Estimates on the Metric Tensor

David Glickenstein February 14, 2000

1. Introduction. This is a summary of some easy estimates on the metric tensor of a manifold if the sectional curvatures are bounded. It generally follows [1, section 1.8].

2. Definitions. We will estimate derivatives of the metric in geodesic polar coordinates. Suppose we have a Riemannian manifold (M,g). We consider geodesic polar coordinates, and in these coordinates the metric can be written as $g = dr^2 + r^2 g_{\theta^i\theta^j} d\theta^i d\theta^j$.

We also are going to need to take a geodesic $\gamma(t)$ on M which is parametrized by arclength, and we will say that $P = \gamma(0)$, $Q = \gamma(r)$, and $T(t) = \gamma'(t)$.

In the sequel, we shall talk about vector fields V along the curve γ . When we write V'(t), it is understood to mean $\nabla_{T(t)}V(t)$, where ∇ is the Riemannian connection on M.

We shall also restrict ourselves to r such that $\gamma(r)$ is in the ball around P where \exp_P is a diffeomorphism (inside the injectivity radius).

3. Relevant Theorems. We will use Jacobi fields and the Index Inequality. We first should define the Index of a vector field.

Definition 3.1. The index at r of a vector field V(t) along a curve γ is

$$I_r(V,V) = \int_0^r \left[g(V'(t), V'(t)) + g(R(T(t), V(t))T(t), V(t)) \right] dt$$

where $T(t) = \frac{d\gamma}{dt}$ is the tangential vector field to γ .

This is, I think, essentially the second variation of arclength.

The important theorem is the following:

Theorem 3.2 (Index Inequality. See, for instance, [2]). Let $\gamma(t)$ be a geodesic between $P = \gamma(0)$ and $Q = \gamma(r)$ such that there are no conjugate points between P and Q, and let J(t) be a Jacobi field along γ such that J(0) = 0 and V(t) be another smooth vector field along γ such that both J and V are orthogonal to $T(t) = \frac{d\gamma}{dt}$, V(0) = 0, and J(r) = V(r), then $I_r(J,J) \leq I_r(V,V)$.

In order to use the Index Inequality, we will need the following two propositions.

Proposition 3.3 (See [1], 1.46). $Q = \exp_P X_0$ is a conjugate point if and only if \exp_P is singular at X_0 .

Thus if we stay within the injectivity radius on M, we will not encounter any conjugate points. We will also need to know:

Proposition 3.4. The injectivity radius for a space of constant curvature b^2 is π/b .

Finally, we will use the fact that Jacobi fields are the infinitesimal variations of geodesics. In geodesic normal coordinates at P, the geodesics through p are given by $exp_p(tv)$. Thus if we have a Jacobi field along a geodesic γ such that J(0) = 0, then we see that in our geodesic polar coordinates we have Jacobi fields $J(t) = t \|J'(0)\| \frac{\partial}{\partial \theta}\Big|_{tv}$ where $\|w\|$ for a vector w means $\sqrt{q(w,w)}$. Thus we see that:

Proposition 3.5. For a Jacobi field J along a geodesic $\gamma(t)$, $t \in [0, r]$ with $\gamma(r) = Q$, such that J(0) = 0 and $J(r) = \frac{\partial}{\partial \theta}|_Q$, we have $g(J(r), J(r)) = r^2 g_{\theta\theta} \|J'(0)\|^2$.

4. Lower Bounds for the Components of the Metric Tensor. We shall prove the following:

Theorem 4.1. If the sectional curvature of M is bounded above by b^2 then we have the following two estimates, provided $r < \pi/b$:

• $\frac{\partial}{\partial x} \log \sqrt{g_{\theta\theta}} \ge b \cot(br) - \frac{1}{x}$

•
$$g_{\theta\theta}(r,\Theta) \geq \frac{\sin br}{br}$$

where $\theta = \theta^i$ for any *i* (as defined in the polar representation of the metric).

Now suppose the sectional curvature of M is bounded above by b^2 , so $q(R(J,T)T,J) < b^2$, or $g(R(T, J)T, J) \ge -b^2$.

