In all of the following questions, V is a finite dimensional vector space over a field F.

1. [15 points] Solve the equation $z^3 - 4i = 0$, where $z \in \mathbb{C}$.

2. [10 points] Determine whether the following set of vectors are linearly independent in \mathbb{R}^3.

$$v_1 = (1, 1, 1), \quad v_2 = (0, 1, -1), \quad v_3 = (1, 1, 0)$$
3. [15 points]
 (a) List all subspaces of \(\mathbb{R} \), \(\mathbb{R}^2 \), and \(\mathbb{R}^3 \).
 (b) Give an example of a nonempty subset of \(\mathbb{R}^2 \) that is closed under scalar multiplication but it is not a subspace of \(\mathbb{R}^2 \).
 (c) Give an example of a nonempty subset of \(\mathbb{R}^2 \) that is closed under vector addition but it is not a subspace of \(\mathbb{R}^2 \).
4. [20 points] Let V_1 and V_2 be two subspaces of V,
 (a) Prove that $V_1 \cap V_2$ is a subspace of V.
 (b) Prove that $V_1 + V_2$ is a subspace of V.
 (c) Give examples of V, and subspaces V_1 and V_2 of V in each of the following cases
 i. $V_1 \cup V_2$ is a subspace of V.
 ii. $V_1 \cup V_2$ is not a subspace of V.
5. [10 points] Let \(v_j \in V \) for \(j = 1, 2, \ldots, n \). Write a mathematical definition of each of the following:

(a) The list of vectors \((v_1, v_2, \ldots, v_n)\) is linearly dependent.

(b) \(V = \text{span}(v_1, v_2, \ldots, v_n) \).

6. [20 points] Let \(W_1 \) and \(W_2 \) be two subspaces of \(V \), and suppose that \(V = W_1 + W_2 \), prove that \(V = W_1 \oplus W_2 \) if and only if \(W_1 \cap W_2 = \{0\} \).
7. [20 points] Suppose that \((v_1, v_2, \ldots, v_n)\) be a linearly independent list of vectors in \(V\). Given any \(w \in V\) such that \((v_1 + w, v_2 + w, \ldots, v_n + w)\) is a linearly dependent list of vectors in \(V\), prove that \(w \in \text{span}(v_1, v_2, \ldots, v_n)\).
8. [10 points] Suppose that W_1 and W_2 are two subspaces of V such that $W_1 \cap W_2 = \{0\}$. Let (v_1, v_2, \ldots, v_m) and (w_1, w_2, \ldots, w_n) be two linearly independent sets in the subspaces W_1 and W_2, respectively. Prove that

$$(v_1, v_2, \ldots, v_m, w_1, w_2, \ldots, w_m)$$

is linearly independent in $W_1 \oplus W_2$.