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1. Introduction. This is a summary of some easy estimates on the metric tensor of a

manifold if the sectional curvatures are bounded. It generally follows [1, section 1.8].

2. De�nitions. We will estimate derivatives of the metric in geodesic polar coordinates.
Suppose we have a Riemannian manifold (M;g). We consider geodesic polar coordinates,
and in these coordinates the metric can be written as g = dr2 + r2g�i�jd�

id�j .

We also are going to need to take a geodesic (t) onM which is parametrized by arclength,
and we will say that P = (0), Q = (r), and T (t) = 0(t).

In the sequel, we shall talk about vector �elds V along the curve . When we write V 0(t),
it is understood to mean rT (t)V (t), where r is the Riemannian connection on M .

We shall also restrict ourselves to r such that (r) is in the ball around P where expP is

a di�eomorphism (inside the injectivity radius).

3. Relevant Theorems. We will use Jacobi �elds and the Index Inequality. We �rst
should de�ne the Index of a vector �eld.

De�nition 3.1. The index at r of a vector �eld V (t) along a curve  is

Ir(V; V ) =

Z r

0

[g(V 0(t); V 0(t)) + g(R(T (t); V (t))T (t); V (t))] dt

where T (t) = d

dt
is the tangential vector �eld to .

This is, I think, essentially the second variation of arclength.

The important theorem is the following:

Theorem 3.2 (Index Inequality. See, for instance, [2]). Let (t) be a geodesic between
P = (0) and Q = (r) such that there are no conjugate points between P and Q, and let

J(t) be a Jacobi �eld along  such that J(0) = 0 and V (t) be another smooth vector �eld

along  such that both J and V are orthogonal to T (t) = d

dt
, V (0) = 0, and J(r) = V (r),

then Ir(J; J) � Ir(V; V ).

In order to use the Index Inequality, we will need the following two propositions.

Proposition 3.3 (See [1], 1.46 ). Q = expP X0 is a conjugate point if and only if expP
is singular at X0.

Thus if we stay within the injectivity radius on M , we will not encounter any conjugate

points. We will also need to know:
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Proposition 3.4. The injectivity radius for a space of constant curvature b2 is �=b.

Finally, we will use the fact that Jacobi �elds are the in�nitesimal variations of geodesics.

In geodesic normal coordinates at P , the geodesics through p are given by expp(tv). Thus

if we have a Jacobi �eld along a geodesic  such that J(0) = 0, then we see that in our

geodesic polar coordinates we have Jacobi �elds J(t) = tkJ 0(0)k @

@�

��
tv
where kwk for a vector

w means
p
g(w;w). Thus we see that:

Proposition 3.5. For a Jacobi �eld J along a geodesic (t), t 2 [0; r] with (r) = Q,

such that J(0) = 0 and J(r) = @

@�
jQ, we have g(J(r); J(r)) = r2g��kJ 0(0)k2.

4. Lower Bounds for the Components of the Metric Tensor. We shall prove the

following:

Theorem 4.1. If the sectional curvature of M is bounded above by b2 then we have the

following two estimates, provided r < �=b:

� @

@r
log

p
g�� � b cot(br)� 1

r

� g��(r;�) � sin br
br

where � = �i for any i (as de�ned in the polar representation of the metric).

Now suppose the sectional curvature of M is bounded above by b2, so g(R(J; T )T; J) � b2,
or g(R(T; J)T; J) � �b2.

We furthermore observe that if J is a Jacobi �eld, then, by de�nition, J 00(t) = R(T; J)T ,
so we get

Ir(J; J) =

Z r

0

[g(J 0(t); J 0(t)) + g(J 00(t); J(t))]dt = g(J 0(r); J(r)) (4-1)

We are going to compare the metric onM with the metric on a space of constant curvature
b2. To do this, we need to make a frame fe1(t); :::; en(t)g on M by taking an orthonormal basis
fe1; :::; eng of T(0)M such that e1 = 0(0) and then parallel translating it along . Notice

that since  is a geodesic and parametrized by arclength, e1(t) = 0(t). We also need to take
a geodesic ~ on another manifold ~M which is the same length as  and do the same thing
to get a frame f~e1(t); :::; ~en(t)g along ~. We then have the map �: ci(t)ei(t) 7! ci(t)~ei(t), or