We furthermore observe that if J is a Jacobi field, then, by definition, J''(t) = R(T, J)T, so we get

$$I_r(J,J) = \int_0^r \left[g(J'(t), J'(t)) + g(J''(t), J(t)) \right] dt = g(J'(r), J(r))$$
(4-1)

We are going to compare the metric on M with the metric on a space of constant curvature b^2 . To do this, we need to make a frame $\{e_1(t), ..., e_n(t)\}$ on M by taking an orthonormal basis $\{e_1, \ldots, e_n\}$ of $T_{\gamma(0)}M$ such that $e_1 = \gamma'(0)$ and then parallel translating it along γ . Notice that since γ is a geodesic and parametrized by arclength, $e_1(t) = \gamma'(t)$. We also need to take a geodesic $\tilde{\gamma}$ on another manifold M which is the same length as γ and do the same thing to get a frame $\{\tilde{e}_1(t), ..., \tilde{e}_n(t)\}$ along $\tilde{\gamma}$. We then have the map $\sim :c^i(t)e_i(t)\mapsto c^i(t)\tilde{e}_i(t)$, or $V \mapsto V$. Notice the following:

Lemma 4.2. The map $\sim: (M, g) \to (\tilde{M}, \tilde{g})$ has the following properties for vector fields V and W along γ and \tilde{V} and \tilde{W} along $\tilde{\gamma}$:

- $q(V, W) = \tilde{q}(\tilde{V}, \tilde{W})$
- $g(V', W) = \tilde{g}(\tilde{V}', \tilde{W})$
- $q(V', W') = \tilde{q}(\tilde{V}', \tilde{W}')$

Proof: Use the frames we have already set up. Then if $V = v^i e_i$ and $W = w^i e_i$ where v^i, w^i are real-valued functions, then

$$g(V,W) = v^i w^j g(e_i, e_j) = \sum_i v^i w^i = v^i w^j \tilde{g}(\tilde{e}_i, \tilde{e}_j) = \tilde{g}(\tilde{V}, \tilde{W})$$

(Notice that it is important that we use *frames* instead of *coordinates*.) Furthermore, since the frames are parallel, i.e. $\nabla_T e_i = 0$, we get $V' = v^{i'} e_i + v^i \nabla_T e_i = v^{i'} e_i$ and $\tilde{V}' = v^{i'} \tilde{e}_i$ so the last items follow.

Now,

$$I(J,J) = \int_0^r [g(J',J') + g(R(T,J)T,J)] dt$$

$$\geq \int_0^r [g(J',J') - b^2 g(J,J)] dt$$

$$= I^b(\tilde{J},\tilde{J})$$

where I^b is the index on a manifold of constant curvature b^2 and where we have chosen a frame $\{e_i\}$ along γ and a corresponding frame $\{\tilde{e}_i\}$ along some curve $\tilde{\gamma}$ of the same length in the manifold of constant curvature.

In constant curvature, we have a Jacobi field which vanishes at t = 0 and ends at the vector $\tilde{J}(r)$ given by $\frac{\sin bt}{\sin br} \tilde{J}(r)$. What do we really mean by this? Suppose $J(r) = \sum c^i e_i(r)$ with our frame as above.

What do we really mean by this? Suppose $J(r) = \sum c^i e_i(r)$ with our frame as above. Let our new field be defined by $\tilde{V}(t) = \frac{\sin bt}{\sin br}c^i(r)\tilde{e}_i(t)$. Notice that $\tilde{V}(r) = \tilde{J}(r)$, $\tilde{V}(0) = 0$, $\tilde{V}'(t) = b\frac{\cos bt}{\sin br}c^i(r)\tilde{e}_i(t)$ since the frame is parallel, and \tilde{V} is orthogonal to $\tilde{\gamma}$ at every point since J(r) is and we have a parallel frame along a geodesic, so $\tilde{e}_1(t) = \tilde{T}(t) = \tilde{\gamma}'(t)$ for all t. Now compute (letting $c_i = c_i(r)$) using the Index Inequality (3.2) on the manifold of constant curvature b^2 (which we can do since we are inside the injectivity radius by assumption that $r \leq \pi/b$):

$$\begin{split} I_r^b(\tilde{J},\tilde{J}) &\geq I_r^b\left(\frac{\sin(bt)}{\sin(br)}c^i\tilde{e}_i(t)\right) \\ &= \frac{1}{\sin^2 br} \int_0^r \left[b^2\cos^2(bt)\sum(c^i)^2 - b^2\sin^2(bt)\sum(c^i)^2\right] dt \\ &= \frac{b}{\sin^2 br}\sin(br)\cos(br)\sum(c^i)^2 \\ &= b\cot(br)g(J(r),J(r)) \end{split}$$

