Estimates on the Metric Tensor

David Glickenstein

February 14, 2000

1. Introduction. This is a summary of some easy estimates on the metric tensor of a manifold if the sectional curvatures are bounded. It generally follows [1, section 1.8].
2. Definitions. We will estimate derivatives of the metric in geodesic polar coordinates. Suppose we have a Riemannian manifold (M, g). We consider geodesic polar coordinates, and in these coordinates the metric can be written as $g=d r^{2}+r^{2} g_{\theta^{i} \theta j} d \theta^{i} d \theta^{j}$.

We also are going to need to take a geodesic $\gamma(t)$ on M which is parametrized by arclength, and we will say that $P=\gamma(0), Q=\gamma(r)$, and $T(t)=\gamma^{\prime}(t)$.

In the sequel, we shall talk about vector fields V along the curve γ. When we write $V^{\prime}(t)$, it is understood to mean $\nabla_{T(t)} V(t)$, where ∇ is the Riemannian connection on M.

We shall also restrict ourselves to r such that $\gamma(r)$ is in the ball around P where $\exp _{P}$ is a diffeomorphism (inside the injectivity radius).
3. Relevant Theorems. We will use Jacobi fields and the Index Inequality. We first should define the Index of a vector field.

Definition 3.1. The index at r of a vector field $V(t)$ along a curve γ is

$$
I_{r}(V, V)=\int_{0}^{r}\left[g\left(V^{\prime}(t), V^{\prime}(t)\right)+g(R(T(t), V(t)) T(t), V(t))\right] d t
$$

where $T(t)=\frac{d \gamma}{d t}$ is the tangential vector field to γ.
This is, I think, essentially the second variation of arclength.
The important theorem is the following:
Theorem 3.2 (Index Inequality. See, for instance, [2]). Let $\gamma(t)$ be a geodesic between $P=\gamma(0)$ and $Q=\gamma(r)$ such that there are no conjugate points between P and Q, and let $J(t)$ be a Jacobi field along γ such that $J(0)=0$ and $V(t)$ be another smooth vector field along γ such that both J and V are orthogonal to $T(t)=\frac{d \gamma}{d t}, V(0)=0$, and $J(r)=V(r)$, then $I_{r}(J, J) \leq I_{r}(V, V)$.

In order to use the Index Inequality, we will need the following two propositions.
Proposition 3.3 (See [1], 1.46). $Q=\exp _{P} X_{0}$ is a conjugate point if and only if $\exp _{P}$ is singular at X_{0}.

Thus if we stay within the injectivity radius on M, we will not encounter any conjugate points. We will also need to know:

Proposition 3.4. The injectivity radius for a space of constant curvature b^{2} is π / b.
Finally, we will use the fact that Jacobi fields are the infinitesimal variations of geodesics. In geodesic normal coordinates at P, the geodesics through p are given by $\exp _{p}(t v)$. Thus if we have a Jacobi field along a geodesic γ such that $J(0)=0$, then we see that in our geodesic polar coordinates we have Jacobi fields $J(t)=\left.t\left\|J^{\prime}(0)\right\| \frac{\partial}{\partial \theta}\right|_{t v}$ where $\|w\|$ for a vector w means $\sqrt{g(w, w)}$. Thus we see that:

Proposition 3.5. For a Jacobi field J along a geodesic $\gamma(t), t \in[0, r]$ with $\gamma(r)=Q$, such that $J(0)=0$ and $J(r)=\left.\frac{\partial}{\partial \theta}\right|_{Q}$, we have $g(J(r), J(r))=r^{2} g_{\theta \theta}\left\|J^{\prime}(0)\right\|^{2}$.
4. Lower Bounds for the Components of the Metric Tensor. We shall prove the following:

Theorem 4.1. If the sectional curvature of M is bounded above by b^{2} then we have the following two estimates, provided $r<\pi / b$:

- $\frac{\partial}{\partial r} \log \sqrt{g_{\theta \theta}} \geq b \cot (b r)-\frac{1}{r}$
- $g_{\theta \theta}(r, \Theta) \geq \frac{\sin b r}{b r}$
where $\theta=\theta^{i}$ for any i (as defined in the polar representation of the metric).
Now suppose the sectional curvature of M is bounded above by b^{2}, so $g(R(J, T) T, J) \leq b^{2}$, or $g(R(T, J) T, J) \geq-b^{2}$.

