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1. Introduction. This is an introduction to Kahler geometry with some of the calculations

done as well.

2. Introduction. This is an introduction to Kahler geometry with some of the calculations

done as well.

3. De�nitions. An almost-complex manifold M is a smooth manifold with a complex

structure J on the tangent space, i.e. J2 = �I. This allows one to make the tangent space

TpM into a complex vector space. The multiplication by i is given by iV = JV . We then have

a Hermitian structure if we have a Riemannian metric g such that g(JX; JY ) = g(X; Y ).

We have a complex manifold if the almost-complex structure is inherited from a holomorphic

structure.

Now, given a complex structure, we can extend our metric to take vectors in TM 
 C by

simply extending it to be complex linear. Then we have complex coordinates fz�g so that

z� = x� + iy�. We have a complex structure J on the tangent space so that J @
@x�

= @
@y�

.

We then see that the tangent space is spanned by vectors

@

@z�
=

1

2

�
@

@x�
� iJ

@

@x�

�

@

@z�
=

1

2

�
@

@x�
+ iJ

@

@x�

�

which are chosen so that @

@z�
z� = 1 and likewise. Sometimes we will use the notation

@
@z�

= @

@z�
.

Now the complexi�ed tangent space TM
C splits as a direct sum of holomorphic and an-

tiholomorphic tangent spaces, each di�eomorphic to TM . For instance, the di�eomorphism

for holomorphic vectors is:

TM ! TM 
 C ! T hM
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Thus we see that if we extend J to act on TM 
 C , then the holomorphic vectors form

the eigenspace with eigenvalue i and the antiholomorphic vectors form the eigenspace with

eigenvalue �i.

This allows us to show a number of symmetries. We �rst observe that

g

�
@

@z�
;
@

@z�

�
= g

�
J

@

@z�
; J

@

@z�

�

= g

�
i
@

@z�
; i

@

@z�

�

= �g

�
@

@z�
;
@

@z�

�

thus we get g�� = 0. Similarly, we get g�� = 0.

Proposition 3.1. The following are true:

1. g�� = g��

2. g�� = g��

3. The metric matrix in coordinates f @

@z1
; : : : ; @

@zn
; @

@z1
; : : : ; @

@zn
g is of the form

�
0 A

A 0

�

where A is Hermitian, i.e. A = AT .

4. The metric is

g

�
@

@z�
;
@

@z�

�
=

1

2
g

�
@

@x�
;
@

@x�

�
+
i

2
!

�
@

@x�
;
@

@x�

�

where !(X; Y ) = g(JX; Y ) is a symplectic form and @
@z�

= 1

2

�
@

@x�
+ iJ @

@x�

�
.

Proof:

g�� = g

�
@

@x�
+ iJ

@

@x�
;
@

@x�
� iJ

@

@x�

�

= g

�
@

@x�
;
@

@x�

�
+ g

�
J

@

@x�
; J

@

@x�

�
+ ig

�
@

@x�
; J

@

@x�

�
� ig

�
@

@x�
; J

@

@x�

�

= 2g

�
@

@x�
;
@

@x�

�
+ 2ig

�
J

@

@x�
;
@

@x�

�

where we used J-invariance of the metric. We now easily see 1,2, and 4. Now, 3 follows

because we let Aab = gab and thus AT
ab = Aba = gba = gba = gab = Aab. 2
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We say the manifold is Kahler if this complex structure is invariant under parallel trans-

lation, i.e. DJ = 0 (we use D for the covariant derivative). This is equivalent to a number

of conditions. Note that when we use capital letters as indices, we mean that the index

could be holomorphic or antiholomorphic but when we use lower case indices we indicate

antiholomorphic indices with over-bars and holomorphic indices without (so A = a or a).

Theorem 3.2. The following are equivalent:

1. DJ = 0

2. d! = 0

3. �CAB = 0 unless all indices are holomorphic or antiholomorpic (� is the Levi-Civita

connection).

4. gab = Iab +O(jzj2) where I is the identity.

Proof: First let's prove 1 , 2. !(X; Y ) = g(JX; Y ), so if we work in coordinates fxig

we �nd:

d!