We have just about proven an estimate on the metric tensor. We use 4-1. We now know that

$$g(J'(r), J(r)) \ge b \cot(br) g(J(r), J(r))$$

$$(4-2)$$

Now if we take J(t) to be a Jacobi field such that $J(r) = \frac{\partial}{\partial \theta}|_Q$ for $\theta = \theta^i$ for some *i*, then $g(J(r), J(r)) = r^2 g_{\theta\theta} ||J'(0)||^2$ by Proposition 3.5, so we can compute:

$$\begin{array}{rcl} b\cot(br)g(J(r),J(r)) &\leq & g(J'(r),J(r)) \\ & b\cot(br) &\leq & \displaystyle \frac{g(J'(r),J(r))}{g(J(r),J(r))} \\ & & = & \displaystyle \frac{\frac{\partial}{\partial r}g(J(r),J(r))}{2g(J(r),J(r))} \end{array}$$

$$= \frac{\frac{\partial}{\partial r} \left(r^2 g_{\theta\theta} \| J'(0) \|^2 \right)}{2r^2 g_{\theta\theta} \| J'(0) \|^2}$$
$$= \frac{1}{r} + \frac{\partial}{\partial r} \log \sqrt{g_{\theta\theta}}$$

And thus we have our first estimate on the metric tensor in polar coordinates:

$$\frac{\partial}{\partial r} \log \sqrt{g_{\theta\theta}} \ge b \cot(br) - \frac{1}{r}$$

Notice that

$$b\cot(br) - \frac{1}{r} = \frac{d}{dr}\log\frac{\sin(br)}{r} = \frac{d}{dr}\left(\log\frac{\sin(br)}{br} + \log b\right)$$

so if we integrate from 0 to r_0 we get

$$\log \sqrt{g_{\theta\theta}(r_0,\Theta)} \ge \log \frac{\sin br_0}{br_0}$$

since at 0, the metric is Euclidean, so $g_{\theta\theta}(0,\Theta) = 1$ (since in \mathbb{R}^2 we have $g(\frac{\partial}{\partial\theta}, \frac{\partial}{\partial\theta}) = r^2$) and $\lim_{s\to 0} \frac{\sin br}{br} = 1$. Thus we have

$$g_{\theta\theta}(r,\Theta) \ge \frac{\sin br}{br}$$

for any θ , a coordinate on S^{n-1} .

5. Lower Bounds on Determinant of Metric. We shall now use what we proved above to prove:

Theorem 5.1. If the sectional curvature of M is bounded above by b^2 then we have the following two estimates, provided $r < \pi/b$:

• $\frac{\partial}{\partial r} \log \sqrt{|g(r,\theta)|} \ge (n-1)b\cot(br) - \frac{n-1}{r}$ • $\sqrt{|g(r,\theta)|} \ge \left(\frac{\sin br}{br}\right)^{n-1}$

where $|g| = \det g_{\theta^i \theta^j}$.

We first take a bunch of Jacobi Fields $J_1, ..., J_{n-1}$ such that together with T at r they form a basis for $T_Q M$. We now let $|g| = \det g_{\theta^i \theta^j}$ and suppose that in coordinates we have $J_i(t) = c_i^k \frac{\partial}{\partial x^k}$ and compute:

$$\begin{aligned} \frac{\partial}{\partial r} \log \sqrt{|g|} &= \frac{1}{2} \frac{\partial}{\partial r} \operatorname{tr} \log |g| \\ &= \frac{1}{2} tr \left(\frac{\partial}{\partial r} g_{\theta^i \theta^j} g^{\theta^j \theta^k} \right) \\ &= \frac{1}{2} \frac{\partial}{\partial r} \frac{g(J_i(r), J_j(r))}{r^2} g^{\theta^i \theta^j} \\ &= g(J'_i(r), J_j(r)) g^{\theta^i \theta^j} - \frac{n-1}{r} \\ &= \sum_i g(J'_i(r), J_i(r)) - \frac{n-1}{r} \end{aligned}$$