We furthermore observe that if J is a Jacobi field, then, by definition, $J^{\prime \prime}(t)=R(T, J) T$, so we get

$$
\begin{equation*}
I_{r}(J, J)=\int_{0}^{r}\left[g\left(J^{\prime}(t), J^{\prime}(t)\right)+g\left(J^{\prime \prime}(t), J(t)\right)\right] d t=g\left(J^{\prime}(r), J(r)\right) \tag{4-1}
\end{equation*}
$$

We are going to compare the metric on M with the metric on a space of constant curvature b^{2}. To do this, we need to make a frame $\left\{e_{1}(t), \ldots, e_{n}(t)\right\}$ on M by taking an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of $T_{\gamma(0)} M$ such that $e_{1}=\gamma^{\prime}(0)$ and then parallel translating it along γ. Notice that since γ is a geodesic and parametrized by arclength, $e_{1}(t)=\gamma^{\prime}(t)$. We also need to take a geodesic $\tilde{\gamma}$ on another manifold \tilde{M} which is the same length as γ and do the same thing to get a frame $\left\{\tilde{e}_{1}(t), \ldots, \tilde{e}_{n}(t)\right\}$ along $\tilde{\gamma}$. We then have the map $\sim: c^{i}(t) e_{i}(t) \mapsto c^{i}(t) \tilde{e}_{i}(t)$, or $V \mapsto \tilde{V}$. Notice the following:

Lemma 4.2. The map $\sim:(M, g) \rightarrow(\tilde{M}, \tilde{g})$ has the following properties for vector fields V and W along γ and \tilde{V} and \hat{W} along $\tilde{\gamma}$:

- $g(V, W)=\tilde{g}(\tilde{V}, \tilde{W})$
- $g\left(V^{\prime}, W\right)=\tilde{g}\left(\tilde{V}^{\prime}, \tilde{W}\right)$
- $g\left(V^{\prime}, W^{\prime}\right)=\tilde{g}\left(\tilde{V}^{\prime}, \tilde{W}^{\prime}\right)$

Proof: Use the frames we have already set up. Then if $V=v^{i} e_{i}$ and $W=w^{i} e_{i}$ where v^{i}, w^{i} are real-valued functions, then

$$
g(V, W)=v^{i} w^{j} g\left(e_{i}, e_{j}\right)=\sum v^{i} w^{i}=v^{i} w^{j} \tilde{g}\left(\tilde{e}_{i}, \tilde{e}_{j}\right)=\tilde{g}(\tilde{V}, \tilde{W})
$$

(Notice that it is important that we use frames instead of coordinates.) Furthermore, since the frames are parallel, i.e. $\nabla_{T} e_{i}=0$, we get $V^{\prime}=v^{i^{\prime}} e_{i}+v^{i} \nabla_{T} e_{i}=v^{i^{\prime}} e_{i}$ and $\tilde{V}^{\prime}=v^{i} \tilde{e}_{i}$ so the last items follow.

Now,

$$
\begin{aligned}
I(J, J) & =\int_{0}^{r}\left[g\left(J^{\prime}, J^{\prime}\right)+g(R(T, J) T, J)\right] d t \\
& \geq \int_{0}^{r}\left[g\left(J^{\prime}, J^{\prime}\right)-b^{2} g(J, J)\right] d t \\
& =I^{b}(\tilde{J}, \tilde{J})
\end{aligned}
$$

where I^{b} is the index on a manifold of constant curvature b^{2} and where we have chosen a frame $\left\{e_{i}\right\}$ along γ and a corresponding frame $\left\{\tilde{e}_{i}\right\}$ along some curve $\tilde{\gamma}$ of the same length in the manifold of constant curvature.

In constant curvature, we have a Jacobi field which vanishes at $t=0$ and ends at the vector $\tilde{J}(r)$ given by $\frac{\sin b t}{\sin b r} \tilde{J}(r)$.