V 7! ~V . Notice the following:

Lemma 4.2. The map �: (M;g)! ( ~M; ~g) has the following properties for vector �elds
V and W along  and ~V and ~W along ~:

� g(V;W ) = ~g( ~V ; ~W )

� g(V 0;W ) = ~g( ~V 0; ~W )

� g(V 0;W 0) = ~g( ~V 0; ~W 0)

Proof: Use the frames we have already set up. Then if V = viei and W = wiei where
vi; wi are real-valued functions, then

g(V;W ) = viwjg(ei; ej) =
X

viwi = viwj~g(~ei; ~ej) = ~g( ~V ; ~W )
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(Notice that it is important that we use frames instead of coordinates.) Furthermore, since

the frames are parallel, i.e. rTei = 0,, we get V 0 = vi
0

ei + virTei = vi
0

ei and ~V 0 = vi
0

~ei so

the last items follow. 2

Now,

I(J; J) =

Z r

0

[g(J 0; J 0) + g(R(T; J)T; J)]dt

�
Z r

0

�
g(J 0; J 0)� b2g(J; J)

�
dt

= Ib( ~J; ~J)

where Ib is the index on a manifold of constant curvature b2 and where we have chosen

a frame feig along  and a corresponding frame f~eig along some curve ~ of the same length

in the manifold of constant curvature.

In constant curvature, we have a Jacobi �eld which vanishes at t = 0 and ends at the
vector ~J(r) given by sin bt

sin br
~J(r).

What do we really mean by this? Suppose J(r) =
P

ciei(r) with our frame as above.
Let our new �eld be de�ned by ~V (t) = sin bt

sin br
ci(r)~ei(t). Notice that ~V (r) = ~J(r), ~V (0) = 0,

~V 0(t) = b cos bt
sin br

ci(r)~ei(t) since the frame is parallel, and ~V is orthogonal to ~ at every point

since J(r) is and we have a parallel frame along a geodesic, so ~e1(t) = ~T (t) = ~0(t) for all t.
Now compute (letting ci = ci(r)) using the Index Inequality (3.2) on the manifold of constant
curvature b2 (which we can do since we are inside the injectivity radius by assumption that

r � �=b):

Ibr(
~J; ~J) � Ibr

�
sin(bt)

sin(br)
ci~ei(t)

�

=
1

sin2 br

Z r

0

h
b2 cos2(bt)

X
(ci)2 � b2 sin2(bt)

X
(ci)2

i
dt

=
b

sin2 br
sin(br) cos(br)

X
(ci)2

= b cot(br)g(J(r); J(r))

We have just about proven an estimate on the metric tensor. We use 4-1. We now know
that

g(J 0(r); J(r)) � b cot(br)g(J(r); J(r)) (4-2)

Now if we take J(t) to be a Jacobi �eld such that J(r) = @

@�
jQ for � = �i for some i, then

g(J(r); J(r)) = r2g��kJ 0(0)k2 by Proposition 3.5, so we can compute:

b cot(br)g(J(r); J(r)) � g(J 0(r); J(r))

b cot(br) � g(J 0(r); J(r))

g(J(r); J(r))

=
@

@r
g(J(r); J(r))

2g(J(r); J(r))
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=
@

@r
(r2g��kJ 0(0)k2)
2r2g��kJ 0(0)k2

=
1

r
+

@

@r
log

p
g��

And thus we have our �rst estimate on the metric tensor in polar coordinates:

@

@r
log

p
g�� � b cot(br)� 1

r

Notice that

b cot(br)� 1

r
=

d

dr
log

sin(br)

r
=

d

dr

�
log

sin(br)

br
+ log b

�

so if we integrate from 0 to r0 we get

log
p
g��(r0;�) � log

sin br0

br0

since at 0, the metric is Euclidean, so g��(0;�) = 1 (since in R2 we have g( @

@�
; @

@�
) = r2) and

lims!0
sin br
br

= 1. Thus we have

g��(r;�) �
sin br

br

for any �, a coordinate on Sn�1.

5. Lower Bounds on Determinant of Metric. We shall now use what we proved above
to prove:

Theorem 5.1. If the sectional curvature of M is bounded above by b2 then we have the
following two estimates, provided r < �=b:

� @

@r
log

p
jg(r; �)j � (n� 1)b cot(br)� n�1

r

�
p
jg(r; �)j �

�
sin br
br

�n�1

where jgj = det g�i�j .

