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1. Preliminary Calculations. Suppose we are on Rn, with n � 3. Let

�(x; y) = !n�1jx� yj2�n

where !n�1 is the volume of the (n-1)-sphere Sn�1. We want to compute derivatives of this

function.

���� @@xi�(x; y)
���� =

������!n�1
@

@xi

 X
j

(xj � yj)2

!(2�n)=2
������

= !n�1(n� 2)

�������
xi � yi�P

j(x
j � yj)2

�n=2
�������

� !n�1(n� 2)
r

rn

= !n�1(n� 2)
1

rn�1

and �(x; y) = !n�1r
2�n � !n�1r

1�n for r � 1 so for a bounded domain 
 we have that
�(x; y) and @

@xi
�(x; y) are bounded by (n� 2)r1�n, which is integrable over 
, so we can in-

terchange the di�erentiation and integration, so @
@xi

R


�(x; y)f(y)dy =

R



@
@xi

�(x; y)f(y)dy.

Now,

@2

@xk@xi
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P
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!n�1(2� n)n (xi�yi)2
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P
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(
P
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9>=
>;

so
��� @2

@xk@xi
�(x; y)

��� � 2!n�1n(n � 2) 1

rn
, but this is not integrable, so we cannot simply

interchange the order of integration to get �
R

�(x; y)f(y)dy. We need to cut o� the
singularity.
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2. Two proofs of �distr(y)�(x; y) = �x(y) on R
n. Let's �rst do it directly. ConsiderR

�(x; y)�f(y)dy. We want to use the divergence theorem (but can't for x = y), so let's

look at
R
RnnB�

divy [�(x; y)rf(y)]dy =
R
@B�

�(x; y)rf(y) � �(y)ds(y) where � is the outward

pointing normal, and B� = B�(x). Notice that the left hand side isZ
RnnB�

[ry�(x; y) � rf(y) + �(x; y)�f(y)]dy

If we also look atZ
RnnB�

divy [ry�(x; y)f(y)]dy =

Z
@B�

f(y)ry�(x; y) � �(y)ds(y)

we can subtract the two and get

Z
RnnB�

[�(x; y)�f(y)��y�(x; y)f(y)] dy =

Z
@B�

[�(x; y)rf(y) � �(y)� f(y)ry�(x; y) � �(y)] ds(y)

We easily see that �y�(x; y) = 0. Furthermore,����
Z
@B�

�(x; y)rf(y) � �(y)ds(y)
���� � sup jrf(y)jV ol(@B�)

1

!n�1�n�2

� sup jrf(y)j �n�1 1

�n�2

� sup jrf(y)j �

which goes to zero as �! 0.
We now have to calculate ry�(x; y) � �(y). This is easily done since �(y) = � jx� yj

(the minus is because it is the outward pointing normal for Rn n B�). Thus we really have
d
dr
(!n�1r

2�n) = (2�n)!n�1r1�n so �
R
@
B�f(y)ry�(x; y)��(y)ds(y) =

R
@
B�f(y)ds(y)! f(x)

as �! 0. Thus if we let �! 0 we get
R
Rn �(x; y)�f(y)dy = f(x), or �distr(y)�(x; y) = �x(y).

Our second method uses the Fourier transform.

3. The Fundamental Solution. We now want to show that u = Qf(x) =
R
Rn

�(x; y)f(y)dy

is a solution to the equation �u = f . First assume that f is C1, which implies that Qf is

C1 (This is because it is a convolution). We �rst show that the equation is true in the sense
of distributions. That is let � 2 C1

c (Rn) and show
R
Rn�Qf(x)�(x)dx =

R
Rn f(x)�(x)dx.

We do this as follows:

Z
Rn

�Qf(x)�(x)dx =

Z
Rn

Qf(x)��(x)dx

=

Z
Rn

Z
Rn

�(x; y)f(y)dy��(x)dx
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=

Z
Rn

Z
Rn

�(x; y)��(x)dxf(y)dy

=

Z
Rn

�(y)f(y)dy

=

Z
Rn

f(x)�(x)dx

Now we have that Qf is a weak solution and is C1, so elliptic regularity tells us that it

is an actual solution. Thus our Green's function is G(x; y) = �(x; y).