What do we really mean by this? Suppose $J(r)=\sum c^{i} e_{i}(r)$ with our frame as above. Let our new field be defined by $\tilde{V}(t)=\frac{\sin b t}{\sin b r} c^{i}(r) \tilde{e}_{i}(t)$. Notice that $\tilde{V}(r)=\tilde{J}(r), \tilde{V}(0)=0$, $\tilde{V}^{\prime}(t)=b \frac{\cos b t}{\sin b r} c^{i}(r) \tilde{e}_{i}(t)$ since the frame is parallel, and \tilde{V} is orthogonal to $\tilde{\gamma}$ at every point since $J(r)$ is and we have a parallel frame along a geodesic, so $\tilde{e}_{1}(t)=\tilde{T}(t)=\tilde{\gamma}^{\prime}(t)$ for all t. Now compute (letting $c_{i}=c_{i}(r)$) using the Index Inequality (3.2) on the manifold of constant curvature b^{2} (which we can do since we are inside the injectivity radius by assumption that $r \leq \pi / b):$

$$
\begin{aligned}
I_{r}^{b}(\tilde{J}, \tilde{J}) & \geq I_{r}^{b}\left(\frac{\sin (b t)}{\sin (b r)} c^{i} \tilde{e}_{i}(t)\right) \\
& =\frac{1}{\sin ^{2} b r} \int_{0}^{r}\left[b^{2} \cos ^{2}(b t) \sum\left(c^{i}\right)^{2}-b^{2} \sin ^{2}(b t) \sum\left(c^{i}\right)^{2}\right] d t \\
& =\frac{b}{\sin ^{2} b r} \sin (b r) \cos (b r) \sum\left(c^{i}\right)^{2} \\
& =b \cot (b r) g(J(r), J(r))
\end{aligned}
$$

We have just about proven an estimate on the metric tensor. We use 4-1. We now know that

$$
\begin{equation*}
g\left(J^{\prime}(r), J(r)\right) \geq b \cot (b r) g(J(r), J(r)) \tag{4-2}
\end{equation*}
$$

Now if we take $J(t)$ to be a Jacobi field such that $J(r)=\left.\frac{\partial}{\partial \theta}\right|_{Q}$ for $\theta=\theta^{i}$ for some i, then $g(J(r), J(r))=r^{2} g_{\theta \theta}\left\|J^{\prime}(0)\right\|^{2}$ by Proposition 3.5 , so we can compute:

$$
\begin{aligned}
b \cot (b r) g(J(r), J(r)) & \leq g\left(J^{\prime}(r), J(r)\right) \\
b \cot (b r) & \leq \frac{g\left(J^{\prime}(r), J(r)\right)}{g(J(r), J(r))} \\
& =\frac{\frac{\partial}{\partial r} g(J(r), J(r))}{2 g(J(r), J(r))}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{\partial}{\partial r}\left(r^{2} g_{\theta \theta}\left\|J^{\prime}(0)\right\|^{2}\right)}{2 r^{2} g_{\theta \theta}\left\|J^{\prime}(0)\right\|^{2}} \\
& =\frac{1}{r}+\frac{\partial}{\partial r} \log \sqrt{g_{\theta \theta}}
\end{aligned}
$$

And thus we have our first estimate on the metric tensor in polar coordinates:

$$
\frac{\partial}{\partial r} \log \sqrt{g_{\theta \theta}} \geq b \cot (b r)-\frac{1}{r}
$$

Notice that

$$
b \cot (b r)-\frac{1}{r}=\frac{d}{d r} \log \frac{\sin (b r)}{r}=\frac{d}{d r}\left(\log \frac{\sin (b r)}{b r}+\log b\right)
$$

so if we integrate from 0 to r_{0} we get

$$
\log \sqrt{g_{\theta \theta}\left(r_{0}, \Theta\right)} \geq \log \frac{\sin b r_{0}}{b r_{0}}
$$

since at 0 , the metric is Euclidean, so $g_{\theta \theta}(0, \Theta)=1$ (since in \mathbb{R}^{2} we have $g\left(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}\right)=r^{2}$) and $\lim _{s \rightarrow 0} \frac{\sin b r}{b r}=1$. Thus we have

$$
g_{\theta \theta}(r, \Theta) \geq \frac{\sin b r}{b r}
$$

for any θ, a coordinate on S^{n-1}.
5. Lower Bounds on Determinant of Metric. We shall now use what we proved above to prove:

