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1. Introduction. This is an introduction to Kahler geometry with some of the calculations
done as well.

2. Introduction. This is an introduction to Kahler geometry with some of the calculations
done as well.

3. Definitions. An almost-complex manifold M is a smooth manifold with a complex
structure J on the tangent space, i.e. J2 = —I. This allows one to make the tangent space
T, M into a complex vector space. The multiplication by ¢ is given by V' = JV. We then have
a Hermitian structure if we have a Riemannian metric g such that g(JX,JY) = ¢g(X,Y).
We have a complex manifold if the almost-complex structure is inherited from a holomorphic
structure.

Now, given a complex structure, we can extend our metric to take vectors in 7'M ® C by
simply extending it to be complex linear. Then we have complex coordinates {2“} so that
2% = x% +1y®. We have a complex structure .JJ on the tangent space so that J% = %.
We then see that the tangent space is spanned by vectors
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which are chosen so that %zo‘ = 1 and likewise. Sometimes we will use the notation
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Now the complexified tangent space T'M ®C splits as a direct sum of holomorphic and an-
tiholomorphic tangent spaces, each diffeomorphic to 7'M . For instance, the diffeomorphism
for holomorphic vectors is:

™ — TM®C — T'M
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Thus we see that if we extend J to act on TM ® C, then the holomorphic vectors form

the eigenspace with eigenvalue ¢ and the antiholomorphic vectors form the eigenspace with
eigenvalue —i.

This allows us to show a number of symmetries. We first observe that
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thus we get gog = 0. Similarly, we get g5 = 0.

Proposition 3.1. The following are true:
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1. gOéB = gBa
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3. The metric matriz in coordinates {%, 3‘9 ai_’ N 21 is of the form

where A is Hermitian, i.e. A = AT.

4. The metric is
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where w(X,Y) = g(JX,Y) is a symplectic form and 3% = 1 (3% +iJ52)
Proof:
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where we used J-invariance of the metric. We now easily see 1,2, and 4. Now, 3 follows
because we let Ay, = g5 and thus AL, = Ay, = goa = G, = G5 = A O
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We say the manifold is Kahler if this complex structure is invariant under parallel trans-
lation, i.e. DJ = 0 (we use D for the covariant derivative). This is equivalent to a number
of conditions. Note that when we use capital letters as indices, we mean that the index
could be holomorphic or antiholomorphic but when we use lower case indices we indicate
antiholomorphic indices with over-bars and holomorphic indices without (so A = a or a).

Theorem 3.2. The following are equivalent:
1. DJ=0
2. dw=20

3. TSy = 0 unless all indices are holomorphic or antiholomorpic (U is the Levi-Civita
connection,).

4. 95 = Ly + O(|2|?) where I is the identity.
Proof: First let’s prove 1 & 2. w(X,Y) = g(JX,Y), so if we work in coordinates {z'}

we find:
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Now suppose 1. Then we have
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so using the above, we find
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using the symmetry of the Levi-Civita connection (we can do this argument coordinate free,
but then we need to recall how to take the exterior derivative of a form in the coordinate-free
setting, which will increase the number of terms with lie brackets). This is 1 = 2.

Now we show 1 = 2. Now, since our connection is Riemannian and by what we know
about the metric tensor it is easy to see that
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so we can easily reduce 3 to proving that I'¢, = 0 and =0
The first is easy:
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since all the indices of the metric tensor are holomorphic and thus the components are zero.
For the second, we need to use 1. Firstly,
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and combining these two formulations we see that '’z = 0, which proves 1 = 2.
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4. Curvature. We now want to understand the Riemannian curvature tensor and the

Ricei curvature tensor. Recall the definition of the Riemannian curvature tensor in local
coordinates:
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We now have the following:



Theorem 4.1. The following are true:
1. Rapcp =0 if A and B are both holomorphic or both antiholomorphic.
2. Rigeqg = Rigea = Rozpa
3. R(X,)Y,ZW)=R(X,Y,JZ, JW)
Now recall the definition of the Ricci tensor:
Rz'j = gklRika
Notice that the Ricci tensor is symmetric. For our Kahler manifold, we can write this as:
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It is very important to be careful with the Ricci tensor, since we see that

Ry =R, = —R

ccba

ceba = REcaE = Rga

(notice again that the Ricci tensor is symmetric) so the moral of the story is to be consistent:
we will try to keep the two outside indices the same (conjugated or not) and the two inside
indices the same, then we’ll be fine.

We also note that the real Ricci curvature is necessarily invariant under J since

Re(X,Y) = Y (R(X,E;Y,E;) + R(X, JE;,Y, JE}))
J
= Y (R(JX,JE;, JY,JE;) + R(JX, E;, JY, E)))
J

= Re(JX,JY)

Now as far as the scalar curvature, we have a bit of a choice. The standard scalar
curvature in Riemannian geometry is:
R = ginij
so on a Kahler manifold, this becomes
R=g"Rg+ g™ Ra = 29 R,

but, of course, we might be tempted to define scalar curvature as simply g*’R, 3, which is
one half the usual scalar curvature.

Let’s see how the curvature in the complex coordinates relates to the curvature in real
coordinates. Let 2% = x® + iy® so that
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— 0 1/ 0 0 1
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soY,=JX, and X, = —JY,.
We now compute:

R d — R(Zaaza Za Zd)

abe

1
= 1—6R(Xa — 1Yy, Xp + 1Yy, Xo 4+ 1Y, Xy — iYy)

1
= 1—6(R(Xa,Xb, X, Xg) — iR( X4, Xy, Xe, Ya) + iR( X4, X, Yo, Xg) + R(Xa, Xp, Yo, Ya)

+ iR(Xaa 1/I-H XC7 Xd) + R(X(u }/;)7 Xm Yd) - R(Xa7 }/;)7 1/'67 Xd) + iR(Xaa }/;)7 1/'67 Yd)
— /LR(}/;JJ Xb7 XC; Xd) — R(Ya7 Xb7 XC; Yd) + R(Ya7 Xb7 }/Ca Xd) - ZR()/;M Xb7 }/Ca Yd)
+ R(Y(u }/;)7 XC) Xd) - ZR()/;J‘; 1/1-77 XC; Yd) + ZR()/;M }/;H 1/07 Xd) + R()/;J‘) }/;)7 1/'67 Yd))
1

— Z (R(Xa7 Xb7 XC; Xd) + R(Xtu }/;Ja Xm Yd) + iR(Xaa Xb7 1/07 Xd) + iR(Xaa }/;Ja XC) Xd))

Now, we also look at the metric and it’s inverse:
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g(dz", dz")
g(dz® + idy®, dz’ — idy®)
2 (g(dx“, da®) —ig(dx®, dyb))

gaE

Note that gaEch = I and ¢'*gy = Ilj.
We now wish to compute the hybrid curvature operator:



RaE cd — Raggfg0§gfd
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= Rabefgcegfd - iRabefgcegfd - iRabefQCégfd - Rabefgazgfd
+ Ragefgcegfd . Z-Ral;efgcegfd . Z-Ral;efgcégfd . Ra[;ef§06§fd
+iRaber 57" + Raves g7 + RaverG9"" — i Raper g’

+ i-éaj,efgceg d 4 Ral;efgceg d 4 Ral;efgcégfd - iRagef,gCéng

= Ry — iRy “ 4 iRy + Ry ™
+ Rag cd + i}?a;’ ed 4 iRag ed _ Rag ed
FiRay ™ 4 Rap® + Ry — iRy
+ iRa(; ed 4 Ra(; ed _ Ra(; e 4 iRa(; ed
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