(x, z)^{a-n} d(z, y)^{b-n} \mathrm{d} \mathcal{V}(z) \\ &\leq \operatorname{Const} \cdot d^{a-n} \int_{B_{3d}(y) \setminus B_d(x)} d(z, y)^{b-n} \mathrm{d} \mathcal{V}(z) \\ &\leq \operatorname{Const} \cdot d^{a-n} \int_{S^{n-1}} \int_0^{3d} r^{b-n} r^{n-1} dr d\theta \\ &= \operatorname{Const} \cdot d^{a-n} \operatorname{Vol}(S^{n-1}) \frac{1}{b} 3^b d^b \\ &= \operatorname{Const} \cdot d^{a+b-n} \end{aligned}$$

where the constant depends on b and n. And finally,

$$\begin{aligned} \left| \int_{M \setminus B_{3d}(y)} G(x, z) H(z, y) \mathrm{dV}(z) \right| &\leq \int_{M \setminus B_{3d}(y)} |G(x, z) H(z, y)| \, \mathrm{dV}(z) \\ &\leq \operatorname{Const} \int_{M \setminus B_{3d}(y)} d(x, z)^{a-n} d(z, y)^{b-n} \mathrm{dV}(z) \\ &\leq \operatorname{Const} \int_{M \setminus B_{3d}(y)} (d(z, y) - 2d)^{a-n} d(z, y)^{b-n} \mathrm{dV}(z) \\ &= \operatorname{Const} \int_{S^{n-1}} \int_{3d}^{K} (r - 2d)^{a-n} r^{b-n} r^{n-1} dr d\theta \\ &\leq \operatorname{Const} \int_{3d}^{K} (r - 2d)^{a+b-2n} r^{n-1} dr \end{aligned}$$

Now, if we change variables to s = r - 2d we get

$$\int_{d}^{K-2d} s^{a+b-2n} (s+2d)^{n-1} ds \leq \int_{d}^{K-2d} s^{a+b-2n} \left[(2s)^{n-1} + (4d)^{n-1} \right] ds$$
$$= \int_{d}^{K-2d} \left[s^{a+b-n-1} + (4d)^{n-1} s^{a+b-2n} \right] ds$$

The second term is

$$(4d)^{n-1}\frac{1}{a+b-2n+1}\left[(K-2d)^{a+b-2n+1}-d^{a+b-2n+1}\right]$$

where the constant depends on . The third inequality follows from the fact that $d(z,y)-2d \leq d(x,z).$

7. Axiomatic approach to the Green's function. It may be easier to understand the derivation by showing the properties that we require of our Green's Function. We shall need the following:

Theorem 7.1. If we can find a function G(x,y) such that

- 1. $\Delta_{\operatorname{distr}(y)} G(x, y) = \delta_x(y) \frac{1}{V}$
- 2. $\Delta_y G(x,y) = 0$
- 3. $G(x,y) \sim d(x,y)^{2-n}$

Then G(x,y) is the Green's Function for the Laplacian, i.e. if we define $Qf(x) = \int_M G(x,y)f(y)dV(y)$ then

• $\Delta Q f(x) = f(x) - \frac{1}{V} \int_M f(y) dV(y)$ and

• $Q\Delta f(x) = f(x) - \frac{1}{V} \int_M f(y) \mathrm{dV}(y)$

for appropriate f.

Proof: Let us just check to see if $Q\Delta f(x) = f(x) - \frac{1}{V} \int_M f(y) dV(y)$. We first look weakly.

$$\begin{aligned} (Q\Delta f(x),\phi(x)) &= \int Q\Delta f(x)\phi(x)\mathrm{d}\mathrm{V}(y) \\ &= \int \int G(x,y)\Delta f(y)\mathrm{d}\mathrm{V}(y)\phi(x)\mathrm{d}\mathrm{V}(x) \\ &= \int \Delta_{\mathrm{distr}(y)}G(x,y)f(y)\mathrm{d}\mathrm{V}(y)\phi(x)\mathrm{d}\mathrm{V}(x) \\ &= \int \left(f(x) - \frac{1}{V}\int f(y)\mathrm{d}\mathrm{V}(y)\right)\phi(x)\mathrm{d}\mathrm{V}(x) \end{aligned}$$

Proof: Although we have already done the proof, let's do it again for old time's sake. Let's first compute $\Delta_{\operatorname{distr}} Qf(x)$. We consider the divergence theorem on $M \setminus B_{\epsilon}(x)$:

$$\int_{M\setminus B_{\epsilon}(x)} \operatorname{div}_{y}(\nabla_{y}G(x,y)\phi(y))\mathrm{dV}(y) - \int_{M\setminus B_{\epsilon}(x)} \operatorname{div}_{y}(G(x,y)\nabla\phi(y))\mathrm{dV}(y)$$
$$= \int_{\partial B_{\epsilon}(x)} \nabla_{y}G(x,y) \cdot \nu(y)\phi(y)\mathrm{dV}(y) - \int_{\partial B_{\epsilon}(x)} G(x,y)\nabla\phi(y) \cdot \nu(y)\mathrm{dV}(y)$$

and the left hand term is

$$\begin{split} \int_{M \setminus B_{\epsilon}(x)} \Delta_{y} G(x, y) \phi(y) \mathrm{dV}(y) &- \int_{M \setminus B_{\epsilon}(x)} G(x, y) \Delta \phi(y) \mathrm{dV}(y) \\ &= - \int_{M \setminus B_{\epsilon}(x)} G(x, y) \Delta \phi(y) \mathrm{dV}(y) \end{split}$$

because of property 2.

l		