Theorem 5.1. If the sectional curvature of M is bounded above by b^{2} then we have the following two estimates, provided $r<\pi / b$:

- $\frac{\partial}{\partial r} \log \sqrt{|g(r, \theta)|} \geq(n-1) b \cot (b r)-\frac{n-1}{r}$
- $\sqrt{|g(r, \theta)|} \geq\left(\frac{\sin b r}{b r}\right)^{n-1}$
where $|g|=\operatorname{det} g_{\theta^{i} \theta_{j}}$.
We first take a bunch of Jacobi Fields J_{1}, \ldots, J_{n-1} such that together with T at r they form a basis for $T_{Q} M$. We now let $|g|=\operatorname{det} g_{\theta^{i} \theta^{j}}$ and suppose that in coordinates we have $J_{i}(t)=c_{i}^{k} \frac{\partial}{\partial x^{k}}$ and compute:

$$
\begin{aligned}
\frac{\partial}{\partial r} \log \sqrt{|g|} & =\frac{1}{2} \frac{\partial}{\partial r} \operatorname{tr} \log |g| \\
& =\frac{1}{2} \operatorname{tr}\left(\frac{\partial}{\partial r} g_{\theta^{i} \theta^{j}} g^{\theta^{j} \theta^{k}}\right) \\
& =\frac{1}{2} \frac{\partial}{\partial r} \frac{g\left(J_{i}(r), J_{j}(r)\right)}{r^{2}} g^{\theta^{i} \theta^{j}} \\
& =g\left(J_{i}^{\prime}(r), J_{j}(r)\right) g^{\theta^{i} \theta^{j}}-\frac{n-1}{r} \\
& =\sum_{i} g\left(J_{i}^{\prime}(r), J_{i}(r)\right)-\frac{n-1}{r}
\end{aligned}
$$

We get the last equality seen above by letting $J_{i}^{\prime}(r)=c_{i}^{k} J_{k}(r)$ (since the $J_{k}^{\prime}(r)$ form an orthonormal basis) and compute:

$$
\begin{aligned}
g\left(J_{i}^{\prime}(r), J_{j}(r)\right) g^{\theta^{i} \theta^{j}} & =c_{i}^{k} r^{2} g_{\theta^{k} \theta j} \theta^{\theta^{i} \theta^{j}} \\
& =r^{2} c_{i}^{k} \delta_{k}^{i} \\
& =\sum_{i} r^{2} c_{i}^{i} \\
& =\sum_{i} g\left(J_{i}^{\prime}(r), J_{i}(r)\right)
\end{aligned}
$$

We can now use 4-2 and see that

$$
\frac{\partial}{\partial r} \log \sqrt{|g|} \geq(n-1) b \cot (b r)-\frac{n-1}{r}
$$

Integrating this from 0 to r_{0} we get

$$
\begin{aligned}
\int_{0}^{r_{0}}\left[(n-1) b \cot (b r)-\frac{n-1}{r}\right] d r & =\left.\log \left(\frac{\sin b r}{b r}\right)^{n-1}\right|_{0} ^{r_{0}} \\
& =\log \left(\frac{\sin b r_{0}}{b r_{0}}\right)^{n-1}
\end{aligned}
$$

because $\lim _{r \rightarrow 0} \frac{\sin b r}{b r}=1$. Now, when $r=0, g$ is the Euclidean metric, where $g\left(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}\right)=r^{2}$, so $\|g(0, \Theta)\|=\operatorname{det} I_{n-1}=1$ where I_{n-1} is the $(n-1) \times(n-1)$ identity matrix. Thus we finally get:

$$
\begin{aligned}
\log \sqrt{\left|g\left(r_{0}, \Theta\right)\right|} & \geq \log \left(\frac{\sin b r_{0}}{b r_{0}}\right)^{n-1} \\
\sqrt{\left|g\left(r_{0}, \Theta\right)\right|} & \geq\left(\frac{\sin b r_{0}}{b r_{0}}\right)^{n-1}
\end{aligned}
$$

