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1. Introduction. This is a summary of some easy estimates on the metric tensor of a
manifold if the sectional curvatures are bounded. It generally follows [1, section 1.8].

2. Definitions. We will estimate derivatives of the metric in geodesic polar coordinates.
Suppose we have a Riemannian manifold (M, g¢). We consider geodesic polar coordinates,
and in these coordinates the metric can be written as g = dr? + r2ggigs dode’ .

We also are going to need to take a geodesic y(¢) on M which is parametrized by arclength,
and we will say that P = ~(0), @ = ~(r), and T(t) = +'().

In the sequel, we shall talk about vector fields V' along the curve 4. When we write V'(1),
it 1s understood to mean VT(t)V(t), where V is the Riemannian connection on M.

We shall also restrict ourselves to r such that v(r) is in the ball around P where expp is
a diffeomorphism (inside the injectivity radius).

3. Relevant Theorems. We will use Jacobi fields and the Index Inequality. We first
should define the Index of a vector field.

Definition 3.1. The index at r of a vector field V() along a curve ~ is
L) = [ o070, V(0) + g R V)T (0, V(e d
0

where T'(t) = Cfl—z is the tangential vector field to 7.

This 1s, I think, essentially the second variation of arclength.
The important theorem is the following:

Theorem 3.2 (Index Inequality. See, for instance, [2]). Let (1) be a geodesic between
P =~(0) and Q = ~(r) such that there are no conjugate points between P and @), and let
J(t) be a Jacobi field along v such that J(0) = 0 and V(t) be another smooth vector field
along ~v such that both J and V are orthogonal to T(t) = Cfl—z, V(0) =0, and J(r) = V(r),
then I.(J,J) < L(V,V).

In order to use the Index Inequality, we will need the following two propositions.
Proposition 3.3 (See [1], 1.46 ). @ = expp Xo is a conjugate point if and only if expp
is singular at Xg.

Thus if we stay within the injectivity radius on M, we will not encounter any conjugate
points. We will also need to know:



Proposition 3.4. The injectivity radius for a space of constant curvature b* is 7 /b.

Finally, we will use the fact that Jacobi fields are the infinitesimal variations of geodesics.
In geodesic normal coordinates at P, the geodesics through p are given by exp,(tv). Thus
if we have a Jacobi field along a geodesic v such that J(0) = 0, then we see that in our
geodesic polar coordinates we have Jacobi fields J(t) = t||.J/(0)|| 2 ‘m where ||w]| for a vector

w means /¢g(w,w). Thus we see that:

Proposition 3.5. For a Jacobi field J along a geodesic ~(t), t € [0,r] with v(r) = @Q,
such that J(0) =0 and J(r) = %|Q, we have g(J(r), J(r)) = r?ge||J'(0)|*.

4. Lower Bounds for the Components of the Metric Tensor. We shall prove the
following:

Theorem 4.1. If the sectional curvature of M is bounded above by b* then we have the
following two estimates, provided r < 7 /b:

o %10g1/999 > beot(br) — L

i gga(?“,@) Z %

where 0 = 0" for any i (as defined in the polar representation of the metric).

Now suppose the sectional curvature of M is bounded above by %, so ¢(R(J,T)T,.J) < b*,
or g(R(T,J)T,J) > —b*.
We furthermore observe that if .J is a Jacobi field, then, by definition, J"(t) = R(T, J)T,

so we get
L(J,J) :/0 [g(J' (@), (1)) + g(J"(2), (1)) dt = g(J'(r), J(r)) (4-1)

We are going to compare the metricon M with the metric on a space of constant curvature
b*. To do this, we need to make a frame {e((¢), ..., e,(¢)} on M by taking an orthonormal basis
{e1, ..., en} of TgyM such that e; = 4(0) and then parallel translating it along 5. Notice
that since 7 is a geodesic and parametrized by arclength, e;(f) = 7/(¢). We also need to take
a geodesic 4 on another manifold M which is the same length as v and do the same thing
to get a frame {¢,(%), ..., ¢,(¢)} along 7. We then have the map ~: ¢'(¢)e;(t) — c'(t)é;(t), or
V = V. Notice the following:

Lemma 4.2. The map ~: (M, g) — (M, §) has the following properties for vector fields

Vand W along v and V and W along 3 :
o g(V,W)=g(V,W)
o g(V/,W)=g(V',W)
o g(V/, W) =g(V', W)

Proof: Use the frames we have already set up. Then if V = v'e; and W = w'e; where
v',w' are real-valued functions, then

gV, W) =v'wigle;,e;) = Zviwi = v'wl§(&, &) = g(V, W)
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(Notice that it is important that we use frames instead of coordinates.) Furthermore, since
the frames are parallel, i.e. Vre; = 0,, we get V' = v'e; + v'Vre; = vi'e; and V! = vi'é; so
the last items follow. a

Now,

1(J,)) = / lg(J', J") + g(R(T, J)T,.J)] dt

> /07“ [g(]’, J) = b*g(J, J)] dt
= I'(J,J)

where I° is the index on a manifold of constant curvature b* and where we have chosen
a frame {¢;} along v and a corresponding frame {¢;} along some curve 4 of the same length
in the manifold of constant curvature.