Can we weaken the smoothness conditions?

4. The Green's Function for �g on a Compact Manifold (M;g). We can now study

the Green's function on a Riemannian manifold (M;g). Recall that this means that we

would like to �nd a function G(x; y) such that the function Qf(x) =
R
M
G(x; y)f(y)dV(y)

is the inverse of the Laplacian, i.e. �Qf(x) = f(x) for any f 2 L2(M) and also that
Q�u(x) = u(x) for all u 2 H2(M). Unfortunately, this is not entirely plausible, since it
would mean that � : H2(M)! L2(M) is injective, which is not true since the constants are
in the kernel (note that this is not true in the case Rn since the constants are not integrable).
Thus we want

�Qf(x) = f(x)� (f; 1)

(1; 1)
1 = f(x) � 1

V

Z
M

f(y)dV(y)

where V is the volume of M , which means that �Qf(x) is the projection of f(x) onto the
orthogonal complement of the constant functions.

We �rst take a function �(x; y) = �(dg(x; y)) where d is the distance and � is a function
with compact support within the injectivity radius and which is identically 1 in a neighbor-
hood of zero. Let our �rst approximation be H(x; y) = !n�1d(x; y)

2�n�(x; y). Notice that

H is symmetric in the two variables. We want to mimic our approach to Rn, so let's compute
�distr(y)H(x; y). First we will need some estimates.

5. Estimates on �yH(x; y). We �rst derive the formula for the Laplacian of a radial
function. Recall that in polar coordinates, we can write the metric as

g = dr2 + rn�1gijd�
id�j

We then compute in polar coordinates, letting
p
g =

p
det [gij ]:

�f(r) =
1

rn�1
p
g
@ir

n�1pggij@jf(r)

=
1

rn�1
p
g
@rr

n�1pg@rf(r)

= f 00(r) +
n� 1

r
f 0(r) + f(r)@r log

p
g

We now apply this to H(x; y) = 1
(2�n)!n�1

d(x; y)2�n�(d(x; y)). SoH(r) = 1
(n�2)!n�1

r2�n�(r),
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@rH(r) = @r
1

(n� 2)!n�1
r2�n�(r)

=
1

(2� n)!n�1

�
(2 � n)r1�n�(r) + r2�n�0(r)

�
and

@2rH(r) =
1

(2� n)!n�1

h
(2� n)(1� n)r

�n�(r) + (2 � n)r1�n�0(r) + (2� n)r1�n�0(r) + r2�n�00(r)
i

so if you �x x, we �nd that �nd that, letting r = d(x; y):

�yH(x; y) = �H(r)

=
1

(2� n)!n�1

h
(2� n)(1� n)r

�n�(r) + (2 � n)r1�n�0(r) + (2 � n)r1�n�0(r) + r2�n�00(r)
i

+
n� 1

r

1

(2� n)!n�1

�
(2 � n)r1�n�(r) + r2�n�0(r)

�
+

1

(2� n)!n�1
@r log

p
gr2�n�(r)

=
�0(r)

!n�1

�
2 +

n� 1

2� n

�
r1�n

1

(2� n)!n�1
(�00(r) + @r log

p
g�(r)) r2�n

6. Finding the Green's Function. We needZ
MnB�

div(ryH(x; y)�(y))dV(y)�
Z
MnB�

div(H(x; y)r�(y))dV(y)

=

Z
@B�

ryH(x; y) � �(y)�(y)dV(y)�
Z
@B�

H(x; y)r�(y) � �(y)dV(y)

The left side is
R
MnB�

�yH(x; y)�(y)dV(y)�
R
MnB�

H(x; y)��(y))dV(y). As for the right

side, similar arguments (Do it!!!!!) to the above case show that it goes to �(x) as �! 0.

