1. [16 points] Let A and B be 3×3 matrices, with $\det A = 3$ and $\det B = -4$. Find the following:

(a) $\det[A^{-1}BA]$.
(b) $\det[3B^T A]$.
(c) $\det[A^2 B]$.
(d) $\det[(BA^{-1})^{-1}]$
2. [15 points] Solve THREE from the following four questions. Explain your answers!

(a) Determine if the set H of all polynomials of the form $p(t) = 2 + t^2$ is a subspace of \mathbb{P}_5.
(b) Determine if the set H of all polynomials in \mathbb{P}_n such that $p(0) = 0$, is a subspace of \mathbb{P}_n.

(c) Let H be the set of all matrices of the form $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, where a and b are real numbers. Determine if H is a subspace of $M_{2 \times 2}$.

(d) Let

$$H = \left\{ \begin{bmatrix} a + b \\ b \\ 2a + b \end{bmatrix} : a, b \in \mathbb{R} \right\}$$

Determine if H is a subspace of \mathbb{R}^3.

3. [15 points] Let $M_{2\times 2}$ be the vector space of all 2×2 matrices and define $T : M_{2\times 2} \to M_{2\times 2}$ by $T(A) = A - A^T$, where

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

(a) Show that T is a linear transformation.
(b) Describe the kernel of T.
(c) Find a basis \mathcal{B} of $M_{2\times 2}$, then find $[A]_{\mathcal{B}}$.

4. [15 points] Find bases for Null A and Col A, where

$$A = \begin{bmatrix} 2 & -4 & 2 & 4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3 \end{bmatrix}$$
5. [15 points] Use coordinate vectors to test the linear independence of the set of polynomials. Explain your work!

\[1 + 2t^3, \ 2 + t - 3t^2, \ -t + 2t^2 - t^3. \]
6. [16 points] With no explicit calculations, find one eigenvalue for each of the following matrices, explain your reasoning

\[A = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 5 & 5 \\ 2 & 4 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 2 & 2 \\ 0 & 5 & 1 \\ 0 & -1 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & -1 \\ 3 & -1 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} -2 & -1 & 5 \\ 0 & -3 & 5 \\ 0 & 0 & 1 \end{bmatrix} \]
7. [16 points] In the following, \(A \) is an \(n \times n \) matrix. Mark each statement as **True** or **False**.

- () If \(A \) is invertible, then the equation \(A \mathbf{x} = \mathbf{b} \) is consistent for each \(\mathbf{b} \) in \(\mathbb{R}^n \).
- () If \(A \) is invertible, then elementary row operations that reduce \(A \) to the identity \(I_n \) also reduce \(A^{-1} \) to \(I_n \).
- () If \(A^T \) is not invertible then \(A \) is not invertible.
- () If the columns of \(A \) span \(\mathbb{R}^n \) then they are linearly independent.
- () If the columns of \(A \) are linearly independent then they span \(\mathbb{R}^n \).
- () If \(A \) is invertible then the columns of \(A^{-1} \) are linearly independent.
- () If \(A \) is invertible then the inverse of \(2A^TA^{-1} \) is \(2A(A^{-1})^T \).
- () If \(\det A \) is zero, then two rows or two columns are the same, or a row or a column is zero.
- () \(\det(rA) = r \det A \) where \(r \) is in \(\mathbb{R} \).
- () The range of a linear transformation is a vector space.
- () Let \(B \) be an \(n \times m \) matrix. The set of all solutions of the homogeneous system \(B\mathbf{x} = \mathbf{0} \) is a subspace of \(\mathbb{R}^m \).
- () If \(A \) is invertible then the number 0 is not an eigenvalue of \(A^T \).
- () If \(H = \text{span}\{\mathbf{b}_1, \ldots, \mathbf{b}_p\} \) then \(\{\mathbf{b}_1, \ldots, \mathbf{b}_p\} \) is a basis for \(H \).
- () A basis is a spanning set that is as large as possible.
- () If a finite set \(S \) of nonzero vectors spans a vector space \(V \), then some subset of \(S \) is a basis for \(V \).
- () The number of free variable in the equation \(A\mathbf{x} = \mathbf{0} \) equals the dimension of \(\text{Null} \ A \).