In the following, U, V, and W are finite dimensional vector spaces over a field F.

1. Let $T \in L(V)$ and let U_1 and U_2 be two T-invariant subspaces of V.
 (a) Prove that $U_1 + U_2$ is T-invariant.
 (b) Prove that $U_1 \cap U_2$ is T-invariant.

2. Suppose that $S, T \in L(V)$ are such that $ST = TS$. Prove that null S and range S are T-invariant.

3. Suppose that V is a finite dimensional complex vector space and $T \in L(V)$. Prove that T has an invariant subspace of dimension k for each $k = 1, \ldots, \dim V$.

4. Let $n \in \mathbb{Z}_+$ be a positive integer and $T \in L(\mathbb{F}^n)$ be defined by

 $T(x_1, \ldots, x_n) = (x_1 + \ldots + x_n, \ldots, x_1 + \ldots + x_n)$

 for every $x_1, x_2, \ldots, x_n \in \mathbb{F}$. Compute the eigenvalues and associated eigenvectors for T.

5. Suppose that $V = U \oplus W$, where U and W are subspaces of V. Define $P \in L(V)$ by

 $P(u + w) = u$ for every $u \in U$ and $w \in W$. Find all eigenvalues and eigenvectors of P.

6. Suppose $T \in L(V)$ and $S \in L(V)$ invertible. Show that T and $S^{-1}TS$ have the same eigenvalues.

7. Suppose that $T \in L(V)$ is invertible. Prove that

 $\text{null}(T - \lambda I) = \text{null}(T^{-1} - \frac{1}{\lambda} I)$

 for every $\lambda \in \mathbb{F}$ with $\lambda \neq 0$.

8. Suppose that $T \in L(V)$ has the property that every $v \in V$ is an eigenvector for T. Prove that T must then be a scaler multiple of the identity function on V.

9. Let V be a finite dimensional over \mathbb{C}, $T \in L(V)$, and $p(z) \in \mathbb{C}[z]$ be a polynomial. Prove that $\lambda \in \mathbb{C}$ is an eigenvalue of the linear operator $p(T) \in L(V)$ if and only if T has an eigenvalue $\mu \in \mathbb{C}$ such that $p(\mu) = \lambda$.