Thus we �nd thatZ
M

H(x; y)��(y))dV(y) = �(x) +

Z
M

�yH(x; y)�(y)dV(y)

or �distr(y)H(x; y) = �x(y) + �yH(x; y).

Now, if H(x; y) were the Green's function, then we would just form the fundamental
solution Q1f(x) =

R
M
H(x; y)f(y)dV(y). It is not, however, which we see by computing

�Q1f(x). Again, let � 2 C1

c (Rn) and we compute:
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Z
M

Q1f(x)��(x)dV(x) =

Z
M

Z
M

H(x; y)f(y)dV(y)��(x)dV(x)

=

Z
M

Z
M

H(x; y)��(x)dV(x)f(y)dV(y)

=

Z
M

�
�(y) +

Z
M

�xH(x; y)�(x)dV(x)

�
f(y)dV(y)

=

Z
M

�
f(x) +

Z
M

�xH(x; y)f(y)dV(y)

�
�(x)dV(x)

So we get that �distrQ1f(x) = f(x) +
R
M
�xH(x; y)f(y)dV(y).

Thus we need to understand the regularity of
R
M
�xH(x; y)f(y)dV(y) and change our

operator Q1 to get the fundamental solution. We will try to �nd a new operator Q2 so that

� (Q1 +Q2) = f(x). To do this, we simply need to solve �u = �
R
M
�xH(x; y)f(y)dV(y)

weakly.
Now, if we had that f2(x) =

�
R
M
�xH(x; y)f(y)dV(y) is in L2(M) and that it integrates

to zero, then we
Let's follow the same program we did before. We want to solve �u = f2. Let Q2f(x) =R

M
H(x; y)f2(y)dV(y). We now check to see how close this is to the solution we want. By

the last calculation we see that we get

�distrQ2f(x) = f2(x) +

Z
M

�xH(x; y)f2(y)dV(y)

= f2(x)�
Z
M

�xH(x; y)

Z
M

�yH(y; z)f(z)dV(z)dV(y)

= f2(x)�
Z
M

Z
M

�xH(x; y)�yH(y; z)dV(y)f(z)dV(z)

So we �nd that

�distr(Q1 +Q2)f(x) = f(x)�
Z
M

Z
M

�xH(x; y)�yH(y; z)dV(y)f(z)dV(z)

We can, of course, continue this course of action inde�nitely.
Now, we look at Q2:

Q2f(x) =

Z
M

H(x; y)f2(y)dV(y)

= �

Z
M

H(x; y)

Z
M

�yH(y; z)f(z)dV(z)dV(y)

= �

Z
M

Z
M

H(x; y)�yH(y; z)dV(y)f(z)dV(z)

Thus our second approximation to the Green's function is

G2(x; y) = H(x; y)�
Z
M

H(x; z)�zH(z; y)dV(z)
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Now, if we could solve �distr(x)F (x; y) = R2 =
R
M
�xH(x; z)�zH(z; y)dV(z) where

R2 is continuous, then we would take G(x; y) = G2(x; y) + F (x; y) and we would be done.

Unfortunately, R2 is not necessarily continuous, so we continue until we become continuous

using the following lemma.

Lemma 6.1. Let F (x; y) =
R
M
G(x; z)H(z; y)dV(z) and suppose that jG(x; z)j � Const �

d(x; z)a�n and jH(z; y)j � Const � d(z; y)b�n, where 0 < a; b < n, then

jF (x; y)j �

8<
:

Const � d(x; y)a+b�n if a+ b < n

Const � (1 + jlog d(x; y)j) if a+ b = n

Const if a+ b > n

9=
;

Proof: Let d = d(x; y)=2. We now compute the integral in 3 parts:Z
m

=

Z
Bd(x)

+

Z
B3d(y)nBd(x)

+

Z
MnB3d(y)

Now we compute separately:

����
Z
Bd(x)

G(x; z)H(z; y)dV(z)

���� �
Z
Bd(x)

jG(x; z)H(z; y)jdV(z)

� Const

Z
Bd(x)

d(x; z)a�nd(z; y)b�ndV(z)

� Const � db�n
Z
Bd(x)

d(x; z)a�ndV(z)

= Const � db�n
Z
Sn�1

Z d

0

ra�nrn�1drd�

= Const � db�nVol(Sn�1)
1

a
da

= Const � da+b�n

where the constant depends on a and n.

