Quiz: Chapter 4 (A)

Name: ___________________________ Signature: ___________________________

SHOW ALL YOUR WORK!

In the following \(v_1, v_2, \ldots, v_p \) are vectors in a nonzero vector space \(V \), and \(S = \{v_1, \ldots, v_p\} \). Mark each statement as True or False.

- () The set of all linear combinations of \(v_1, v_2, \ldots, v_p \) is a vector space.
- () If \(\{v_1, v_2, \ldots, v_{p-1}\} \) spans \(V \) then \(S \) spans \(V \).
- () If \(\{v_1, v_2, \ldots, v_{p-1}\} \) is linearly independent then so is \(S \).
- () If \(S \) is linearly independent then \(S \) is a basis for \(V \).
- () If \(\text{span} \ S = V \), then some subset of \(S \) is a basis for \(V \).
- () If \(\text{dim} \ V = p \) and \(\text{span} \ S = V \), then \(S \) cannot be linearly dependent.
- () If \(\text{span} \ S = V \) and \(\tilde{S} \) is a set of more than \(p \) vectors in \(V \), then \(\tilde{S} \) is linearly dependent.
- () \(\mathbb{R}^2 \) is a two-dimensional subspace of \(\mathbb{R}^3 \).
- () The number of pivot columns of a matrix equals the dimension of its column space.
- () If \(B \) is the standard basis of \(\mathbb{R}^n \), then for every \(x \in \mathbb{R}^n \), \([x]_B = x \).