We �rst take a bunch of Jacobi Fields J1; :::; Jn�1 such that together with T at r they
form a basis for TQM . We now let jgj = det g�i�j and suppose that in coordinates we have
Ji(t) = cki

@
@xk

and compute:

@

@r
log

p
jgj =

1

2

@

@r
tr log jgj

=
1

2
tr

�
@

@r
g�i�jg

�j�k

�

=
1

2

@

@r

g(Ji(r); Jj(r))

r2
g�

i�j

= g(J 0i(r); Jj(r))g
�i�j � n � 1

r

=
X
i

g(J 0i(r); Ji(r))�
n� 1

r
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We get the last equality seen above by letting J 0i(r) = cki Jk(r) (since the J 0k(r) form an

orthonormal basis) and compute:

g(J 0i(r); Jj(r))g
�i�j = cki r

2g�k�jg
�i�j

= r2cki �
i
k

=
X
i

r2cii

=
X
i

g(J 0i(r); Ji(r))

We can now use 4-2 and see that

@

@r
log

p
jgj � (n � 1)b cot(br)� n� 1

r

Integrating this from 0 to r0 we get

Z r0

0

�
(n� 1)b cot(br)� n� 1

r

�
dr = log

�
sin br

br

�n�1
�����
r0

0

= log

�
sin br0

br0

�n�1

because limr!0
sin br
br

= 1. Now, when r = 0, g is the Euclidean metric, where g( @
@�
; @
@�
) = r2,

so kg(0;�)k = det In�1 = 1 where In�1 is the (n � 1) � (n � 1) identity matrix. Thus we

�nally get:

log
p
jg(r0;�)j � log

�
sin br0
br0

�n�1

p
jg(r0;�)j �

�
sin br0

br0

�n�1

6. Upper Bounds on Components of the Metric Tensor. We shall prove the follow-
ing:

Theorem 6.1. If the sectional curvature of M is bounded below by �a2 then we have the
following two estimates:

� @
@r
log

p
g�� � a coth(ar)� 1

r

� g��(r;�) � sinhar
ar

We begin as above. We know that for a Jacobi �eld J along a geodesic we have

g(R(J; T )T; J) � �a2, so g(R(T; J)T; J) � a2.

Let us de�ne a vector �eld V (t) along the geodesic . We �rst consider a Jacobi �eld J

along  such that J(0) = 0, g(J 0(0); T (0)) = 0, and J(r) = @

@�
jQ. We �x a frame fei(t)g along

 as above, so J(t) = ci(t)ei(t). We can now take as our vector �eld V (t) = sinhat
sinhar

ci(r)ei(t).
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Notice that ~V would be a Jacobi �eld in a manifold ~M of constant curvature �a2. We also

see immediately that V (0) = 0 and V (r) = J(r).

The Index Inequality (3.2) gives us

Ir(J; J) � Ir(V; V )

=

Z r

0

[g(V 0; V 0) + g(R(T; V )T; V )] dt

�
Z r

0

�
g(V 0(t); V 0(t)) + a2g(V; V )

�
dt

= Iar (
~V ; ~V )

where Iar is the index on a manifold of constant curvature �a2. Note we can use the Index

Inequality since we are within the injectivity radius and hence there are no conjugate points.

Now, recall 4-1, which handles the left side. We also want to compute the right side
(again letting ci = ci(r)):

Iar (
~V ; ~V ) =

Z r

0

�
g(V 0(t); V 0(t)) + a2g(V; V )

�
dt

=
1

sinh2 ar

Z r

0

h
a2 cosh2(at)

X
(ci)2 + a2 sinh2(at)

X
(ci)2

i
dt

=
a

sinh2 ar

Z r

0

�
a cosh2 at+ a sinh2 at

�
dt
X

(ci)2

=
a

sinh2 ar
(cosh ar)(sinh ar)g(J(r); J(r))

= a coth(ar)g(J(r); J(r))

Now we can follow the same calculation as above to get the following two estimates:

@

@r
log

p
g�� � a coth(ar)� 1

r

g��(r;�) �
sinh ar

ar
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