In constant curvature, we have a Jacobi field which vanishes at ¢ = 0 and ends at the
vector J(r) given by %j(r)

What do we really mean by this? Suppose J(r) = > ceir) with our frame as above.
Let our new field be defined by V() = S2bei(1)¢,(¢). Notice that V(r) = J(r), V(0) = 0,

sin br

‘N/’(t) = b%ci(r)éi(t) since the frame is parallel, and V is orthogonal to 7 at every point
since J(r) is and we have a parallel frame along a geodesic, so & () = T(t) = 4'(t) for all t.
Now compute (letting ¢; = ¢;(r)) using the Index Inequality (3.2) on the manifold of constant
curvature b? (which we can do since we are inside the injectivity radius by assumption that

r <m/b):

By = ()

N sin12 br /OT b cos®(b) Z(Ci)z — b”sin”(bt) 2(02)2} dt

- %b sin(br) cos(br) Z(Ci)2

sin” br

= beot(br)g(J(r), J(r))

We have just about proven an estimate on the metric tensor. We use 4-1. We now know
that

g(J'(r), J(r)) = beot(br)g(J(r), J (r)) (4-2)
Now if we take J(t) to be a Jacobi field such that J(r) = Z|qg for § = ¢ for some i, then
g(J(r), J(r)) = r*ges||.J'(0)||* by Proposition 3.5, so we can compute:

beot(br)g(J(r), J(r)) < g(J'(r), J(r))
g(J' (1), J (1)

eI =T T0)

79(J(r), J(r))




= (r2gg0||J'(0)]1%)
2o [T (O]
1 0

= ;+Elog VYe6

And thus we have our first estimate on the metric tensor in polar coordinates:

0 1
Elogw/ggg > beot(br) — -
Notice that . p n(br) p n(br)
sin(br sin(br
bcot(br) — o= %log = <log . + log b)

so if we integrate from 0 to ro we get

sin br
log v/ gs6(r0, ©) > log o .
0

since at 0, the metric is Euclidean, so g4 (0,0) = 1 (since in R* we have g(%, 889) = r?) and

sin br

=1 Thus we have

hms—>0
sin br

gga(?“,@) Z br-

for any 0, a coordinate on S™71.

5. Lower Bounds on Determinant of Metric. We shall now use what we proved above
to prove:

Theorem 5.1. If the sectional curvature of M is bounded above by b* then we have the
following two estimates, provided r < 7 /b:

o Zlog\/lg(r,0)] > (n —1)bcot(br) — 2=
sinbr \7—1
o VIg(r,0) = (*37)

where |g] = det ggigs .

We first take a bunch of Jacobi Fields Ji, ..., J,_1 such that together with T" at r they
form a basis for To M. We now let |g| = det ggigs and suppose that in coordinates we have

Ji(t) = ¢f 5% and compute:

0 10
Elogvlgl = §Etrlog|g|

1 a g3 gk
= —ir| =—gy
5 r (arge 919

}Qg(Ji(T),J]‘(T))gW
2 Or 72

= g(Jl(r), J;(r))g" " —
= Do) hlr)) -

4

n—1

’
n—1
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We get the last equality seen above by letting J!(r) = cfJi(r) (since the Ji(r) form an
orthonormal basis) and compute:

g(JZ.’(r),Jj(r))gQW = cerggkgjgew
= 7“2cf(5}g

= Zrch
S CACRG)

We can now use 4-2 and see that

n—1

aglog Vgl = (n = 1)bcot(br) —
-

7

Integrating this from 0 to ry we get

ro . n—1
n — 1)bcot(br) — i ! dr = lo sin br
g
0 r br

. n—1
— 1 sin brg
g( bTO )
a 8) 2

because lim,_ = 1. Now, when r = 0, ¢ is the Euclidean metric, where ¢(%5, 55) = %,
so ||g(0,0)| = det [,,_; = 1 where I,_1 is the (n — 1) x (n — 1) identity matrix. Thus we
finally get:

70

0

sin br

bTO

. n—1
mmm|z(m”ﬁ

bTO

. n—1
1%VM%®N21%Cm%>

6. Upper Bounds on Components of the Metric Tensor. We shall prove the follow-
ing:

Theorem 6.1. If the sectional curvature of M is bounded below by —a? then we have the
following two estimates:

. % log \/gss < acoth(ar) — %

o gga(?“,@) S sinh ar

ar

We begin as above. We know that for a Jacobi field J along a geodesic we have
g(R(J,TYT,J) > —a?, so g(R(T,J)T,J) < a*

Let us define a vector field V(¢) along the geodesic v. We first consider a Jacobi field .J
along v such that J(0) =0, ¢(J'(0),7(0)) = 0, and J(r) = %|Q. We fix a frame {¢;(t)} along

v as above, so J(t) = ¢'(t)e;(t). We can now take as our vector field V(¢) = %ci(r)ei(t).
)



Notice that V would be a Jacobi field in a manifold M of constant curvature —a?. We also
see immediately that V(0) =0 and V(r) = J(r).
The Index Inequality (3.2) gives us

L(J,J) < L(V,V)

r

/0 (V' V') + g(R(T, VYT, V)] dt
/07’ [g(V’(t), V'(t)) + a*g(V, V)} dt

= IYV,V)

where I is the index on a manifold of constant curvature —a?. Note we can use the Index

Inequality since we are within the injectivity radius and hence there are no conjugate points.
Now, recall 4-1, which handles the left side. We also want to compute the right side
(again letting ¢’ = ci(r)):

LV, V)

/OT [g(V'(1), V(1)) + a*g(V, V)] dt
simlj2 ar /OT a” cosh®(at) Z(Ci)z +a’sinh®(at) 2(02)2} dt

% / [a cosh? at + a sinh? at] dt z:(ci)2
sinh” ar J,

a2 (cosh ar)(sinh ar)g(J(r), J(r))

sinh” ar

acoth(ar)g(J(r), J(r))

Now we can follow the same calculation as above to get the following two estimates:

0 1
E™ log /g6 < acoth(ar) — .
sinh ar
g@@(rv 6) S
ar
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