We get the last equality seen above by letting $J'_i(r) = c_i^k J_k(r)$ (since the $J'_k(r)$ form an orthonormal basis) and compute:

$$g(J'_i(r), J_j(r))g^{\theta^i\theta^j} = c_i^k r^2 g_{\theta^k\theta^j} g^{\theta^i\theta^j}$$

$$= r^2 c_i^k \delta_k^i$$

$$= \sum_i r^2 c_i^i$$

$$= \sum_i g(J'_i(r), J_i(r))$$

We can now use 4-2 and see that

$$\frac{\partial}{\partial r}\log\sqrt{|g|} \ge (n-1)b\cot(br) - \frac{n-1}{r}$$

Integrating this from 0 to r_0 we get

$$\int_0^{r_0} \left[(n-1)b\cot(br) - \frac{n-1}{r} \right] dr = \log\left(\frac{\sin br}{br}\right)^{n-1} \Big|_0^{r_0}$$
$$= \log\left(\frac{\sin br_0}{br_0}\right)^{n-1}$$

because $\lim_{r\to 0} \frac{\sin br}{br} = 1$. Now, when r = 0, g is the Euclidean metric, where $g(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}) = r^2$, so $||g(0, \Theta)|| = \det I_{n-1} = 1$ where I_{n-1} is the $(n-1) \times (n-1)$ identity matrix. Thus we finally get:

$$\log \sqrt{|g(r_0, \Theta)|} \geq \log \left(\frac{\sin br_0}{br_0}\right)^{n-1}$$
$$\sqrt{|g(r_0, \Theta)|} \geq \left(\frac{\sin br_0}{br_0}\right)^{n-1}$$

6. Upper Bounds on Components of the Metric Tensor. We shall prove the following:

Theorem 6.1. If the sectional curvature of M is bounded below by $-a^2$ then we have the following two estimates:

• $\frac{\partial}{\partial r} \log \sqrt{g_{\theta\theta}} \le a \coth(ar) - \frac{1}{r}$

•
$$g_{\theta\theta}(r,\Theta) \leq \frac{\sinh ar}{ar}$$

We begin as above. We know that for a Jacobi field J along a geodesic we have $g(R(J,T)T,J) \ge -a^2$, so $g(R(T,J)T,J) \le a^2$.

Let us define a vector field V(t) along the geodesic γ . We first consider a Jacobi field J along γ such that J(0) = 0, g(J'(0), T(0)) = 0, and $J(r) = \frac{\partial}{\partial \theta}|_Q$. We fix a frame $\{e_i(t)\}$ along γ as above, so $J(t) = c^i(t)e_i(t)$. We can now take as our vector field $V(t) = \frac{\sinh at}{\sinh ar}c^i(r)e_i(t)$.

Notice that \tilde{V} would be a Jacobi field in a manifold \tilde{M} of constant curvature $-a^2$. We also see immediately that V(0) = 0 and V(r) = J(r).

The Index Inequality (3.2) gives us

$$\begin{split} I_{r}(J,J) &\leq I_{r}(V,V) \\ &= \int_{0}^{r} \left[g(V',V') + g(R(T,V)T,V) \right] dt \\ &\leq \int_{0}^{r} \left[g(V'(t),V'(t)) + a^{2}g(V,V) \right] dt \\ &= I_{r}^{a}(\tilde{V},\tilde{V}) \end{split}$$

where I_r^a is the index on a manifold of constant curvature $-a^2$. Note we can use the Index Inequality since we are within the injectivity radius and hence there are no conjugate points.

Now, recall 4-1, which handles the left side. We also want to compute the right side (again letting $c^i = c^i(r)$):

$$\begin{split} I_r^a(\tilde{V}, \tilde{V}) &= \int_0^r \left[g(V'(t), V'(t)) + a^2 g(V, V) \right] dt \\ &= \frac{1}{\sinh^2 ar} \int_0^r \left[a^2 \cosh^2(at) \sum (c^i)^2 + a^2 \sinh^2(at) \sum (c^i)^2 \right] dt \\ &= \frac{a}{\sinh^2 ar} \int_0^r \left[a \cosh^2 at + a \sinh^2 at \right] dt \sum (c^i)^2 \\ &= \frac{a}{\sinh^2 ar} (\cosh ar) (\sinh ar) g(J(r), J(r)) \\ &= a \coth(ar) g(J(r), J(r)) \end{split}$$

Now we can follow the same calculation as above to get the following two estimates:

$$\frac{\partial}{\partial r} \log \sqrt{g_{\theta\theta}} \le a \coth(ar) - \frac{1}{r}$$
$$g_{\theta\theta}(r, \Theta) \le \frac{\sinh ar}{ar}$$

References

- Thierry Aubin. Some Nonlinear Problems in Riemannian Geometry. Springer-Verlag, Berlin, Germany, 1998.
- [2] Manifred Perdigao do Carmo. Riemannian Geometry. Birkhauser, Boston, MA, 1992.