�
@

@xi
;
@

@xj
;
@

@xk

�
= dg

�
J
@

@xi
;
@

@xj

��
@

@xk

�

+dg

�
J
@

@xj
;
@

@xk

��
@

@xi

�

+dg

�
J

@

@xk
;
@

@xi

��
@

@xj

�

= g

�
Dk

�
J
@

@xi

�
;
@

@xj

�
+ g

�
J
@

@xi
; Dk

@

@xj

�

+g

�
Di

�
J
@

@xj

�
;
@

@xk

�
+ g

�
J
@

@xj
; Di

@

@xk

�

+g

�
Dj

�
J

@

@xk

�
;
@

@xi

�
+ g

�
J

@

@xk
; Dj

@

@xi

�

Now suppose 1. Then we have

g

�
Dk

�
J
@

@xi

�
;
@

@xj

�
= g

�
JDk

@

@xi
;
@

@xj

�
= �g

�
Dk

@

@xi
; J

@

@xj

�

so using the above, we �nd

d!

�
@

@xi
;
@

@xj
;
@

@xk

�
= g

�
Di

@

@xk
�Dk

@

@xi
; J

@

@xj

�

+g

�
Dj

@

@xi
�Di

@

@xj
; J

@

@xk

�

+g

�
Dk

@

@xj
�Dj

@

@xk
; J

@

@xi

�

= 0
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using the symmetry of the Levi-Civita connection (we can do this argument coordinate free,

but then we need to recall how to take the exterior derivative of a form in the coordinate-free

setting, which will increase the number of terms with lie brackets). This is 1) 2.

Now we show 1 ) 2. Now, since our connection is Riemannian and by what we know

about the metric tensor it is easy to see that

�CAB = �C
AB

so we can easily reduce 3 to proving that �cab = 0 and �c
ab
= 0

The �rst is easy:

�cab =
1

2
gcd

�
@

@za
gbd +

@

@zb
gad �

@

@zd
gab

�

= 0

since all the indices of the metric tensor are holomorphic and thus the components are zero.

For the second, we need to use 1. Firstly,

J

�
Da

@

@zb

�
= J

�
�c
ab

@

@zc
+ �c

ab

@

@zc

�

= i�c
ab

@

@zc
� i�c

ab

@

@zc

and also, using 1,

J

�
Da

@

@zb

�
= Da

�
J
@

@zb

�

= �iDa

@

@zb

= �i�c
ab

@

@zc
� i�c

ab

@

@xc

and combining these two formulations we see that �c
ab
= 0, which proves 1) 2.

2

4. Curvature. We now want to understand the Riemannian curvature tensor and the

Ricci curvature tensor. Recall the de�nition of the Riemannian curvature tensor in local

coordinates:

Rijkl = g

�
DiDj

@

@xl
�DjDi

@

@xl
;
@

@xk

�

= gkm

�
@

@xi
�mjl �

@

@xj
�mil + �

p

il�
m
jp � �

p

jl�
m
ip

�

We now have the following:
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Theorem 4.1. The following are true:

1. RABCD = 0 if A and B are both holomorphic or both antiholomorphic.

2. Rabcd = Rdbca = Racbd

3. R(X; Y; Z;W ) = R(X; Y; JZ; JW )

Now recall the de�nition of the Ricci tensor:

Rij = gklRikjl

Notice that the Ricci tensor is symmetric. For our Kahler manifold, we can write this as:

Rab = gcdRacbd

= Racbc

It is very important to be careful with the Ricci tensor, since we see that

Rab = Rccba = �Rccba = Rccab = Rba

(notice again that the Ricci tensor is symmetric) so the moral of the story is to be consistent:

we will try to keep the two outside indices the same (conjugated or not) and the two inside

indices the same, then we'll be �ne.

We also note that the real Ricci curvature is necessarily invariant under J since

Rc(X; Y ) =
X
j

(R(X;Ej; Y; Ej) +R(X; JEj; Y; JEj))

=
X
j

(R(JX; JEj; JY; JEj) +R(JX;Ej; JY; Ej))

= Rc(JX; JY )

Now as far as the scalar curvature, we have a bit of a choice. The standard scalar

curvature in Riemannian geometry is:

R = gijRij

so on a Kahler manifold, this becomes

R = gabRab + gabRab = 2gabRab

but, of course, we might be tempted to de�ne scalar curvature as simply gabRab, which is

one half the usual scalar curvature.

