1. [20 points] Diseases D_1 and D_2 cause symptom A with probabilities 0.4 and 0.8, respectively. Suppose 6% of a population have disease D_1 and 2% have disease D_2. Assume that the only possible causes of symptom A are D_1 and D_2, and that no one carries more than one of those two diseases.

(a) What percent of the population have symptom A?

(b) Let a randomly selected person from the population have symptom A. What is the chance he/she carries disease D_1?
2. [20 points] A discrete random variable X has probability mass function f_X defined as follows:

$$f_X(x) = \begin{cases}
c(x^2 + 1), & \text{if } x = 0, \pm 1, \pm 2, \\
0, & \text{otherwise}
\end{cases}$$

where c is a constant. Find the following:

(a) the value of c.
(b) $P(-1 \leq X < 2)$.
(c) $P(|X| \leq 1 \mid X \geq 0)$.
(d) $E(2X - 1)$
3. [20 points] Suppose X and Y are two independent random variables such that

\[\mathbb{E}(X) = 2, \quad \text{Var}(X) = 4, \quad \mathbb{E}(Y) = -7, \quad \text{Var}(Y) = 9. \]

Find the following

(a) $\mathbb{E}(X^2)$ and $\mathbb{E}(Y^2)$.

(b) $\mathbb{E}(2X^2 - Y^2 - 3XY)$.

(c) $\mathbb{E}(XY(X - Y))$.

(d) $\text{Var}(XY)$.
4. [20 points] The probability of triplets in human birth is approximately 0.001. Use poisson approximation to find the probability that, among 700 births in a large hospital, there will be

(a) at least one set of triplets?
(b) at most one set of triplets?
5. [20 points] You have three alarm clocks that will ring on any given morning with probabilities 0.8, 0.85, and 0.9, respectively. To wake up on an important exam day, you set all the three alarm clocks.

(a) What is the probability that exactly two alarm clocks will ring?

(b) What is the probability of you being awakened by your alarm clocks?
6. [15 points] Let X be a discrete random variable with a geometric distribution whose mean is 2.

(a) Find $P(X \geq 6 \mid X > 4)$, your answer should not have a summation.
(b) Let $Z = -X + 3$. Find the mean and variance of Z.
(c) Compute the conditional expectation of X given that X is at least 3.
In the following $0 < p < 1$ and $q := 1 - p$.

Bernoulli: $X \sim \text{Bernoulli}(p)$

$\mathbb{P}(X = 1) = p$ and $\mathbb{P}(X = 0) = q$.

$\mathbb{E}(X) = p$, $\text{Var}(X) = pq$, $M_X(t) = q + pe^t$.

Binomial: $X \sim \text{Binomial}(n,p)$, $n \in \mathbb{N}$.

$\mathbb{P}(X = k) = \binom{n}{k} q^{n-k} p^k$, $k = 0,1,\ldots,n$.

$\mathbb{E}(X) = np$, $\text{Var}(X) = npq$, $M_X(t) = (q + pe^t)^n$.

Geometric: $X \sim \text{Geometric}(p)$

$\mathbb{P}(X = k) = q^{k-1}p$, $k = 1,2,\ldots$

$\mathbb{E}(X) = \frac{1}{p}$, $\text{Var}(X) = \frac{q}{p^2}$, $M_X(t) = \frac{pe^t}{1-qt}$.

Poisson: $X \sim \text{Poisson}(\lambda)$, $\lambda > 0$.

$\mathbb{P}(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$, $k = 0,1,\ldots$

$\mathbb{E}(X) = \lambda$, $\text{Var}(X) = \lambda$, $M_X(t) = e^{\lambda(e^t-1)}$.

Negative Binomial: $X \sim \text{NB}(n,p)$, $n \in \mathbb{N}$.

$\mathbb{P}(X = k) = \binom{k-1}{n-1} p^n q^{k-n}$, $k = n, n+1,\ldots$

$\mathbb{E}(X) = \frac{n}{p}$, $\text{Var}(X) = \frac{np}{p^2}$, $M_X(t) = \left(\frac{pe^t}{1-qt}\right)^n$.