6. Upper Bounds on Components of the Metric Tensor. We shall prove the following:

Theorem 6.1. If the sectional curvature of M is bounded below by $-a^{2}$ then we have the following two estimates:

- $\frac{\partial}{\partial r} \log \sqrt{g_{\theta \theta}} \leq a \operatorname{coth}(a r)-\frac{1}{r}$
- $g_{\theta \theta}(r, \Theta) \leq \frac{\sinh a r}{a r}$

We begin as above. We know that for a Jacobi field J along a geodesic we have $g(R(J, T) T, J) \geq-a^{2}$, so $g(R(T, J) T, J) \leq a^{2}$.

Let us define a vector field $V(t)$ along the geodesic γ. We first consider a Jacobi field J along γ such that $J(0)=0, g\left(J^{\prime}(0), T(0)\right)=0$, and $J(r)=\left.\frac{\partial}{\partial \theta}\right|_{Q}$. We fix a frame $\left\{e_{i}(t)\right\}$ along γ as above, so $J(t)=c^{i}(t) e_{i}(t)$. We can now take as our vector field $V(t)=\frac{\sinh a t}{\sinh a r} c^{i}(r) e_{i}(t)$.

Notice that \tilde{V} would be a Jacobi field in a manifold \tilde{M} of constant curvature $-a^{2}$. We also see immediately that $V(0)=0$ and $V(r)=J(r)$.

The Index Inequality (3.2) gives us

$$
\begin{aligned}
I_{r}(J, J) & \leq I_{r}(V, V) \\
& =\int_{0}^{r}\left[g\left(V^{\prime}, V^{\prime}\right)+g(R(T, V) T, V)\right] d t \\
& \leq \int_{0}^{r}\left[g\left(V^{\prime}(t), V^{\prime}(t)\right)+a^{2} g(V, V)\right] d t \\
& =I_{r}^{a}(\tilde{V}, \tilde{V})
\end{aligned}
$$

where I_{r}^{a} is the index on a manifold of constant curvature $-a^{2}$. Note we can use the Index Inequality since we are within the injectivity radius and hence there are no conjugate points.

Now, recall 4-1, which handles the left side. We also want to compute the right side (again letting $\left.c^{i}=c^{i}(r)\right)$:

$$
\begin{aligned}
I_{r}^{a}(\tilde{V}, \tilde{V}) & =\int_{0}^{r}\left[g\left(V^{\prime}(t), V^{\prime}(t)\right)+a^{2} g(V, V)\right] d t \\
& =\frac{1}{\sinh ^{2} a r} \int_{0}^{r}\left[a^{2} \cosh ^{2}(a t) \sum\left(c^{i}\right)^{2}+a^{2} \sinh ^{2}(a t) \sum\left(c^{i}\right)^{2}\right] d t \\
& =\frac{a}{\sinh ^{2} a r} \int_{0}^{r}\left[a \cosh ^{2} a t+a \sinh ^{2} a t\right] d t \sum\left(c^{i}\right)^{2} \\
& =\frac{a}{\sinh ^{2} a r}(\cosh a r)(\sinh a r) g(J(r), J(r)) \\
& =a \operatorname{coth}(a r) g(J(r), J(r))
\end{aligned}
$$

Now we can follow the same calculation as above to get the following two estimates:

$$
\begin{gathered}
\frac{\partial}{\partial r} \log \sqrt{g_{\theta \theta}} \leq a \operatorname{coth}(a r)-\frac{1}{r} \\
g_{\theta \theta}(r, \Theta) \leq \frac{\sinh a r}{a r}
\end{gathered}
$$

References

[1] Thierry Aubin. Some Nonlinear Problems in Riemannian Geometry. Springer-Verlag, Berlin, Germany, 1998.
[2] Manifred Perdigao do Carmo. Riemannian Geometry. Birkhauser, Boston, MA, 1992.