Let's see how the curvature in the complex coordinates relates to the curvature in real

coordinates. Let za = xa + iya so that

Za =
@

@za
=

1

2

�
@

@xa
� i

@

@ya

�
=

1

2
(Xa � iYa)
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Zb =
@

@za
=

1

2

�
@

@xa
+ i

@

@ya

�
=

1

2
(Xa + iYa)

so Ya = JXa and Xa = �JYa.

We now compute:

Rabcd = R(Za; Zb; Zc; Zd)

=
1

16
R(Xa � iYa; Xb + iYb; Xc + iYc; Xd � iYd)

=
1

16

�
R(Xa; Xb; Xc; Xd)� iR(Xa; Xb; Xc; Yd) + iR(Xa; Xb; Yc; Xd) +R(Xa; Xb; Yc; Yd)

+ iR(Xa; Yb; Xc; Xd) +R(Xa; Yb; Xc; Yd)� R(Xa; Yb; Yc; Xd) + iR(Xa; Yb; Yc; Yd)

� iR(Ya; Xb; Xc; Xd)� R(Ya; Xb; Xc; Yd) +R(Ya; Xb; Yc; Xd)� iR(Ya; Xb; Yc; Yd)

+R(Ya; Yb; Xc; Xd)� iR(Ya; Yb; Xc; Yd) + iR(Ya; Yb; Yc; Xd) +R(Ya; Yb; Yc; Yd)
�

=
1

4
(R(Xa; Xb; Xc; Xd) +R(Xa; Yb; Xc; Yd) + iR(Xa; Xb; Yc; Xd) + iR(Xa; Yb; Xc; Xd))

Now, we also look at the metric and it's inverse:

gab = g(Za; Zb)

=
1

4
g(Xa � iYa; Xb + iYb)

=
1

2
(g(Xa; Xb) + ig(Xa; Ya))

gab = g(dza; dzb)

= g(dxa + idya; dxb � idyb)

= 2
�
g(dxa; dxb)� ig(dxa; dyb)

�

Note that gabgcb = Iab and gjkgkl = I
j

l .

We now wish to compute the hybrid curvature operator:
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Rab
cd = Rabefg

cegfd

=
1

4

�
~Rabef + ~Ra~be ~f + i ~Rab~ef + i ~Ra~bef

�
2
�
~gce � i~gc~e

�
2
�
~gfd � i~gf

~d
�

= ~Rabef ~g
ce~gfd � i ~Rabef ~g

ce~gf
~d
� i ~Rabef ~g

c~e~gfd � ~Rabef ~g
c~e~gf

~d

+ ~Ra~be ~f ~g
ce~gfd � i ~Ra~be ~f~g

ce~gf
~d
� i ~Ra~be ~f~g

c~e~gfd � ~Ra~be ~f ~g
c~e~gf

~d

+ i ~Rab~ef ~g
ce~gfd + ~Rab~ef ~g

ce~gf
~d + ~Rab~ef ~g

c~e~gfd � i ~Rab~ef~g
c~e~gf

~d

+ i ~Ra~bef ~g
ce~gfd + ~Ra~bef ~g

ce~gf
~d + ~Ra~bef ~g

c~e~gfd � i ~Ra~bef~g
c~e~gf

~d

= ~Rab
cd
� i ~Rab

c ~d + i ~Rab
~cd + ~Rab

~c ~d

+ ~Ra~b
c ~d + i ~Ra~b

cd + i ~Ra~b
~c ~d
� ~Ra~b

~cd

+ i ~Rab
~cd + ~Rab

~c ~d + ~Rab
cd
� i ~Rab

c ~d

+ i ~Ra~b
cd + ~Ra~b

c ~d
� ~Ra~b

~cd + i ~Ra~b
~c ~d

= 4
�
~Rab

cd + ~Ra~b
c ~d + i ~Rab

~cd + i ~Ra~b
cd
�
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