����
Z
B3d(y)nBd(x)

G(x; z)H(z; y)dV(z)

���� �
Z
B3d(y)nBd(x)

jG(x; z)H(z; y)jdV(z)

� Const

Z
B3d(y)nBd(x)

d(x; z)a�nd(z; y)b�ndV(z)

� Const � da�n
Z
B3d(y)nBd(x)

d(z; y)b�ndV(z)

� Const � da�n
Z
Sn�1

Z 3d

0

rb�nrn�1drd�

= Const � da�nVol(Sn�1)
1

b
3bdb

= Const � da+b�n
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where the constant depends on b and n. And �nally,

����
Z
MnB3d(y)

G(x; z)H(z; y)dV(z)

���� �
Z
MnB3d(y)

jG(x; z)H(z; y)jdV(z)

� Const

Z
MnB3d(y)

d(x; z)a�nd(z; y)b�ndV(z)

� Const

Z
MnB3d(y)

(d(z; y)� 2d)
a�n

d(z; y)b�ndV(z)

= Const

Z
Sn�1

Z K

3d

(r � 2d)
a�n

rb�nrn�1drd�

� Const

Z K

3d

(r � 2d)
a+b�2n

rn�1dr

Now, if we change variables to s = r � 2d we get

Z K�2d

d

sa+b�2n(s+ 2d)n�1ds �
Z K�2d

d

sa+b�2n
�
(2s)n�1 + (4d)n�1

�
ds

=

Z K�2d

d

�
sa+b�n�1 + (4d)n�1sa+b�2n

�
ds

The second term is

(4d)n�1
1

a+ b� 2n + 1

�
(K � 2d)a+b�2n+1 � da+b�2n+1

�
where the constant depends on . The third inequality follows from the fact that d(z; y)�

2d � d(x; z).
2

7. Axiomatic approach to the Green's function. It may be easier to understand the

derivation by showing the properties that we require of our Green's Function. We shall need

the following:

Theorem 7.1. If we can �nd a function G(x; y) such that

1. �distr(y)G(x; y) = �x(y)� 1

V

2. �yG(x; y) = 0

3. G(x; y) � d(x; y)2�n

Then G(x; y) is the Green's Function for the Laplacian, i.e. if we de�ne Qf(x) =R
M
G(x; y)f(y)dV(y) then

� �Qf(x) = f(x)� 1

V

R
M
f(y)dV(y) and
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� Q�f(x) = f(x)� 1

V

R
M
f(y)dV(y)

for appropriate f .

Proof: Let us just check to see if Q�f(x) = f(x)� 1

V

R
M
f(y)dV(y). We �rst look weakly.

(Q�f(x); �(x)) =

Z
Q�f(x)�(x)dV(y)

=

Z Z
G(x; y)�f(y)dV(y)�(x)dV(x)

=

Z
�distr(y)G(x; y)f(y)dV(y)�(x)dV(x)

=

Z �
f(x)� 1

V

Z
f(y)dV(y)

�
�(x)dV(x)

2

Proof: Although we have already done the proof, let's do it again for old time's sake.
Let's �rst compute �distrQf(x). We consider the divergence theorem on M nB�(x):

Z
MnB�(x)

divy(ryG(x; y)�(y))dV(y)�
Z
MnB�(x)

divy(G(x; y)r�(y))dV(y)

=

Z
@B�(x)

ryG(x; y) � �(y)�(y)dV(y)�
Z
@B�(x)

G(x; y)r�(y) � �(y)dV(y)

and the left hand term is

Z
MnB�(x)

�yG(x; y)�(y)dV(y)�
Z
MnB�(x)

G(x; y)��(y)dV(y)

= �
Z
MnB�(x)

G(x; y)��(y)dV(y)

because of property 2.

2
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